### (0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
from(X) → n__from(X)
s(X) → n__s(X)
take(X1, X2) → n__take(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Rewrite Strategy: INNERMOST

### (1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted Cpx (relative) TRS to CDT

### (2) Obligation:

Complexity Dependency Tuples Problem
Rules:

from(z0) → cons(z0, n__from(n__s(z0)))
from(z0) → n__from(z0)
take(0, z0) → nil
take(s(z0), cons(z1, z2)) → cons(z1, n__take(z0, activate(z2)))
take(z0, z1) → n__take(z0, z1)
sel(0, cons(z0, z1)) → z0
sel(s(z0), cons(z1, z2)) → sel(z0, activate(z2))
s(z0) → n__s(z0)
activate(n__from(z0)) → from(activate(z0))
activate(n__s(z0)) → s(activate(z0))
activate(n__take(z0, z1)) → take(activate(z0), activate(z1))
activate(z0) → z0
Tuples:

FROM(z0) → c
FROM(z0) → c1
TAKE(0, z0) → c4
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
TAKE(z0, z1) → c6
SEL(0, cons(z0, z1)) → c7
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
S(z0) → c9
ACTIVATE(n__from(z0)) → c10(FROM(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(S(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(TAKE(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(z0) → c13
S tuples:

FROM(z0) → c
FROM(z0) → c1
TAKE(0, z0) → c4
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
TAKE(z0, z1) → c6
SEL(0, cons(z0, z1)) → c7
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
S(z0) → c9
ACTIVATE(n__from(z0)) → c10(FROM(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(S(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(TAKE(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(z0) → c13
K tuples:none
Defined Rule Symbols:

from, head, 2nd, take, sel, s, activate

Defined Pair Symbols:

FROM, HEAD, 2ND, TAKE, SEL, S, ACTIVATE

Compound Symbols:

c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13

### (3) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)

TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
Removed 8 trailing nodes:

FROM(z0) → c
FROM(z0) → c1
TAKE(0, z0) → c4
S(z0) → c9
TAKE(z0, z1) → c6
ACTIVATE(z0) → c13
SEL(0, cons(z0, z1)) → c7

### (4) Obligation:

Complexity Dependency Tuples Problem
Rules:

from(z0) → cons(z0, n__from(n__s(z0)))
from(z0) → n__from(z0)
take(0, z0) → nil
take(s(z0), cons(z1, z2)) → cons(z1, n__take(z0, activate(z2)))
take(z0, z1) → n__take(z0, z1)
sel(0, cons(z0, z1)) → z0
sel(s(z0), cons(z1, z2)) → sel(z0, activate(z2))
s(z0) → n__s(z0)
activate(n__from(z0)) → from(activate(z0))
activate(n__s(z0)) → s(activate(z0))
activate(n__take(z0, z1)) → take(activate(z0), activate(z1))
activate(z0) → z0
Tuples:

ACTIVATE(n__from(z0)) → c10(FROM(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(S(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(TAKE(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
S tuples:

ACTIVATE(n__from(z0)) → c10(FROM(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(S(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(TAKE(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
K tuples:none
Defined Rule Symbols:

from, head, 2nd, take, sel, s, activate

Defined Pair Symbols:

2ND, ACTIVATE

Compound Symbols:

c3, c10, c11, c12

### (5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 4 trailing tuple parts

### (6) Obligation:

Complexity Dependency Tuples Problem
Rules:

from(z0) → cons(z0, n__from(n__s(z0)))
from(z0) → n__from(z0)
take(0, z0) → nil
take(s(z0), cons(z1, z2)) → cons(z1, n__take(z0, activate(z2)))
take(z0, z1) → n__take(z0, z1)
sel(0, cons(z0, z1)) → z0
sel(s(z0), cons(z1, z2)) → sel(z0, activate(z2))
s(z0) → n__s(z0)
activate(n__from(z0)) → from(activate(z0))
activate(n__s(z0)) → s(activate(z0))
activate(n__take(z0, z1)) → take(activate(z0), activate(z1))
activate(z0) → z0
Tuples:

