We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { a__minus(X1, X2) -> minus(X1, X2)
  , a__minus(0(), Y) -> 0()
  , a__minus(s(X), s(Y)) -> a__minus(X, Y)
  , a__geq(X1, X2) -> geq(X1, X2)
  , a__geq(X, 0()) -> true()
  , a__geq(0(), s(Y)) -> false()
  , a__geq(s(X), s(Y)) -> a__geq(X, Y)
  , a__div(X1, X2) -> div(X1, X2)
  , a__div(0(), s(Y)) -> 0()
  , a__div(s(X), s(Y)) ->
    a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(true(), X, Y) -> mark(X)
  , a__if(false(), X, Y) -> mark(Y)
  , mark(0()) -> 0()
  , mark(s(X)) -> s(mark(X))
  , mark(true()) -> true()
  , mark(false()) -> false()
  , mark(div(X1, X2)) -> a__div(mark(X1), X2)
  , mark(minus(X1, X2)) -> a__minus(X1, X2)
  , mark(geq(X1, X2)) -> a__geq(X1, X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(s) = {1}, Uargs(a__div) = {1}, Uargs(a__if) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

   [a__minus](x1, x2) = [0]         
                                    
                  [0] = [0]         
                                    
              [s](x1) = [1] x1 + [0]
                                    
     [a__geq](x1, x2) = [0]         
                                    
               [true] = [4]         
                                    
              [false] = [0]         
                                    
     [a__div](x1, x2) = [1] x1 + [0]
                                    
  [a__if](x1, x2, x3) = [1] x1 + [0]
                                    
        [div](x1, x2) = [0]         
                                    
      [minus](x1, x2) = [0]         
                                    
           [mark](x1) = [0]         
                                    
        [geq](x1, x2) = [0]         
                                    
     [if](x1, x2, x3) = [1] x1 + [0]

The order satisfies the following ordering constraints:

      [a__minus(X1, X2)] =  [0]                                                  
                         >= [0]                                                  
                         =  [minus(X1, X2)]                                      
                                                                                 
      [a__minus(0(), Y)] =  [0]                                                  
                         >= [0]                                                  
                         =  [0()]                                                
                                                                                 
  [a__minus(s(X), s(Y))] =  [0]                                                  
                         >= [0]                                                  
                         =  [a__minus(X, Y)]                                     
                                                                                 
        [a__geq(X1, X2)] =  [0]                                                  
                         >= [0]                                                  
                         =  [geq(X1, X2)]                                        
                                                                                 
        [a__geq(X, 0())] =  [0]                                                  
                         ?  [4]                                                  
                         =  [true()]                                             
                                                                                 
     [a__geq(0(), s(Y))] =  [0]                                                  
                         >= [0]                                                  
                         =  [false()]                                            
                                                                                 
    [a__geq(s(X), s(Y))] =  [0]                                                  
                         >= [0]                                                  
                         =  [a__geq(X, Y)]                                       
                                                                                 
        [a__div(X1, X2)] =  [1] X1 + [0]                                         
                         >= [0]                                                  
                         =  [div(X1, X2)]                                        
                                                                                 
     [a__div(0(), s(Y))] =  [0]                                                  
                         >= [0]                                                  
                         =  [0()]                                                
                                                                                 
    [a__div(s(X), s(Y))] =  [1] X + [0]                                          
                         >= [0]                                                  
                         =  [a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())]
                                                                                 
     [a__if(X1, X2, X3)] =  [1] X1 + [0]                                         
                         >= [1] X1 + [0]                                         
                         =  [if(X1, X2, X3)]                                     
                                                                                 
   [a__if(true(), X, Y)] =  [4]                                                  
                         >  [0]                                                  
                         =  [mark(X)]                                            
                                                                                 
  [a__if(false(), X, Y)] =  [0]                                                  
                         >= [0]                                                  
                         =  [mark(Y)]                                            
                                                                                 
             [mark(0())] =  [0]                                                  
                         >= [0]                                                  
                         =  [0()]                                                
                                                                                 
            [mark(s(X))] =  [0]                                                  
                         >= [0]                                                  
                         =  [s(mark(X))]                                         
                                                                                 
          [mark(true())] =  [0]                                                  
                         ?  [4]                                                  
                         =  [true()]                                             
                                                                                 
         [mark(false())] =  [0]                                                  
                         >= [0]                                                  
                         =  [false()]                                            
                                                                                 
