Runtime Complexity TRS:
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, XS))) → mark(X)
active(2nd(cons(X, XS))) → mark(head(XS))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(2nd(X)) → 2nd(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
2nd(mark(X)) → mark(2nd(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(2nd(X)) → 2nd(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
2nd(ok(X)) → ok(2nd(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: INNERMOST


Renamed function symbols to avoid clashes with predefined symbol.


Runtime Complexity TRS:
The TRS R consists of the following rules:


active'(from'(X)) → mark'(cons'(X, from'(s'(X))))
active'(head'(cons'(X, XS))) → mark'(X)
active'(2nd'(cons'(X, XS))) → mark'(head'(XS))
active'(take'(0', XS)) → mark'(nil')
active'(take'(s'(N), cons'(X, XS))) → mark'(cons'(X, take'(N, XS)))
active'(sel'(0', cons'(X, XS))) → mark'(X)
active'(sel'(s'(N), cons'(X, XS))) → mark'(sel'(N, XS))
active'(from'(X)) → from'(active'(X))
active'(cons'(X1, X2)) → cons'(active'(X1), X2)
active'(s'(X)) → s'(active'(X))
active'(head'(X)) → head'(active'(X))
active'(2nd'(X)) → 2nd'(active'(X))
active'(take'(X1, X2)) → take'(active'(X1), X2)
active'(take'(X1, X2)) → take'(X1, active'(X2))
active'(sel'(X1, X2)) → sel'(active'(X1), X2)
active'(sel'(X1, X2)) → sel'(X1, active'(X2))
from'(mark'(X)) → mark'(from'(X))
cons'(mark'(X1), X2) → mark'(cons'(X1, X2))
s'(mark'(X)) → mark'(s'(X))
head'(mark'(X)) → mark'(head'(X))
2nd'(mark'(X)) → mark'(2nd'(X))
take'(mark'(X1), X2) → mark'(take'(X1, X2))
take'(X1, mark'(X2)) → mark'(take'(X1, X2))
sel'(mark'(X1), X2) → mark'(sel'(X1, X2))
sel'(X1, mark'(X2)) → mark'(sel'(X1, X2))
proper'(from'(X)) → from'(proper'(X))
proper'(cons'(X1, X2)) → cons'(proper'(X1), proper'(X2))
proper'(s'(X)) → s'(proper'(X))
proper'(head'(X)) → head'(proper'(X))
proper'(2nd'(X)) → 2nd'(proper'(X))
proper'(take'(X1, X2)) → take'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
proper'(nil') → ok'(nil')
proper'(sel'(X1, X2)) → sel'(proper'(X1), proper'(X2))
from'(ok'(X)) → ok'(from'(X))
cons'(ok'(X1), ok'(X2)) → ok'(cons'(X1, X2))
s'(ok'(X)) → ok'(s'(X))
head'(ok'(X)) → ok'(head'(X))
2nd'(ok'(X)) → ok'(2nd'(X))
take'(ok'(X1), ok'(X2)) → ok'(take'(X1, X2))
sel'(ok'(X1), ok'(X2)) → ok'(sel'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Rewrite Strategy: INNERMOST


Infered types.


Rules:
active'(from'(X)) → mark'(cons'(X, from'(s'(X))))
active'(head'(cons'(X, XS))) → mark'(X)
active'(2nd'(cons'(X, XS))) → mark'(head'(XS))
active'(take'(0', XS)) → mark'(nil')
active'(take'(s'(N), cons'(X, XS))) → mark'(cons'(X, take'(N, XS)))
active'(sel'(0', cons'(X, XS))) → mark'(X)
active'(sel'(s'(N), cons'(X, XS))) → mark'(sel'(N, XS))
active'(from'(X)) → from'(active'(X))
active'(cons'(X1, X2)) → cons'(active'(X1), X2)
active'(s'(X)) → s'(active'(X))
active'(head'(X)) → head'(active'(X))
active'(2nd'(X)) → 2nd'(active'(X))
active'(take'(X1, X2)) → take'(active'(X1), X2)
active'(take'(X1, X2)) → take'(X1, active'(X2))
active'(sel'(X1, X2)) → sel'(active'(X1), X2)
active'(sel'(X1, X2)) → sel'(X1, active'(X2))
from'(mark'(X)) → mark'(from'(X))
cons'(mark'(X1), X2) → mark'(cons'(X1, X2))
s'(mark'(X)) → mark'(s'(X))
head'(mark'(X)) → mark'(head'(X))
2nd'(mark'(X)) → mark'(2nd'(X))
take'(mark'(X1), X2) → mark'(take'(X1, X2))
take'(X1, mark'(X2)) → mark'(take'(X1, X2))
sel'(mark'(X1), X2) → mark'(sel'(X1, X2))
sel'(X1, mark'(X2)) → mark'(sel'(X1, X2))
proper'(from'(X)) → from'(proper'(X))
proper'(cons'(X1, X2)) → cons'(proper'(X1), proper'(X2))
proper'(s'(X)) → s'(proper'(X))
proper'(head'(X)) → head'(proper'(X))
proper'(2nd'(X)) → 2nd'(proper'(X))
proper'(take'(X1, X2)) → take'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
proper'(nil') → ok'(nil')
proper'(sel'(X1, X2)) → sel'(proper'(X1), proper'(X2))
from'(ok'(X)) → ok'(from'(X))
cons'(ok'(X1), ok'(X2)) → ok'(cons'(X1, X2))
s'(ok'(X)) → ok'(s'(X))
head'(ok'(X)) → ok'(head'(X))
2nd'(ok'(X)) → ok'(2nd'(X))
take'(ok'(X1), ok'(X2)) → ok'(take'(X1, X2))
sel'(ok'(X1), ok'(X2)) → ok'(sel'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':0':nil':ok' → mark':0':nil':ok'
from' :: mark':0':nil':ok' → mark':0':nil':ok'
mark' :: mark':0':nil':ok' → mark':0':nil':ok'
cons' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
s' :: mark':0':nil':ok' → mark':0':nil':ok'
head' :: mark':0':nil':ok' → mark':0':nil':ok'
2nd' :: mark':0':nil':ok' → mark':0':nil':ok'
take' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
0' :: mark':0':nil':ok'
nil' :: mark':0':nil':ok'
sel' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
proper' :: mark':0':nil':ok' → mark':0':nil':ok'
ok' :: mark':0':nil':ok' → mark':0':nil':ok'
top' :: mark':0':nil':ok' → top'
_hole_mark':0':nil':ok'1 :: mark':0':nil':ok'
_hole_top'2 :: top'
_gen_mark':0':nil':ok'3 :: Nat → mark':0':nil':ok'


Heuristically decided to analyse the following defined symbols:
active', cons', from', s', head', take', sel', 2nd', proper', top'

They will be analysed ascendingly in the following order:
cons' < active'
from' < active'
s' < active'
head' < active'
take' < active'
sel' < active'
2nd' < active'
active' < top'
cons' < proper'
from' < proper'
s' < proper'
head' < proper'
take' < proper'
sel' < proper'
2nd' < proper'
proper' < top'


