(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(0) → cons(0, n__f(s(0)))
f(s(0)) → f(p(s(0)))
p(s(0)) → 0
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(0) → cons(0, n__f(s(0)))
f(s(0)) → f(p(s(0)))
f(z0) → n__f(z0)
p(s(0)) → 0
activate(n__f(z0)) → f(z0)
activate(z0) → z0
Tuples:
F(0) → c
F(s(0)) → c1(F(p(s(0))), P(s(0)))
F(z0) → c2
P(s(0)) → c3
ACTIVATE(n__f(z0)) → c4(F(z0))
ACTIVATE(z0) → c5
S tuples:
F(0) → c
F(s(0)) → c1(F(p(s(0))), P(s(0)))
F(z0) → c2
P(s(0)) → c3
ACTIVATE(n__f(z0)) → c4(F(z0))
ACTIVATE(z0) → c5
K tuples:none
Defined Rule Symbols:
f, p, activate
Defined Pair Symbols:
F, P, ACTIVATE
Compound Symbols:
c, c1, c2, c3, c4, c5
(3) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
ACTIVATE(n__f(z0)) → c4(F(z0))
Removed 4 trailing nodes:
F(0) → c
F(z0) → c2
P(s(0)) → c3
ACTIVATE(z0) → c5
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(0) → cons(0, n__f(s(0)))
f(s(0)) → f(p(s(0)))
f(z0) → n__f(z0)
p(s(0)) → 0
activate(n__f(z0)) → f(z0)
activate(z0) → z0
Tuples:
F(s(0)) → c1(F(p(s(0))), P(s(0)))
S tuples:
F(s(0)) → c1(F(p(s(0))), P(s(0)))
K tuples:none
Defined Rule Symbols:
f, p, activate
Defined Pair Symbols:
F
Compound Symbols:
c1
(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(0) → cons(0, n__f(s(0)))
f(s(0)) → f(p(s(0)))
f(z0) → n__f(z0)
p(s(0)) → 0
activate(n__f(z0)) → f(z0)
activate(z0) → z0
Tuples:
F(s(0)) → c1(F(p(s(0))))
S tuples:
F(s(0)) → c1(F(p(s(0))))
K tuples:none
Defined Rule Symbols:
f, p, activate
Defined Pair Symbols:
F
Compound Symbols:
c1
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
f(0) → cons(0, n__f(s(0)))
f(s(0)) → f(p(s(0)))
f(z0) → n__f(z0)
activate(n__f(z0)) → f(z0)
activate(z0) → z0
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(s(0)) → 0
Tuples:
F(s(0)) → c1(F(p(s(0))))
S tuples:
F(s(0)) → c1(F(p(s(0))))
K tuples:none
Defined Rule Symbols:
p
Defined Pair Symbols:
F
Compound Symbols:
c1
(9) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(s(0)) → c1(F(p(s(0))))
We considered the (Usable) Rules:
p(s(0)) → 0
And the Tuples:
F(s(0)) → c1(F(p(s(0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [3]
POL(F(x1)) = [4]x1
POL(c1(x1)) = x1
POL(p(x1)) = [3]
POL(s(x1)) = [5] + x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(s(0)) → 0
Tuples:
F(s(0)) → c1(F(p(s(0))))
S tuples:none
K tuples:
F(s(0)) → c1(F(p(s(0))))
Defined Rule Symbols:
p
Defined Pair Symbols:
F
Compound Symbols:
c1
(11) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(12) BOUNDS(O(1), O(1))