     [mark(div(X1, X2))] =  [0]                                                  
                         >= [0]                                                  
                         =  [a__div(mark(X1), X2)]                               
                                                                                 
   [mark(minus(X1, X2))] =  [0]                                                  
                         >= [0]                                                  
                         =  [a__minus(X1, X2)]                                   
                                                                                 
     [mark(geq(X1, X2))] =  [0]                                                  
                         >= [0]                                                  
                         =  [a__geq(X1, X2)]                                     
                                                                                 
  [mark(if(X1, X2, X3))] =  [0]                                                  
                         >= [0]                                                  
                         =  [a__if(mark(X1), X2, X3)]                            
                                                                                 

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { a__minus(X1, X2) -> minus(X1, X2)
  , a__minus(0(), Y) -> 0()
  , a__minus(s(X), s(Y)) -> a__minus(X, Y)
  , a__geq(X1, X2) -> geq(X1, X2)
  , a__geq(X, 0()) -> true()
  , a__geq(0(), s(Y)) -> false()
  , a__geq(s(X), s(Y)) -> a__geq(X, Y)
  , a__div(X1, X2) -> div(X1, X2)
  , a__div(0(), s(Y)) -> 0()
  , a__div(s(X), s(Y)) ->
    a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(false(), X, Y) -> mark(Y)
  , mark(0()) -> 0()
  , mark(s(X)) -> s(mark(X))
  , mark(true()) -> true()
  , mark(false()) -> false()
  , mark(div(X1, X2)) -> a__div(mark(X1), X2)
  , mark(minus(X1, X2)) -> a__minus(X1, X2)
  , mark(geq(X1, X2)) -> a__geq(X1, X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) }
Weak Trs: { a__if(true(), X, Y) -> mark(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(s) = {1}, Uargs(a__div) = {1}, Uargs(a__if) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

   [a__minus](x1, x2) = [4]         
                                    
                  [0] = [0]         
                                    
              [s](x1) = [1] x1 + [0]
                                    
     [a__geq](x1, x2) = [0]         
                                    
               [true] = [4]         
                                    
              [false] = [0]         
                                    
     [a__div](x1, x2) = [1] x1 + [0]
                                    
  [a__if](x1, x2, x3) = [1] x1 + [0]
                                    
        [div](x1, x2) = [0]         
                                    
      [minus](x1, x2) = [0]         
                                    
           [mark](x1) = [0]         
                                    
        [geq](x1, x2) = [0]         
                                    
     [if](x1, x2, x3) = [1] x1 + [0]

The order satisfies the following ordering constraints:

      [a__minus(X1, X2)] =  [4]                                                  
                         >  [0]                                                  
                         =  [minus(X1, X2)]                                      
                                                                                 
      [a__minus(0(), Y)] =  [4]                                                  
                         >  [0]                                                  
                         =  [0()]                                                
                                                                                 
  [a__minus(s(X), s(Y))] =  [4]                                                  
                         >= [4]                                                  
                         =  [a__minus(X, Y)]                                     
                                                                                 
        [a__geq(X1, X2)] =  [0]                                                  
                         >= [0]                                                  
                         =  [geq(X1, X2)]                                        
                                                                                 
        [a__geq(X, 0())] =  [0]                                                  
                         ?  [4]                                                  
                         =  [true()]                                             
                                                                                 
     [a__geq(0(), s(Y))] =  [0]                                                  
                         >= [0]                                                  
                         =  [false()]                                            
                                                                                 
    [a__geq(s(X), s(Y))] =  [0]                                                  
                         >= [0]                                                  
                         =  [a__geq(X, Y)]                                       
                                                                                 
        [a__div(X1, X2)] =  [1] X1 + [0]                                         
                         >= [0]                                                  
                         =  [div(X1, X2)]                                        
                                                                                 
     [a__div(0(), s(Y))] =  [0]                                                  
                         >= [0]                                                  
                         =  [0()]                                                
                                                                                 
    [a__div(s(X), s(Y))] =  [1] X + [0]                                          
                         >= [0]                                                  
                         =  [a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())]
                                                                                 
     [a__if(X1, X2, X3)] =  [1] X1 + [0]                                         
                         >= [1] X1 + [0]                                         
                         =  [if(X1, X2, X3)]                                     
                                                                                 
   [a__if(true(), X, Y)] =  [4]                                                  
                         >  [0]                                                  
                         =  [mark(X)]                                            
                                                                                 