Rules:
active'(from'(X)) → mark'(cons'(X, from'(s'(X))))
active'(head'(cons'(X, XS))) → mark'(X)
active'(2nd'(cons'(X, XS))) → mark'(head'(XS))
active'(take'(0', XS)) → mark'(nil')
active'(take'(s'(N), cons'(X, XS))) → mark'(cons'(X, take'(N, XS)))
active'(sel'(0', cons'(X, XS))) → mark'(X)
active'(sel'(s'(N), cons'(X, XS))) → mark'(sel'(N, XS))
active'(from'(X)) → from'(active'(X))
active'(cons'(X1, X2)) → cons'(active'(X1), X2)
active'(s'(X)) → s'(active'(X))
active'(head'(X)) → head'(active'(X))
active'(2nd'(X)) → 2nd'(active'(X))
active'(take'(X1, X2)) → take'(active'(X1), X2)
active'(take'(X1, X2)) → take'(X1, active'(X2))
active'(sel'(X1, X2)) → sel'(active'(X1), X2)
active'(sel'(X1, X2)) → sel'(X1, active'(X2))
from'(mark'(X)) → mark'(from'(X))
cons'(mark'(X1), X2) → mark'(cons'(X1, X2))
s'(mark'(X)) → mark'(s'(X))
head'(mark'(X)) → mark'(head'(X))
2nd'(mark'(X)) → mark'(2nd'(X))
take'(mark'(X1), X2) → mark'(take'(X1, X2))
take'(X1, mark'(X2)) → mark'(take'(X1, X2))
sel'(mark'(X1), X2) → mark'(sel'(X1, X2))
sel'(X1, mark'(X2)) → mark'(sel'(X1, X2))
proper'(from'(X)) → from'(proper'(X))
proper'(cons'(X1, X2)) → cons'(proper'(X1), proper'(X2))
proper'(s'(X)) → s'(proper'(X))
proper'(head'(X)) → head'(proper'(X))
proper'(2nd'(X)) → 2nd'(proper'(X))
proper'(take'(X1, X2)) → take'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
proper'(nil') → ok'(nil')
proper'(sel'(X1, X2)) → sel'(proper'(X1), proper'(X2))
from'(ok'(X)) → ok'(from'(X))
cons'(ok'(X1), ok'(X2)) → ok'(cons'(X1, X2))
s'(ok'(X)) → ok'(s'(X))
head'(ok'(X)) → ok'(head'(X))
2nd'(ok'(X)) → ok'(2nd'(X))
take'(ok'(X1), ok'(X2)) → ok'(take'(X1, X2))
sel'(ok'(X1), ok'(X2)) → ok'(sel'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':0':nil':ok' → mark':0':nil':ok'
from' :: mark':0':nil':ok' → mark':0':nil':ok'
mark' :: mark':0':nil':ok' → mark':0':nil':ok'
cons' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
s' :: mark':0':nil':ok' → mark':0':nil':ok'
head' :: mark':0':nil':ok' → mark':0':nil':ok'
2nd' :: mark':0':nil':ok' → mark':0':nil':ok'
take' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
0' :: mark':0':nil':ok'
nil' :: mark':0':nil':ok'
sel' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
proper' :: mark':0':nil':ok' → mark':0':nil':ok'
ok' :: mark':0':nil':ok' → mark':0':nil':ok'
top' :: mark':0':nil':ok' → top'
_hole_mark':0':nil':ok'1 :: mark':0':nil':ok'
_hole_top'2 :: top'
_gen_mark':0':nil':ok'3 :: Nat → mark':0':nil':ok'

Generator Equations:
_gen_mark':0':nil':ok'3(0) ⇔ 0'
_gen_mark':0':nil':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':0':nil':ok'3(x))

The following defined symbols remain to be analysed:
cons', active', from', s', head', take', sel', 2nd', proper', top'

They will be analysed ascendingly in the following order:
cons' < active'
from' < active'
s' < active'
head' < active'
take' < active'
sel' < active'
2nd' < active'
active' < top'
cons' < proper'
from' < proper'
s' < proper'
head' < proper'
take' < proper'
sel' < proper'
2nd' < proper'
proper' < top'


Proved the following rewrite lemma:
cons'(_gen_mark':0':nil':ok'3(+(1, _n5)), _gen_mark':0':nil':ok'3(b)) → _*4, rt ∈ Ω(n5)

Induction Base:
cons'(_gen_mark':0':nil':ok'3(+(1, 0)), _gen_mark':0':nil':ok'3(b))

Induction Step:
cons'(_gen_mark':0':nil':ok'3(+(1, +(_$n6, 1))), _gen_mark':0':nil':ok'3(_b610)) →RΩ(1)
mark'(cons'(_gen_mark':0':nil':ok'3(+(1, _$n6)), _gen_mark':0':nil':ok'3(_b610))) →IH
mark'(_*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).


Rules:
active'(from'(X)) → mark'(cons'(X, from'(s'(X))))
active'(head'(cons'(X, XS))) → mark'(X)
active'(2nd'(cons'(X, XS))) → mark'(head'(XS))
active'(take'(0', XS)) → mark'(nil')
active'(take'(s'(N), cons'(X, XS))) → mark'(cons'(X, take'(N, XS)))
active'(sel'(0', cons'(X, XS))) → mark'(X)
active'(sel'(s'(N), cons'(X, XS))) → mark'(sel'(N, XS))
active'(from'(X)) → from'(active'(X))
active'(cons'(X1, X2)) → cons'(active'(X1), X2)
active'(s'(X)) → s'(active'(X))
active'(head'(X)) → head'(active'(X))
active'(2nd'(X)) → 2nd'(active'(X))
active'(take'(X1, X2)) → take'(active'(X1), X2)
active'(take'(X1, X2)) → take'(X1, active'(X2))
active'(sel'(X1, X2)) → sel'(active'(X1), X2)
active'(sel'(X1, X2)) → sel'(X1, active'(X2))
from'(mark'(X)) → mark'(from'(X))
cons'(mark'(X1), X2) → mark'(cons'(X1, X2))
s'(mark'(X)) → mark'(s'(X))
head'(mark'(X)) → mark'(head'(X))
2nd'(mark'(X)) → mark'(2nd'(X))
take'(mark'(X1), X2) → mark'(take'(X1, X2))
take'(X1, mark'(X2)) → mark'(take'(X1, X2))
sel'(mark'(X1), X2) → mark'(sel'(X1, X2))
sel'(X1, mark'(X2)) → mark'(sel'(X1, X2))
proper'(from'(X)) → from'(proper'(X))
proper'(cons'(X1, X2)) → cons'(proper'(X1), proper'(X2))
proper'(s'(X)) → s'(proper'(X))
proper'(head'(X)) → head'(proper'(X))
proper'(2nd'(X)) → 2nd'(proper'(X))
proper'(take'(X1, X2)) → take'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
proper'(nil') → ok'(nil')
proper'(sel'(X1, X2)) → sel'(proper'(X1), proper'(X2))
from'(ok'(X)) → ok'(from'(X))
cons'(ok'(X1), ok'(X2)) → ok'(cons'(X1, X2))
s'(ok'(X)) → ok'(s'(X))
head'(ok'(X)) → ok'(head'(X))
2nd'(ok'(X)) → ok'(2nd'(X))
take'(ok'(X1), ok'(X2)) → ok'(take'(X1, X2))
sel'(ok'(X1), ok'(X2)) → ok'(sel'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':0':nil':ok' → mark':0':nil':ok'
from' :: mark':0':nil':ok' → mark':0':nil':ok'
mark' :: mark':0':nil':ok' → mark':0':nil':ok'
cons' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
s' :: mark':0':nil':ok' → mark':0':nil':ok'
head' :: mark':0':nil':ok' → mark':0':nil':ok'
2nd' :: mark':0':nil':ok' → mark':0':nil':ok'
take' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
0' :: mark':0':nil':ok'
nil' :: mark':0':nil':ok'
sel' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
proper' :: mark':0':nil':ok' → mark':0':nil':ok'
ok' :: mark':0':nil':ok' → mark':0':nil':ok'
top' :: mark':0':nil':ok' → top'
_hole_mark':0':nil':ok'1 :: mark':0':nil':ok'
_hole_top'2 :: top'
_gen_mark':0':nil':ok'3 :: Nat → mark':0':nil':ok'

Lemmas:
cons'(_gen_mark':0':nil':ok'3(+(1, _n5)), _gen_mark':0':nil':ok'3(b)) → _*4, rt ∈ Ω(n5)

Generator Equations:
_gen_mark':0':nil':ok'3(0) ⇔ 0'
_gen_mark':0':nil':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':0':nil':ok'3(x))

The following defined symbols remain to be analysed:
from', active', s', head', take', sel', 2nd', proper', top'

They will be analysed ascendingly in the following order:
from' < active'
s' < active'
head' < active'
take' < active'
sel' < active'
2nd' < active'
active' < top'
from' < proper'
s' < proper'
head' < proper'
take' < proper'
sel' < proper'
2nd' < proper'
proper' < top'


Proved the following rewrite lemma:
from'(_gen_mark':0':nil':ok'3(+(1, _n2477))) → _*4, rt ∈ Ω(n2477)

Induction Base:
from'(_gen_mark':0':nil':ok'3(+(1, 0)))

Induction Step:
from'(_gen_mark':0':nil':ok'3(+(1, +(_$n2478, 1)))) →RΩ(1)
mark'(from'(_gen_mark':0':nil':ok'3(+(1, _$n2478)))) →IH
mark'(_*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).