2ND(cons(z0, z1)) → c3(ACTIVATE(z1))
ACTIVATE(n__from(z0)) → c10(ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(ACTIVATE(z0), ACTIVATE(z1))
S tuples:

2ND(cons(z0, z1)) → c3(ACTIVATE(z1))
ACTIVATE(n__from(z0)) → c10(ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(ACTIVATE(z0), ACTIVATE(z1))
K tuples:none
Defined Rule Symbols:

from, head, 2nd, take, sel, s, activate

Defined Pair Symbols:

2ND, ACTIVATE

Compound Symbols:

c3, c10, c11, c12

### (7) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)

2ND(cons(z0, z1)) → c3(ACTIVATE(z1))

### (8) Obligation:

Complexity Dependency Tuples Problem
Rules:

from(z0) → cons(z0, n__from(n__s(z0)))
from(z0) → n__from(z0)
take(0, z0) → nil
take(s(z0), cons(z1, z2)) → cons(z1, n__take(z0, activate(z2)))
take(z0, z1) → n__take(z0, z1)
sel(0, cons(z0, z1)) → z0
sel(s(z0), cons(z1, z2)) → sel(z0, activate(z2))
s(z0) → n__s(z0)
activate(n__from(z0)) → from(activate(z0))
activate(n__s(z0)) → s(activate(z0))
activate(n__take(z0, z1)) → take(activate(z0), activate(z1))
activate(z0) → z0
Tuples:

ACTIVATE(n__from(z0)) → c10(ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(ACTIVATE(z0), ACTIVATE(z1))
S tuples:

ACTIVATE(n__from(z0)) → c10(ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(ACTIVATE(z0), ACTIVATE(z1))
K tuples:none
Defined Rule Symbols:

from, head, 2nd, take, sel, s, activate

Defined Pair Symbols:

ACTIVATE

Compound Symbols:

c10, c11, c12

### (9) CdtUsableRulesProof (EQUIVALENT transformation)

The following rules are not usable and were removed:

from(z0) → cons(z0, n__from(n__s(z0)))
from(z0) → n__from(z0)
take(0, z0) → nil
take(s(z0), cons(z1, z2)) → cons(z1, n__take(z0, activate(z2)))
take(z0, z1) → n__take(z0, z1)
sel(0, cons(z0, z1)) → z0
sel(s(z0), cons(z1, z2)) → sel(z0, activate(z2))
s(z0) → n__s(z0)
activate(n__from(z0)) → from(activate(z0))
activate(n__s(z0)) → s(activate(z0))
activate(n__take(z0, z1)) → take(activate(z0), activate(z1))
activate(z0) → z0

### (10) Obligation:

Complexity Dependency Tuples Problem
Rules:none
Tuples:

ACTIVATE(n__from(z0)) → c10(ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(ACTIVATE(z0), ACTIVATE(z1))
S tuples:

ACTIVATE(n__from(z0)) → c10(ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(ACTIVATE(z0), ACTIVATE(z1))
K tuples:none
Defined Rule Symbols:none

Defined Pair Symbols:

ACTIVATE

Compound Symbols:

c10, c11, c12

### (11) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

ACTIVATE(n__from(z0)) → c10(ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(ACTIVATE(z0), ACTIVATE(z1))
We considered the (Usable) Rules:none
And the Tuples:

ACTIVATE(n__from(z0)) → c10(ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(ACTIVATE(z0), ACTIVATE(z1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(ACTIVATE(x1)) = [5] + [4]x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(n__from(x1)) = [5] + x1
POL(n__s(x1)) = [2] + x1
POL(n__take(x1, x2)) = [4] + x1 + x2

### (12) Obligation:

Complexity Dependency Tuples Problem
Rules:none
Tuples:

ACTIVATE(n__from(z0)) → c10(ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(ACTIVATE(z0), ACTIVATE(z1))
S tuples:none
K tuples:

ACTIVATE(n__from(z0)) → c10(ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(ACTIVATE(z0), ACTIVATE(z1))
Defined Rule Symbols:none

Defined Pair Symbols:

ACTIVATE

Compound Symbols:

c10, c11, c12

### (13) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)

The set S is empty