  [a__if(false(), X, Y)] =  [0]                                                  
                         >= [0]                                                  
                         =  [mark(Y)]                                            
                                                                                 
             [mark(0())] =  [0]                                                  
                         >= [0]                                                  
                         =  [0()]                                                
                                                                                 
            [mark(s(X))] =  [0]                                                  
                         >= [0]                                                  
                         =  [s(mark(X))]                                         
                                                                                 
          [mark(true())] =  [0]                                                  
                         ?  [4]                                                  
                         =  [true()]                                             
                                                                                 
         [mark(false())] =  [0]                                                  
                         >= [0]                                                  
                         =  [false()]                                            
                                                                                 
     [mark(div(X1, X2))] =  [0]                                                  
                         >= [0]                                                  
                         =  [a__div(mark(X1), X2)]                               
                                                                                 
   [mark(minus(X1, X2))] =  [0]                                                  
                         ?  [4]                                                  
                         =  [a__minus(X1, X2)]                                   
                                                                                 
     [mark(geq(X1, X2))] =  [0]                                                  
                         >= [0]                                                  
                         =  [a__geq(X1, X2)]                                     
                                                                                 
  [mark(if(X1, X2, X3))] =  [0]                                                  
                         >= [0]                                                  
                         =  [a__if(mark(X1), X2, X3)]                            
                                                                                 

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { a__minus(s(X), s(Y)) -> a__minus(X, Y)
  , a__geq(X1, X2) -> geq(X1, X2)
  , a__geq(X, 0()) -> true()
  , a__geq(0(), s(Y)) -> false()
  , a__geq(s(X), s(Y)) -> a__geq(X, Y)
  , a__div(X1, X2) -> div(X1, X2)
  , a__div(0(), s(Y)) -> 0()
  , a__div(s(X), s(Y)) ->
    a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(false(), X, Y) -> mark(Y)
  , mark(0()) -> 0()
  , mark(s(X)) -> s(mark(X))
  , mark(true()) -> true()
  , mark(false()) -> false()
  , mark(div(X1, X2)) -> a__div(mark(X1), X2)
  , mark(minus(X1, X2)) -> a__minus(X1, X2)
  , mark(geq(X1, X2)) -> a__geq(X1, X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) }
Weak Trs:
  { a__minus(X1, X2) -> minus(X1, X2)
  , a__minus(0(), Y) -> 0()
  , a__if(true(), X, Y) -> mark(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(s) = {1}, Uargs(a__div) = {1}, Uargs(a__if) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

   [a__minus](x1, x2) = [4]         
                                    
                  [0] = [0]         
                                    
              [s](x1) = [1] x1 + [0]
                                    
     [a__geq](x1, x2) = [4]         
                                    
               [true] = [4]         
                                    
              [false] = [0]         
                                    
     [a__div](x1, x2) = [1] x1 + [0]
                                    
  [a__if](x1, x2, x3) = [1] x1 + [0]
                                    
        [div](x1, x2) = [0]         
                                    
      [minus](x1, x2) = [0]         
                                    
           [mark](x1) = [0]         
                                    
        [geq](x1, x2) = [0]         
                                    
     [if](x1, x2, x3) = [1] x1 + [0]

The order satisfies the following ordering constraints:

      [a__minus(X1, X2)] =  [4]                                                  
                         >  [0]                                                  
                         =  [minus(X1, X2)]                                      
                                                                                 
      [a__minus(0(), Y)] =  [4]                                                  
                         >  [0]                                                  
                         =  [0()]                                                
                                                                                 
  [a__minus(s(X), s(Y))] =  [4]                                                  
                         >= [4]                                                  
                         =  [a__minus(X, Y)]                                     
                                                                                 
        [a__geq(X1, X2)] =  [4]                                                  
                         >  [0]                                                  
                         =  [geq(X1, X2)]                                        
                                                                                 
        [a__geq(X, 0())] =  [4]                                                  
                         >= [4]                                                  
                         =  [true()]                                             
                                                                                 
     [a__geq(0(), s(Y))] =  [4]                                                  
                         >  [0]                                                  
                         =  [false()]                                            
                                                                                 
    [a__geq(s(X), s(Y))] =  [4]                                                  
                         >= [4]                                                  
                         =  [a__geq(X, Y)]                                       
                                                                                 
        [a__div(X1, X2)] =  [1] X1 + [0]                                         
                         >= [0]                                                  
                         =  [div(X1, X2)]                                        
                                                                                 