Rules:
active'(from'(X)) → mark'(cons'(X, from'(s'(X))))
active'(head'(cons'(X, XS))) → mark'(X)
active'(2nd'(cons'(X, XS))) → mark'(head'(XS))
active'(take'(0', XS)) → mark'(nil')
active'(take'(s'(N), cons'(X, XS))) → mark'(cons'(X, take'(N, XS)))
active'(sel'(0', cons'(X, XS))) → mark'(X)
active'(sel'(s'(N), cons'(X, XS))) → mark'(sel'(N, XS))
active'(from'(X)) → from'(active'(X))
active'(cons'(X1, X2)) → cons'(active'(X1), X2)
active'(s'(X)) → s'(active'(X))
active'(head'(X)) → head'(active'(X))
active'(2nd'(X)) → 2nd'(active'(X))
active'(take'(X1, X2)) → take'(active'(X1), X2)
active'(take'(X1, X2)) → take'(X1, active'(X2))
active'(sel'(X1, X2)) → sel'(active'(X1), X2)
active'(sel'(X1, X2)) → sel'(X1, active'(X2))
from'(mark'(X)) → mark'(from'(X))
cons'(mark'(X1), X2) → mark'(cons'(X1, X2))
s'(mark'(X)) → mark'(s'(X))
head'(mark'(X)) → mark'(head'(X))
2nd'(mark'(X)) → mark'(2nd'(X))
take'(mark'(X1), X2) → mark'(take'(X1, X2))
take'(X1, mark'(X2)) → mark'(take'(X1, X2))
sel'(mark'(X1), X2) → mark'(sel'(X1, X2))
sel'(X1, mark'(X2)) → mark'(sel'(X1, X2))
proper'(from'(X)) → from'(proper'(X))
proper'(cons'(X1, X2)) → cons'(proper'(X1), proper'(X2))
proper'(s'(X)) → s'(proper'(X))
proper'(head'(X)) → head'(proper'(X))
proper'(2nd'(X)) → 2nd'(proper'(X))
proper'(take'(X1, X2)) → take'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
proper'(nil') → ok'(nil')
proper'(sel'(X1, X2)) → sel'(proper'(X1), proper'(X2))
from'(ok'(X)) → ok'(from'(X))
cons'(ok'(X1), ok'(X2)) → ok'(cons'(X1, X2))
s'(ok'(X)) → ok'(s'(X))
head'(ok'(X)) → ok'(head'(X))
2nd'(ok'(X)) → ok'(2nd'(X))
take'(ok'(X1), ok'(X2)) → ok'(take'(X1, X2))
sel'(ok'(X1), ok'(X2)) → ok'(sel'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':0':nil':ok' → mark':0':nil':ok'
from' :: mark':0':nil':ok' → mark':0':nil':ok'
mark' :: mark':0':nil':ok' → mark':0':nil':ok'
cons' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
s' :: mark':0':nil':ok' → mark':0':nil':ok'
head' :: mark':0':nil':ok' → mark':0':nil':ok'
2nd' :: mark':0':nil':ok' → mark':0':nil':ok'
take' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
0' :: mark':0':nil':ok'
nil' :: mark':0':nil':ok'
sel' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
proper' :: mark':0':nil':ok' → mark':0':nil':ok'
ok' :: mark':0':nil':ok' → mark':0':nil':ok'
top' :: mark':0':nil':ok' → top'
_hole_mark':0':nil':ok'1 :: mark':0':nil':ok'
_hole_top'2 :: top'
_gen_mark':0':nil':ok'3 :: Nat → mark':0':nil':ok'

Lemmas:
cons'(_gen_mark':0':nil':ok'3(+(1, _n5)), _gen_mark':0':nil':ok'3(b)) → _*4, rt ∈ Ω(n5)
from'(_gen_mark':0':nil':ok'3(+(1, _n2477))) → _*4, rt ∈ Ω(n2477)

Generator Equations:
_gen_mark':0':nil':ok'3(0) ⇔ 0'
_gen_mark':0':nil':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':0':nil':ok'3(x))

The following defined symbols remain to be analysed:
s', active', head', take', sel', 2nd', proper', top'

They will be analysed ascendingly in the following order:
s' < active'
head' < active'
take' < active'
sel' < active'
2nd' < active'
active' < top'
s' < proper'
head' < proper'
take' < proper'
sel' < proper'
2nd' < proper'
proper' < top'


Proved the following rewrite lemma:
s'(_gen_mark':0':nil':ok'3(+(1, _n4194))) → _*4, rt ∈ Ω(n4194)

Induction Base:
s'(_gen_mark':0':nil':ok'3(+(1, 0)))

Induction Step:
s'(_gen_mark':0':nil':ok'3(+(1, +(_$n4195, 1)))) →RΩ(1)
mark'(s'(_gen_mark':0':nil':ok'3(+(1, _$n4195)))) →IH
mark'(_*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).


Rules:
active'(from'(X)) → mark'(cons'(X, from'(s'(X))))
active'(head'(cons'(X, XS))) → mark'(X)
active'(2nd'(cons'(X, XS))) → mark'(head'(XS))
active'(take'(0', XS)) → mark'(nil')
active'(take'(s'(N), cons'(X, XS))) → mark'(cons'(X, take'(N, XS)))
active'(sel'(0', cons'(X, XS))) → mark'(X)
active'(sel'(s'(N), cons'(X, XS))) → mark'(sel'(N, XS))
active'(from'(X)) → from'(active'(X))
active'(cons'(X1, X2)) → cons'(active'(X1), X2)
active'(s'(X)) → s'(active'(X))
active'(head'(X)) → head'(active'(X))
active'(2nd'(X)) → 2nd'(active'(X))
active'(take'(X1, X2)) → take'(active'(X1), X2)
active'(take'(X1, X2)) → take'(X1, active'(X2))
active'(sel'(X1, X2)) → sel'(active'(X1), X2)
active'(sel'(X1, X2)) → sel'(X1, active'(X2))
from'(mark'(X)) → mark'(from'(X))
cons'(mark'(X1), X2) → mark'(cons'(X1, X2))
s'(mark'(X)) → mark'(s'(X))
head'(mark'(X)) → mark'(head'(X))
2nd'(mark'(X)) → mark'(2nd'(X))
take'(mark'(X1), X2) → mark'(take'(X1, X2))
take'(X1, mark'(X2)) → mark'(take'(X1, X2))
sel'(mark'(X1), X2) → mark'(sel'(X1, X2))
sel'(X1, mark'(X2)) → mark'(sel'(X1, X2))
proper'(from'(X)) → from'(proper'(X))
proper'(cons'(X1, X2)) → cons'(proper'(X1), proper'(X2))
proper'(s'(X)) → s'(proper'(X))
proper'(head'(X)) → head'(proper'(X))
proper'(2nd'(X)) → 2nd'(proper'(X))
proper'(take'(X1, X2)) → take'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
proper'(nil') → ok'(nil')
proper'(sel'(X1, X2)) → sel'(proper'(X1), proper'(X2))
from'(ok'(X)) → ok'(from'(X))
cons'(ok'(X1), ok'(X2)) → ok'(cons'(X1, X2))
s'(ok'(X)) → ok'(s'(X))
head'(ok'(X)) → ok'(head'(X))
2nd'(ok'(X)) → ok'(2nd'(X))
take'(ok'(X1), ok'(X2)) → ok'(take'(X1, X2))
sel'(ok'(X1), ok'(X2)) → ok'(sel'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':0':nil':ok' → mark':0':nil':ok'
from' :: mark':0':nil':ok' → mark':0':nil':ok'
mark' :: mark':0':nil':ok' → mark':0':nil':ok'
cons' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
s' :: mark':0':nil':ok' → mark':0':nil':ok'
head' :: mark':0':nil':ok' → mark':0':nil':ok'
2nd' :: mark':0':nil':ok' → mark':0':nil':ok'
take' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
0' :: mark':0':nil':ok'
nil' :: mark':0':nil':ok'
sel' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
proper' :: mark':0':nil':ok' → mark':0':nil':ok'
ok' :: mark':0':nil':ok' → mark':0':nil':ok'
top' :: mark':0':nil':ok' → top'
_hole_mark':0':nil':ok'1 :: mark':0':nil':ok'
_hole_top'2 :: top'
_gen_mark':0':nil':ok'3 :: Nat → mark':0':nil':ok'

Lemmas:
cons'(_gen_mark':0':nil':ok'3(+(1, _n5)), _gen_mark':0':nil':ok'3(b)) → _*4, rt ∈ Ω(n5)
from'(_gen_mark':0':nil':ok'3(+(1, _n2477))) → _*4, rt ∈ Ω(n2477)
s'(_gen_mark':0':nil':ok'3(+(1, _n4194))) → _*4, rt ∈ Ω(n4194)

Generator Equations:
_gen_mark':0':nil':ok'3(0) ⇔ 0'
_gen_mark':0':nil':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':0':nil':ok'3(x))

The following defined symbols remain to be analysed:
head', active', take', sel', 2nd', proper', top'

They will be analysed ascendingly in the following order:
head' < active'
take' < active'
sel' < active'
2nd' < active'
active' < top'
head' < proper'
take' < proper'
sel' < proper'
2nd' < proper'
proper' < top'


Proved the following rewrite lemma:
head'(_gen_mark':0':nil':ok'3(+(1, _n6035))) → _*4, rt ∈ Ω(n6035)

Induction Base:
head'(_gen_mark':0':nil':ok'3(+(1, 0)))

Induction Step:
head'(_gen_mark':0':nil':ok'3(+(1, +(_$n6036, 1)))) →RΩ(1)
mark'(head'(_gen_mark':0':nil':ok'3(+(1, _$n6036)))) →IH
mark'(_*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).


Rules:
active'(from'(X)) → mark'(cons'(X, from'(s'(X))))
active'(head'(cons'(X, XS))) → mark'(X)
active'(2nd'(cons'(X, XS))) → mark'(head'(XS))
active'(take'(0', XS)) → mark'(nil')
active'(take'(s'(N), cons'(X, XS))) → mark'(cons'(X, take'(N, XS)))
active'(sel'(0', cons'(X, XS))) → mark'(X)
active'(sel'(s'(N), cons'(X, XS))) → mark'(sel'(N, XS))
active'(from'(X)) → from'(active'(X))
active'(cons'(X1, X2)) → cons'(active'(X1), X2)
active'(s'(X)) → s'(active'(X))
active'(head'(X)) → head'(active'(X))
active'(2nd'(X)) → 2nd'(active'(X))
active'(take'(X1, X2)) → take'(active'(X1), X2)
active'(take'(X1, X2)) → take'(X1, active'(X2))
active'(sel'(X1, X2)) → sel'(active'(X1), X2)
active'(sel'(X1, X2)) → sel'(X1, active'(X2))
from'(mark'(X)) → mark'(from'(X))
cons'(mark'(X1), X2) → mark'(cons'(X1, X2))
s'(mark'(X)) → mark'(s'(X))
head'(mark'(X)) → mark'(head'(X))
2nd'(mark'(X)) → mark'(2nd'(X))
take'(mark'(X1), X2) → mark'(take'(X1, X2))
take'(X1, mark'(X2)) → mark'(take'(X1, X2))
sel'(mark'(X1), X2) → mark'(sel'(X1, X2))
sel'(X1, mark'(X2)) → mark'(sel'(X1, X2))
proper'(from'(X)) → from'(proper'(X))
proper'(cons'(X1, X2)) → cons'(proper'(X1), proper'(X2))
proper'(s'(X)) → s'(proper'(X))
proper'(head'(X)) → head'(proper'(X))
proper'(2nd'(X)) → 2nd'(proper'(X))
proper'(take'(X1, X2)) → take'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
proper'(nil') → ok'(nil')
proper'(sel'(X1, X2)) → sel'(proper'(X1), proper'(X2))
from'(ok'(X)) → ok'(from'(X))
cons'(ok'(X1), ok'(X2)) → ok'(cons'(X1, X2))
s'(ok'(X)) → ok'(s'(X))
head'(ok'(X)) → ok'(head'(X))
2nd'(ok'(X)) → ok'(2nd'(X))
take'(ok'(X1), ok'(X2)) → ok'(take'(X1, X2))
sel'(ok'(X1), ok'(X2)) → ok'(sel'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':0':nil':ok' → mark':0':nil':ok'
from' :: mark':0':nil':ok' → mark':0':nil':ok'
mark' :: mark':0':nil':ok' → mark':0':nil':ok'
cons' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
s' :: mark':0':nil':ok' → mark':0':nil':ok'
head' :: mark':0':nil':ok' → mark':0':nil':ok'
2nd' :: mark':0':nil':ok' → mark':0':nil':ok'
take' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
0' :: mark':0':nil':ok'
nil' :: mark':0':nil':ok'
sel' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
proper' :: mark':0':nil':ok' → mark':0':nil':ok'
ok' :: mark':0':nil':ok' → mark':0':nil':ok'
top' :: mark':0':nil':ok' → top'
_hole_mark':0':nil':ok'1 :: mark':0':nil':ok'
_hole_top'2 :: top'
_gen_mark':0':nil':ok'3 :: Nat → mark':0':nil':ok'

Lemmas:
cons'(_gen_mark':0':nil':ok'3(+(1, _n5)), _gen_mark':0':nil':ok'3(b)) → _*4, rt ∈ Ω(n5)
from'(_gen_mark':0':nil':ok'3(+(1, _n2477))) → _*4, rt ∈ Ω(n2477)
s'(_gen_mark':0':nil':ok'3(+(1, _n4194))) → _*4, rt ∈ Ω(n4194)
head'(_gen_mark':0':nil':ok'3(+(1, _n6035))) → _*4, rt ∈ Ω(n6035)

Generator Equations:
_gen_mark':0':nil':ok'3(0) ⇔ 0'
_gen_mark':0':nil':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':0':nil':ok'3(x))

The following defined symbols remain to be analysed:
take', active', sel', 2nd', proper', top'

They will be analysed ascendingly in the following order:
take' < active'
sel' < active'
2nd' < active'
active' < top'
take' < proper'
sel' < proper'
2nd' < proper'
proper' < top'


Proved the following rewrite lemma:
take'(_gen_mark':0':nil':ok'3(+(1, _n8000)), _gen_mark':0':nil':ok'3(b)) → _*4, rt ∈ Ω(n8000)

Induction Base:
take'(_gen_mark':0':nil':ok'3(+(1, 0)), _gen_mark':0':nil':ok'3(b))

Induction Step:
take'(_gen_mark':0':nil':ok'3(+(1, +(_$n8001, 1))), _gen_mark':0':nil':ok'3(_b9793)) →RΩ(1)
mark'(take'(_gen_mark':0':nil':ok'3(+(1, _$n8001)), _gen_mark':0':nil':ok'3(_b9793))) →IH
mark'(_*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).