     [a__div(0(), s(Y))] =  [0]                                                  
                         >= [0]                                                  
                         =  [0()]                                                
                                                                                 
    [a__div(s(X), s(Y))] =  [1] X + [0]                                          
                         ?  [4]                                                  
                         =  [a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())]
                                                                                 
     [a__if(X1, X2, X3)] =  [1] X1 + [0]                                         
                         >= [1] X1 + [0]                                         
                         =  [if(X1, X2, X3)]                                     
                                                                                 
   [a__if(true(), X, Y)] =  [4]                                                  
                         >  [0]                                                  
                         =  [mark(X)]                                            
                                                                                 
  [a__if(false(), X, Y)] =  [0]                                                  
                         >= [0]                                                  
                         =  [mark(Y)]                                            
                                                                                 
             [mark(0())] =  [0]                                                  
                         >= [0]                                                  
                         =  [0()]                                                
                                                                                 
            [mark(s(X))] =  [0]                                                  
                         >= [0]                                                  
                         =  [s(mark(X))]                                         
                                                                                 
          [mark(true())] =  [0]                                                  
                         ?  [4]                                                  
                         =  [true()]                                             
                                                                                 
         [mark(false())] =  [0]                                                  
                         >= [0]                                                  
                         =  [false()]                                            
                                                                                 
     [mark(div(X1, X2))] =  [0]                                                  
                         >= [0]                                                  
                         =  [a__div(mark(X1), X2)]                               
                                                                                 
   [mark(minus(X1, X2))] =  [0]                                                  
                         ?  [4]                                                  
                         =  [a__minus(X1, X2)]                                   
                                                                                 
     [mark(geq(X1, X2))] =  [0]                                                  
                         ?  [4]                                                  
                         =  [a__geq(X1, X2)]                                     
                                                                                 
  [mark(if(X1, X2, X3))] =  [0]                                                  
                         >= [0]                                                  
                         =  [a__if(mark(X1), X2, X3)]                            
                                                                                 

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { a__minus(s(X), s(Y)) -> a__minus(X, Y)
  , a__geq(X, 0()) -> true()
  , a__geq(s(X), s(Y)) -> a__geq(X, Y)
  , a__div(X1, X2) -> div(X1, X2)
  , a__div(0(), s(Y)) -> 0()
  , a__div(s(X), s(Y)) ->
    a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(false(), X, Y) -> mark(Y)
  , mark(0()) -> 0()
  , mark(s(X)) -> s(mark(X))
  , mark(true()) -> true()
  , mark(false()) -> false()
  , mark(div(X1, X2)) -> a__div(mark(X1), X2)
  , mark(minus(X1, X2)) -> a__minus(X1, X2)
  , mark(geq(X1, X2)) -> a__geq(X1, X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) }
Weak Trs:
  { a__minus(X1, X2) -> minus(X1, X2)
  , a__minus(0(), Y) -> 0()
  , a__geq(X1, X2) -> geq(X1, X2)
  , a__geq(0(), s(Y)) -> false()
  , a__if(true(), X, Y) -> mark(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(s) = {1}, Uargs(a__div) = {1}, Uargs(a__if) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

   [a__minus](x1, x2) = [4]         
                                    
                  [0] = [0]         
                                    
              [s](x1) = [1] x1 + [0]
                                    
     [a__geq](x1, x2) = [5]         
                                    
               [true] = [4]         
                                    
              [false] = [0]         
                                    
     [a__div](x1, x2) = [1] x1 + [0]
                                    
  [a__if](x1, x2, x3) = [1] x1 + [0]
                                    
        [div](x1, x2) = [0]         
                                    
      [minus](x1, x2) = [0]         
                                    
           [mark](x1) = [0]         
                                    
        [geq](x1, x2) = [0]         
                                    
     [if](x1, x2, x3) = [1] x1 + [0]

The order satisfies the following ordering constraints:

      [a__minus(X1, X2)] =  [4]                                                  
                         >  [0]                                                  
                         =  [minus(X1, X2)]                                      
                                                                                 
      [a__minus(0(), Y)] =  [4]                                                  
                         >  [0]                                                  
                         =  [0()]                                                
                                                                                 
  [a__minus(s(X), s(Y))] =  [4]                                                  
                         >= [4]                                                  
                         =  [a__minus(X, Y)]                                     
                                                                                 