Rules:
active'(from'(X)) → mark'(cons'(X, from'(s'(X))))
active'(head'(cons'(X, XS))) → mark'(X)
active'(2nd'(cons'(X, XS))) → mark'(head'(XS))
active'(take'(0', XS)) → mark'(nil')
active'(take'(s'(N), cons'(X, XS))) → mark'(cons'(X, take'(N, XS)))
active'(sel'(0', cons'(X, XS))) → mark'(X)
active'(sel'(s'(N), cons'(X, XS))) → mark'(sel'(N, XS))
active'(from'(X)) → from'(active'(X))
active'(cons'(X1, X2)) → cons'(active'(X1), X2)
active'(s'(X)) → s'(active'(X))
active'(head'(X)) → head'(active'(X))
active'(2nd'(X)) → 2nd'(active'(X))
active'(take'(X1, X2)) → take'(active'(X1), X2)
active'(take'(X1, X2)) → take'(X1, active'(X2))
active'(sel'(X1, X2)) → sel'(active'(X1), X2)
active'(sel'(X1, X2)) → sel'(X1, active'(X2))
from'(mark'(X)) → mark'(from'(X))
cons'(mark'(X1), X2) → mark'(cons'(X1, X2))
s'(mark'(X)) → mark'(s'(X))
head'(mark'(X)) → mark'(head'(X))
2nd'(mark'(X)) → mark'(2nd'(X))
take'(mark'(X1), X2) → mark'(take'(X1, X2))
take'(X1, mark'(X2)) → mark'(take'(X1, X2))
sel'(mark'(X1), X2) → mark'(sel'(X1, X2))
sel'(X1, mark'(X2)) → mark'(sel'(X1, X2))
proper'(from'(X)) → from'(proper'(X))
proper'(cons'(X1, X2)) → cons'(proper'(X1), proper'(X2))
proper'(s'(X)) → s'(proper'(X))
proper'(head'(X)) → head'(proper'(X))
proper'(2nd'(X)) → 2nd'(proper'(X))
proper'(take'(X1, X2)) → take'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
proper'(nil') → ok'(nil')
proper'(sel'(X1, X2)) → sel'(proper'(X1), proper'(X2))
from'(ok'(X)) → ok'(from'(X))
cons'(ok'(X1), ok'(X2)) → ok'(cons'(X1, X2))
s'(ok'(X)) → ok'(s'(X))
head'(ok'(X)) → ok'(head'(X))
2nd'(ok'(X)) → ok'(2nd'(X))
take'(ok'(X1), ok'(X2)) → ok'(take'(X1, X2))
sel'(ok'(X1), ok'(X2)) → ok'(sel'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':0':nil':ok' → mark':0':nil':ok'
from' :: mark':0':nil':ok' → mark':0':nil':ok'
mark' :: mark':0':nil':ok' → mark':0':nil':ok'
cons' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
s' :: mark':0':nil':ok' → mark':0':nil':ok'
head' :: mark':0':nil':ok' → mark':0':nil':ok'
2nd' :: mark':0':nil':ok' → mark':0':nil':ok'
take' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
0' :: mark':0':nil':ok'
nil' :: mark':0':nil':ok'
sel' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
proper' :: mark':0':nil':ok' → mark':0':nil':ok'
ok' :: mark':0':nil':ok' → mark':0':nil':ok'
top' :: mark':0':nil':ok' → top'
_hole_mark':0':nil':ok'1 :: mark':0':nil':ok'
_hole_top'2 :: top'
_gen_mark':0':nil':ok'3 :: Nat → mark':0':nil':ok'

Lemmas:
cons'(_gen_mark':0':nil':ok'3(+(1, _n5)), _gen_mark':0':nil':ok'3(b)) → _*4, rt ∈ Ω(n5)
from'(_gen_mark':0':nil':ok'3(+(1, _n2477))) → _*4, rt ∈ Ω(n2477)
s'(_gen_mark':0':nil':ok'3(+(1, _n4194))) → _*4, rt ∈ Ω(n4194)
head'(_gen_mark':0':nil':ok'3(+(1, _n6035))) → _*4, rt ∈ Ω(n6035)
take'(_gen_mark':0':nil':ok'3(+(1, _n8000)), _gen_mark':0':nil':ok'3(b)) → _*4, rt ∈ Ω(n8000)

Generator Equations:
_gen_mark':0':nil':ok'3(0) ⇔ 0'
_gen_mark':0':nil':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':0':nil':ok'3(x))

The following defined symbols remain to be analysed:
sel', active', 2nd', proper', top'

They will be analysed ascendingly in the following order:
sel' < active'
2nd' < active'
active' < top'
sel' < proper'
2nd' < proper'
proper' < top'


Proved the following rewrite lemma:
sel'(_gen_mark':0':nil':ok'3(+(1, _n11782)), _gen_mark':0':nil':ok'3(b)) → _*4, rt ∈ Ω(n11782)

Induction Base:
sel'(_gen_mark':0':nil':ok'3(+(1, 0)), _gen_mark':0':nil':ok'3(b))

Induction Step:
sel'(_gen_mark':0':nil':ok'3(+(1, +(_$n11783, 1))), _gen_mark':0':nil':ok'3(_b13899)) →RΩ(1)
mark'(sel'(_gen_mark':0':nil':ok'3(+(1, _$n11783)), _gen_mark':0':nil':ok'3(_b13899))) →IH
mark'(_*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).


Rules:
active'(from'(X)) → mark'(cons'(X, from'(s'(X))))
active'(head'(cons'(X, XS))) → mark'(X)
active'(2nd'(cons'(X, XS))) → mark'(head'(XS))
active'(take'(0', XS)) → mark'(nil')
active'(take'(s'(N), cons'(X, XS))) → mark'(cons'(X, take'(N, XS)))
active'(sel'(0', cons'(X, XS))) → mark'(X)
active'(sel'(s'(N), cons'(X, XS))) → mark'(sel'(N, XS))
active'(from'(X)) → from'(active'(X))
active'(cons'(X1, X2)) → cons'(active'(X1), X2)
active'(s'(X)) → s'(active'(X))
active'(head'(X)) → head'(active'(X))
active'(2nd'(X)) → 2nd'(active'(X))
active'(take'(X1, X2)) → take'(active'(X1), X2)
active'(take'(X1, X2)) → take'(X1, active'(X2))
active'(sel'(X1, X2)) → sel'(active'(X1), X2)
active'(sel'(X1, X2)) → sel'(X1, active'(X2))
from'(mark'(X)) → mark'(from'(X))
cons'(mark'(X1), X2) → mark'(cons'(X1, X2))
s'(mark'(X)) → mark'(s'(X))
head'(mark'(X)) → mark'(head'(X))
2nd'(mark'(X)) → mark'(2nd'(X))
take'(mark'(X1), X2) → mark'(take'(X1, X2))
take'(X1, mark'(X2)) → mark'(take'(X1, X2))
sel'(mark'(X1), X2) → mark'(sel'(X1, X2))
sel'(X1, mark'(X2)) → mark'(sel'(X1, X2))
proper'(from'(X)) → from'(proper'(X))
proper'(cons'(X1, X2)) → cons'(proper'(X1), proper'(X2))
proper'(s'(X)) → s'(proper'(X))
proper'(head'(X)) → head'(proper'(X))
proper'(2nd'(X)) → 2nd'(proper'(X))
proper'(take'(X1, X2)) → take'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
proper'(nil') → ok'(nil')
proper'(sel'(X1, X2)) → sel'(proper'(X1), proper'(X2))
from'(ok'(X)) → ok'(from'(X))
cons'(ok'(X1), ok'(X2)) → ok'(cons'(X1, X2))
s'(ok'(X)) → ok'(s'(X))
head'(ok'(X)) → ok'(head'(X))
2nd'(ok'(X)) → ok'(2nd'(X))
take'(ok'(X1), ok'(X2)) → ok'(take'(X1, X2))
sel'(ok'(X1), ok'(X2)) → ok'(sel'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':0':nil':ok' → mark':0':nil':ok'
from' :: mark':0':nil':ok' → mark':0':nil':ok'
mark' :: mark':0':nil':ok' → mark':0':nil':ok'
cons' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
s' :: mark':0':nil':ok' → mark':0':nil':ok'
head' :: mark':0':nil':ok' → mark':0':nil':ok'
2nd' :: mark':0':nil':ok' → mark':0':nil':ok'
take' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
0' :: mark':0':nil':ok'
nil' :: mark':0':nil':ok'
sel' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
proper' :: mark':0':nil':ok' → mark':0':nil':ok'
ok' :: mark':0':nil':ok' → mark':0':nil':ok'
top' :: mark':0':nil':ok' → top'
_hole_mark':0':nil':ok'1 :: mark':0':nil':ok'
_hole_top'2 :: top'
_gen_mark':0':nil':ok'3 :: Nat → mark':0':nil':ok'

Lemmas:
cons'(_gen_mark':0':nil':ok'3(+(1, _n5)), _gen_mark':0':nil':ok'3(b)) → _*4, rt ∈ Ω(n5)
from'(_gen_mark':0':nil':ok'3(+(1, _n2477))) → _*4, rt ∈ Ω(n2477)
s'(_gen_mark':0':nil':ok'3(+(1, _n4194))) → _*4, rt ∈ Ω(n4194)
head'(_gen_mark':0':nil':ok'3(+(1, _n6035))) → _*4, rt ∈ Ω(n6035)
take'(_gen_mark':0':nil':ok'3(+(1, _n8000)), _gen_mark':0':nil':ok'3(b)) → _*4, rt ∈ Ω(n8000)
sel'(_gen_mark':0':nil':ok'3(+(1, _n11782)), _gen_mark':0':nil':ok'3(b)) → _*4, rt ∈ Ω(n11782)

Generator Equations:
_gen_mark':0':nil':ok'3(0) ⇔ 0'
_gen_mark':0':nil':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':0':nil':ok'3(x))

The following defined symbols remain to be analysed:
2nd', active', proper', top'

They will be analysed ascendingly in the following order:
2nd' < active'
active' < top'
2nd' < proper'
proper' < top'


Proved the following rewrite lemma:
2nd'(_gen_mark':0':nil':ok'3(+(1, _n15932))) → _*4, rt ∈ Ω(n15932)

Induction Base:
2nd'(_gen_mark':0':nil':ok'3(+(1, 0)))

Induction Step:
2nd'(_gen_mark':0':nil':ok'3(+(1, +(_$n15933, 1)))) →RΩ(1)
mark'(2nd'(_gen_mark':0':nil':ok'3(+(1, _$n15933)))) →IH
mark'(_*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).


Rules:
active'(from'(X)) → mark'(cons'(X, from'(s'(X))))
active'(head'(cons'(X, XS))) → mark'(X)
active'(2nd'(cons'(X, XS))) → mark'(head'(XS))
active'(take'(0', XS)) → mark'(nil')
active'(take'(s'(N), cons'(X, XS))) → mark'(cons'(X, take'(N, XS)))
active'(sel'(0', cons'(X, XS))) → mark'(X)
active'(sel'(s'(N), cons'(X, XS))) → mark'(sel'(N, XS))
active'(from'(X)) → from'(active'(X))
active'(cons'(X1, X2)) → cons'(active'(X1), X2)
active'(s'(X)) → s'(active'(X))
active'(head'(X)) → head'(active'(X))
active'(2nd'(X)) → 2nd'(active'(X))
active'(take'(X1, X2)) → take'(active'(X1), X2)
active'(take'(X1, X2)) → take'(X1, active'(X2))
active'(sel'(X1, X2)) → sel'(active'(X1), X2)
active'(sel'(X1, X2)) → sel'(X1, active'(X2))
from'(mark'(X)) → mark'(from'(X))
cons'(mark'(X1), X2) → mark'(cons'(X1, X2))
s'(mark'(X)) → mark'(s'(X))
head'(mark'(X)) → mark'(head'(X))
2nd'(mark'(X)) → mark'(2nd'(X))
take'(mark'(X1), X2) → mark'(take'(X1, X2))
take'(X1, mark'(X2)) → mark'(take'(X1, X2))
sel'(mark'(X1), X2) → mark'(sel'(X1, X2))
sel'(X1, mark'(X2)) → mark'(sel'(X1, X2))
proper'(from'(X)) → from'(proper'(X))
proper'(cons'(X1, X2)) → cons'(proper'(X1), proper'(X2))
proper'(s'(X)) → s'(proper'(X))
proper'(head'(X)) → head'(proper'(X))
proper'(2nd'(X)) → 2nd'(proper'(X))
proper'(take'(X1, X2)) → take'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
proper'(nil') → ok'(nil')
proper'(sel'(X1, X2)) → sel'(proper'(X1), proper'(X2))
from'(ok'(X)) → ok'(from'(X))
cons'(ok'(X1), ok'(X2)) → ok'(cons'(X1, X2))
s'(ok'(X)) → ok'(s'(X))
head'(ok'(X)) → ok'(head'(X))
2nd'(ok'(X)) → ok'(2nd'(X))
take'(ok'(X1), ok'(X2)) → ok'(take'(X1, X2))
sel'(ok'(X1), ok'(X2)) → ok'(sel'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':0':nil':ok' → mark':0':nil':ok'
from' :: mark':0':nil':ok' → mark':0':nil':ok'
mark' :: mark':0':nil':ok' → mark':0':nil':ok'
cons' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
s' :: mark':0':nil':ok' → mark':0':nil':ok'
head' :: mark':0':nil':ok' → mark':0':nil':ok'
2nd' :: mark':0':nil':ok' → mark':0':nil':ok'
take' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
0' :: mark':0':nil':ok'
nil' :: mark':0':nil':ok'
sel' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
proper' :: mark':0':nil':ok' → mark':0':nil':ok'
ok' :: mark':0':nil':ok' → mark':0':nil':ok'
top' :: mark':0':nil':ok' → top'
_hole_mark':0':nil':ok'1 :: mark':0':nil':ok'
_hole_top'2 :: top'
_gen_mark':0':nil':ok'3 :: Nat → mark':0':nil':ok'

Lemmas:
cons'(_gen_mark':0':nil':ok'3(+(1, _n5)), _gen_mark':0':nil':ok'3(b)) → _*4, rt ∈ Ω(n5)
from'(_gen_mark':0':nil':ok'3(+(1, _n2477))) → _*4, rt ∈ Ω(n2477)
s'(_gen_mark':0':nil':ok'3(+(1, _n4194))) → _*4, rt ∈ Ω(n4194)
head'(_gen_mark':0':nil':ok'3(+(1, _n6035))) → _*4, rt ∈ Ω(n6035)
take'(_gen_mark':0':nil':ok'3(+(1, _n8000)), _gen_mark':0':nil':ok'3(b)) → _*4, rt ∈ Ω(n8000)
sel'(_gen_mark':0':nil':ok'3(+(1, _n11782)), _gen_mark':0':nil':ok'3(b)) → _*4, rt ∈ Ω(n11782)
2nd'(_gen_mark':0':nil':ok'3(+(1, _n15932))) → _*4, rt ∈ Ω(n15932)

Generator Equations:
_gen_mark':0':nil':ok'3(0) ⇔ 0'
_gen_mark':0':nil':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':0':nil':ok'3(x))

The following defined symbols remain to be analysed:
active', proper', top'

They will be analysed ascendingly in the following order:
active' < top'
proper' < top'


Could not prove a rewrite lemma for the defined symbol active'.