        [a__geq(X1, X2)] =  [5]                                                  
                         >  [0]                                                  
                         =  [geq(X1, X2)]                                        
                                                                                 
        [a__geq(X, 0())] =  [5]                                                  
                         >  [4]                                                  
                         =  [true()]                                             
                                                                                 
     [a__geq(0(), s(Y))] =  [5]                                                  
                         >  [0]                                                  
                         =  [false()]                                            
                                                                                 
    [a__geq(s(X), s(Y))] =  [5]                                                  
                         >= [5]                                                  
                         =  [a__geq(X, Y)]                                       
                                                                                 
        [a__div(X1, X2)] =  [1] X1 + [0]                                         
                         >= [0]                                                  
                         =  [div(X1, X2)]                                        
                                                                                 
     [a__div(0(), s(Y))] =  [0]                                                  
                         >= [0]                                                  
                         =  [0()]                                                
                                                                                 
    [a__div(s(X), s(Y))] =  [1] X + [0]                                          
                         ?  [5]                                                  
                         =  [a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())]
                                                                                 
     [a__if(X1, X2, X3)] =  [1] X1 + [0]                                         
                         >= [1] X1 + [0]                                         
                         =  [if(X1, X2, X3)]                                     
                                                                                 
   [a__if(true(), X, Y)] =  [4]                                                  
                         >  [0]                                                  
                         =  [mark(X)]                                            
                                                                                 
  [a__if(false(), X, Y)] =  [0]                                                  
                         >= [0]                                                  
                         =  [mark(Y)]                                            
                                                                                 
             [mark(0())] =  [0]                                                  
                         >= [0]                                                  
                         =  [0()]                                                
                                                                                 
            [mark(s(X))] =  [0]                                                  
                         >= [0]                                                  
                         =  [s(mark(X))]                                         
                                                                                 
          [mark(true())] =  [0]                                                  
                         ?  [4]                                                  
                         =  [true()]                                             
                                                                                 
         [mark(false())] =  [0]                                                  
                         >= [0]                                                  
                         =  [false()]                                            
                                                                                 
     [mark(div(X1, X2))] =  [0]                                                  
                         >= [0]                                                  
                         =  [a__div(mark(X1), X2)]                               
                                                                                 
   [mark(minus(X1, X2))] =  [0]                                                  
                         ?  [4]                                                  
                         =  [a__minus(X1, X2)]                                   
                                                                                 
     [mark(geq(X1, X2))] =  [0]                                                  
                         ?  [5]                                                  
                         =  [a__geq(X1, X2)]                                     
                                                                                 
  [mark(if(X1, X2, X3))] =  [0]                                                  
                         >= [0]                                                  
                         =  [a__if(mark(X1), X2, X3)]                            
                                                                                 

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { a__minus(s(X), s(Y)) -> a__minus(X, Y)
  , a__geq(s(X), s(Y)) -> a__geq(X, Y)
  , a__div(X1, X2) -> div(X1, X2)
  , a__div(0(), s(Y)) -> 0()
  , a__div(s(X), s(Y)) ->
    a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(false(), X, Y) -> mark(Y)
  , mark(0()) -> 0()
  , mark(s(X)) -> s(mark(X))
  , mark(true()) -> true()
  , mark(false()) -> false()
  , mark(div(X1, X2)) -> a__div(mark(X1), X2)
  , mark(minus(X1, X2)) -> a__minus(X1, X2)
  , mark(geq(X1, X2)) -> a__geq(X1, X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) }
Weak Trs:
  { a__minus(X1, X2) -> minus(X1, X2)
  , a__minus(0(), Y) -> 0()
  , a__geq(X1, X2) -> geq(X1, X2)
  , a__geq(X, 0()) -> true()
  , a__geq(0(), s(Y)) -> false()
  , a__if(true(), X, Y) -> mark(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(s) = {1}, Uargs(a__div) = {1}, Uargs(a__if) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

   [a__minus](x1, x2) = [4]         
                                    
                  [0] = [0]         
                                    
              [s](x1) = [1] x1 + [0]
                                    
     [a__geq](x1, x2) = [4]         
                                    
               [true] = [0]         
                                    
              [false] = [0]         
                                    
     [a__div](x1, x2) = [1] x1 + [1]
                                    
  [a__if](x1, x2, x3) = [1] x1 + [4]
                                    
        [div](x1, x2) = [0]         
                                    
      [minus](x1, x2) = [0]         
                                    