Rules:
active'(from'(X)) → mark'(cons'(X, from'(s'(X))))
active'(head'(cons'(X, XS))) → mark'(X)
active'(2nd'(cons'(X, XS))) → mark'(head'(XS))
active'(take'(0', XS)) → mark'(nil')
active'(take'(s'(N), cons'(X, XS))) → mark'(cons'(X, take'(N, XS)))
active'(sel'(0', cons'(X, XS))) → mark'(X)
active'(sel'(s'(N), cons'(X, XS))) → mark'(sel'(N, XS))
active'(from'(X)) → from'(active'(X))
active'(cons'(X1, X2)) → cons'(active'(X1), X2)
active'(s'(X)) → s'(active'(X))
active'(head'(X)) → head'(active'(X))
active'(2nd'(X)) → 2nd'(active'(X))
active'(take'(X1, X2)) → take'(active'(X1), X2)
active'(take'(X1, X2)) → take'(X1, active'(X2))
active'(sel'(X1, X2)) → sel'(active'(X1), X2)
active'(sel'(X1, X2)) → sel'(X1, active'(X2))
from'(mark'(X)) → mark'(from'(X))
cons'(mark'(X1), X2) → mark'(cons'(X1, X2))
s'(mark'(X)) → mark'(s'(X))
head'(mark'(X)) → mark'(head'(X))
2nd'(mark'(X)) → mark'(2nd'(X))
take'(mark'(X1), X2) → mark'(take'(X1, X2))
take'(X1, mark'(X2)) → mark'(take'(X1, X2))
sel'(mark'(X1), X2) → mark'(sel'(X1, X2))
sel'(X1, mark'(X2)) → mark'(sel'(X1, X2))
proper'(from'(X)) → from'(proper'(X))
proper'(cons'(X1, X2)) → cons'(proper'(X1), proper'(X2))
proper'(s'(X)) → s'(proper'(X))
proper'(head'(X)) → head'(proper'(X))
proper'(2nd'(X)) → 2nd'(proper'(X))
proper'(take'(X1, X2)) → take'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
proper'(nil') → ok'(nil')
proper'(sel'(X1, X2)) → sel'(proper'(X1), proper'(X2))
from'(ok'(X)) → ok'(from'(X))
cons'(ok'(X1), ok'(X2)) → ok'(cons'(X1, X2))
s'(ok'(X)) → ok'(s'(X))
head'(ok'(X)) → ok'(head'(X))
2nd'(ok'(X)) → ok'(2nd'(X))
take'(ok'(X1), ok'(X2)) → ok'(take'(X1, X2))
sel'(ok'(X1), ok'(X2)) → ok'(sel'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':0':nil':ok' → mark':0':nil':ok'
from' :: mark':0':nil':ok' → mark':0':nil':ok'
mark' :: mark':0':nil':ok' → mark':0':nil':ok'
cons' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
s' :: mark':0':nil':ok' → mark':0':nil':ok'
head' :: mark':0':nil':ok' → mark':0':nil':ok'
2nd' :: mark':0':nil':ok' → mark':0':nil':ok'
take' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
0' :: mark':0':nil':ok'
nil' :: mark':0':nil':ok'
sel' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
proper' :: mark':0':nil':ok' → mark':0':nil':ok'
ok' :: mark':0':nil':ok' → mark':0':nil':ok'
top' :: mark':0':nil':ok' → top'
_hole_mark':0':nil':ok'1 :: mark':0':nil':ok'
_hole_top'2 :: top'
_gen_mark':0':nil':ok'3 :: Nat → mark':0':nil':ok'

Lemmas:
cons'(_gen_mark':0':nil':ok'3(+(1, _n5)), _gen_mark':0':nil':ok'3(b)) → _*4, rt ∈ Ω(n5)
from'(_gen_mark':0':nil':ok'3(+(1, _n2477))) → _*4, rt ∈ Ω(n2477)
s'(_gen_mark':0':nil':ok'3(+(1, _n4194))) → _*4, rt ∈ Ω(n4194)
head'(_gen_mark':0':nil':ok'3(+(1, _n6035))) → _*4, rt ∈ Ω(n6035)
take'(_gen_mark':0':nil':ok'3(+(1, _n8000)), _gen_mark':0':nil':ok'3(b)) → _*4, rt ∈ Ω(n8000)
sel'(_gen_mark':0':nil':ok'3(+(1, _n11782)), _gen_mark':0':nil':ok'3(b)) → _*4, rt ∈ Ω(n11782)
2nd'(_gen_mark':0':nil':ok'3(+(1, _n15932))) → _*4, rt ∈ Ω(n15932)

Generator Equations:
_gen_mark':0':nil':ok'3(0) ⇔ 0'
_gen_mark':0':nil':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':0':nil':ok'3(x))

The following defined symbols remain to be analysed:
proper', top'

They will be analysed ascendingly in the following order:
proper' < top'


Could not prove a rewrite lemma for the defined symbol proper'.


Rules:
active'(from'(X)) → mark'(cons'(X, from'(s'(X))))
active'(head'(cons'(X, XS))) → mark'(X)
active'(2nd'(cons'(X, XS))) → mark'(head'(XS))
active'(take'(0', XS)) → mark'(nil')
active'(take'(s'(N), cons'(X, XS))) → mark'(cons'(X, take'(N, XS)))
active'(sel'(0', cons'(X, XS))) → mark'(X)
active'(sel'(s'(N), cons'(X, XS))) → mark'(sel'(N, XS))
active'(from'(X)) → from'(active'(X))
active'(cons'(X1, X2)) → cons'(active'(X1), X2)
active'(s'(X)) → s'(active'(X))
active'(head'(X)) → head'(active'(X))
active'(2nd'(X)) → 2nd'(active'(X))
active'(take'(X1, X2)) → take'(active'(X1), X2)
active'(take'(X1, X2)) → take'(X1, active'(X2))
active'(sel'(X1, X2)) → sel'(active'(X1), X2)
active'(sel'(X1, X2)) → sel'(X1, active'(X2))
from'(mark'(X)) → mark'(from'(X))
cons'(mark'(X1), X2) → mark'(cons'(X1, X2))
s'(mark'(X)) → mark'(s'(X))
head'(mark'(X)) → mark'(head'(X))
2nd'(mark'(X)) → mark'(2nd'(X))
take'(mark'(X1), X2) → mark'(take'(X1, X2))
take'(X1, mark'(X2)) → mark'(take'(X1, X2))
sel'(mark'(X1), X2) → mark'(sel'(X1, X2))
sel'(X1, mark'(X2)) → mark'(sel'(X1, X2))
proper'(from'(X)) → from'(proper'(X))
proper'(cons'(X1, X2)) → cons'(proper'(X1), proper'(X2))
proper'(s'(X)) → s'(proper'(X))
proper'(head'(X)) → head'(proper'(X))
proper'(2nd'(X)) → 2nd'(proper'(X))
proper'(take'(X1, X2)) → take'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
proper'(nil') → ok'(nil')
proper'(sel'(X1, X2)) → sel'(proper'(X1), proper'(X2))
from'(ok'(X)) → ok'(from'(X))
cons'(ok'(X1), ok'(X2)) → ok'(cons'(X1, X2))
s'(ok'(X)) → ok'(s'(X))
head'(ok'(X)) → ok'(head'(X))
2nd'(ok'(X)) → ok'(2nd'(X))
take'(ok'(X1), ok'(X2)) → ok'(take'(X1, X2))
sel'(ok'(X1), ok'(X2)) → ok'(sel'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':0':nil':ok' → mark':0':nil':ok'
from' :: mark':0':nil':ok' → mark':0':nil':ok'
mark' :: mark':0':nil':ok' → mark':0':nil':ok'
cons' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
s' :: mark':0':nil':ok' → mark':0':nil':ok'
head' :: mark':0':nil':ok' → mark':0':nil':ok'
2nd' :: mark':0':nil':ok' → mark':0':nil':ok'
take' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
0' :: mark':0':nil':ok'
nil' :: mark':0':nil':ok'
sel' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
proper' :: mark':0':nil':ok' → mark':0':nil':ok'
ok' :: mark':0':nil':ok' → mark':0':nil':ok'
top' :: mark':0':nil':ok' → top'
_hole_mark':0':nil':ok'1 :: mark':0':nil':ok'
_hole_top'2 :: top'
_gen_mark':0':nil':ok'3 :: Nat → mark':0':nil':ok'

Lemmas:
cons'(_gen_mark':0':nil':ok'3(+(1, _n5)), _gen_mark':0':nil':ok'3(b)) → _*4, rt ∈ Ω(n5)
from'(_gen_mark':0':nil':ok'3(+(1, _n2477))) → _*4, rt ∈ Ω(n2477)
s'(_gen_mark':0':nil':ok'3(+(1, _n4194))) → _*4, rt ∈ Ω(n4194)
head'(_gen_mark':0':nil':ok'3(+(1, _n6035))) → _*4, rt ∈ Ω(n6035)
take'(_gen_mark':0':nil':ok'3(+(1, _n8000)), _gen_mark':0':nil':ok'3(b)) → _*4, rt ∈ Ω(n8000)
sel'(_gen_mark':0':nil':ok'3(+(1, _n11782)), _gen_mark':0':nil':ok'3(b)) → _*4, rt ∈ Ω(n11782)
2nd'(_gen_mark':0':nil':ok'3(+(1, _n15932))) → _*4, rt ∈ Ω(n15932)

Generator Equations:
_gen_mark':0':nil':ok'3(0) ⇔ 0'
_gen_mark':0':nil':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':0':nil':ok'3(x))

The following defined symbols remain to be analysed:
top'


Could not prove a rewrite lemma for the defined symbol top'.


Rules:
active'(from'(X)) → mark'(cons'(X, from'(s'(X))))
active'(head'(cons'(X, XS))) → mark'(X)
active'(2nd'(cons'(X, XS))) → mark'(head'(XS))
active'(take'(0', XS)) → mark'(nil')
active'(take'(s'(N), cons'(X, XS))) → mark'(cons'(X, take'(N, XS)))
active'(sel'(0', cons'(X, XS))) → mark'(X)
active'(sel'(s'(N), cons'(X, XS))) → mark'(sel'(N, XS))
active'(from'(X)) → from'(active'(X))
active'(cons'(X1, X2)) → cons'(active'(X1), X2)
active'(s'(X)) → s'(active'(X))
active'(head'(X)) → head'(active'(X))
active'(2nd'(X)) → 2nd'(active'(X))
active'(take'(X1, X2)) → take'(active'(X1), X2)
active'(take'(X1, X2)) → take'(X1, active'(X2))
active'(sel'(X1, X2)) → sel'(active'(X1), X2)
active'(sel'(X1, X2)) → sel'(X1, active'(X2))
from'(mark'(X)) → mark'(from'(X))
cons'(mark'(X1), X2) → mark'(cons'(X1, X2))
s'(mark'(X)) → mark'(s'(X))
head'(mark'(X)) → mark'(head'(X))
2nd'(mark'(X)) → mark'(2nd'(X))
take'(mark'(X1), X2) → mark'(take'(X1, X2))
take'(X1, mark'(X2)) → mark'(take'(X1, X2))
sel'(mark'(X1), X2) → mark'(sel'(X1, X2))
sel'(X1, mark'(X2)) → mark'(sel'(X1, X2))
proper'(from'(X)) → from'(proper'(X))
proper'(cons'(X1, X2)) → cons'(proper'(X1), proper'(X2))
proper'(s'(X)) → s'(proper'(X))
proper'(head'(X)) → head'(proper'(X))
proper'(2nd'(X)) → 2nd'(proper'(X))
proper'(take'(X1, X2)) → take'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
proper'(nil') → ok'(nil')
proper'(sel'(X1, X2)) → sel'(proper'(X1), proper'(X2))
from'(ok'(X)) → ok'(from'(X))
cons'(ok'(X1), ok'(X2)) → ok'(cons'(X1, X2))
s'(ok'(X)) → ok'(s'(X))
head'(ok'(X)) → ok'(head'(X))
2nd'(ok'(X)) → ok'(2nd'(X))
take'(ok'(X1), ok'(X2)) → ok'(take'(X1, X2))
sel'(ok'(X1), ok'(X2)) → ok'(sel'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':0':nil':ok' → mark':0':nil':ok'
from' :: mark':0':nil':ok' → mark':0':nil':ok'
mark' :: mark':0':nil':ok' → mark':0':nil':ok'
cons' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
s' :: mark':0':nil':ok' → mark':0':nil':ok'
head' :: mark':0':nil':ok' → mark':0':nil':ok'
2nd' :: mark':0':nil':ok' → mark':0':nil':ok'
take' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
0' :: mark':0':nil':ok'
nil' :: mark':0':nil':ok'
sel' :: mark':0':nil':ok' → mark':0':nil':ok' → mark':0':nil':ok'
proper' :: mark':0':nil':ok' → mark':0':nil':ok'
ok' :: mark':0':nil':ok' → mark':0':nil':ok'
top' :: mark':0':nil':ok' → top'
_hole_mark':0':nil':ok'1 :: mark':0':nil':ok'
_hole_top'2 :: top'
_gen_mark':0':nil':ok'3 :: Nat → mark':0':nil':ok'

Lemmas:
cons'(_gen_mark':0':nil':ok'3(+(1, _n5)), _gen_mark':0':nil':ok'3(b)) → _*4, rt ∈ Ω(n5)
from'(_gen_mark':0':nil':ok'3(+(1, _n2477))) → _*4, rt ∈ Ω(n2477)
s'(_gen_mark':0':nil':ok'3(+(1, _n4194))) → _*4, rt ∈ Ω(n4194)
head'(_gen_mark':0':nil':ok'3(+(1, _n6035))) → _*4, rt ∈ Ω(n6035)
take'(_gen_mark':0':nil':ok'3(+(1, _n8000)), _gen_mark':0':nil':ok'3(b)) → _*4, rt ∈ Ω(n8000)
sel'(_gen_mark':0':nil':ok'3(+(1, _n11782)), _gen_mark':0':nil':ok'3(b)) → _*4, rt ∈ Ω(n11782)
2nd'(_gen_mark':0':nil':ok'3(+(1, _n15932))) → _*4, rt ∈ Ω(n15932)

Generator Equations:
_gen_mark':0':nil':ok'3(0) ⇔ 0'
_gen_mark':0':nil':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':0':nil':ok'3(x))

No more defined symbols left to analyse.


The lowerbound Ω(n) was proven with the following lemma:
cons'(_gen_mark':0':nil':ok'3(+(1, _n5)), _gen_mark':0':nil':ok'3(b)) → _*4, rt ∈ Ω(n5)