           [mark](x1) = [0]         
                                    
        [geq](x1, x2) = [0]         
                                    
     [if](x1, x2, x3) = [1] x1 + [0]

The order satisfies the following ordering constraints:

      [a__minus(X1, X2)] =  [4]                                                  
                         >  [0]                                                  
                         =  [minus(X1, X2)]                                      
                                                                                 
      [a__minus(0(), Y)] =  [4]                                                  
                         >  [0]                                                  
                         =  [0()]                                                
                                                                                 
  [a__minus(s(X), s(Y))] =  [4]                                                  
                         >= [4]                                                  
                         =  [a__minus(X, Y)]                                     
                                                                                 
        [a__geq(X1, X2)] =  [4]                                                  
                         >  [0]                                                  
                         =  [geq(X1, X2)]                                        
                                                                                 
        [a__geq(X, 0())] =  [4]                                                  
                         >  [0]                                                  
                         =  [true()]                                             
                                                                                 
     [a__geq(0(), s(Y))] =  [4]                                                  
                         >  [0]                                                  
                         =  [false()]                                            
                                                                                 
    [a__geq(s(X), s(Y))] =  [4]                                                  
                         >= [4]                                                  
                         =  [a__geq(X, Y)]                                       
                                                                                 
        [a__div(X1, X2)] =  [1] X1 + [1]                                         
                         >  [0]                                                  
                         =  [div(X1, X2)]                                        
                                                                                 
     [a__div(0(), s(Y))] =  [1]                                                  
                         >  [0]                                                  
                         =  [0()]                                                
                                                                                 
    [a__div(s(X), s(Y))] =  [1] X + [1]                                          
                         ?  [8]                                                  
                         =  [a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())]
                                                                                 
     [a__if(X1, X2, X3)] =  [1] X1 + [4]                                         
                         >  [1] X1 + [0]                                         
                         =  [if(X1, X2, X3)]                                     
                                                                                 
   [a__if(true(), X, Y)] =  [4]                                                  
                         >  [0]                                                  
                         =  [mark(X)]                                            
                                                                                 
  [a__if(false(), X, Y)] =  [4]                                                  
                         >  [0]                                                  
                         =  [mark(Y)]                                            
                                                                                 
             [mark(0())] =  [0]                                                  
                         >= [0]                                                  
                         =  [0()]                                                
                                                                                 
            [mark(s(X))] =  [0]                                                  
                         >= [0]                                                  
                         =  [s(mark(X))]                                         
                                                                                 
          [mark(true())] =  [0]                                                  
                         >= [0]                                                  
                         =  [true()]                                             
                                                                                 
         [mark(false())] =  [0]                                                  
                         >= [0]                                                  
                         =  [false()]                                            
                                                                                 
     [mark(div(X1, X2))] =  [0]                                                  
                         ?  [1]                                                  
                         =  [a__div(mark(X1), X2)]                               
                                                                                 
   [mark(minus(X1, X2))] =  [0]                                                  
                         ?  [4]                                                  
                         =  [a__minus(X1, X2)]                                   
                                                                                 
     [mark(geq(X1, X2))] =  [0]                                                  
                         ?  [4]                                                  
                         =  [a__geq(X1, X2)]                                     
                                                                                 
  [mark(if(X1, X2, X3))] =  [0]                                                  
                         ?  [4]                                                  
                         =  [a__if(mark(X1), X2, X3)]                            
                                                                                 

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { a__minus(s(X), s(Y)) -> a__minus(X, Y)
  , a__geq(s(X), s(Y)) -> a__geq(X, Y)
  , a__div(s(X), s(Y)) ->
    a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
  , mark(0()) -> 0()
  , mark(s(X)) -> s(mark(X))
  , mark(true()) -> true()
  , mark(false()) -> false()
  , mark(div(X1, X2)) -> a__div(mark(X1), X2)
  , mark(minus(X1, X2)) -> a__minus(X1, X2)
  , mark(geq(X1, X2)) -> a__geq(X1, X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) }
Weak Trs:
  { a__minus(X1, X2) -> minus(X1, X2)
  , a__minus(0(), Y) -> 0()
  , a__geq(X1, X2) -> geq(X1, X2)
  , a__geq(X, 0()) -> true()
  , a__geq(0(), s(Y)) -> false()
  , a__div(X1, X2) -> div(X1, X2)
  , a__div(0(), s(Y)) -> 0()
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(true(), X, Y) -> mark(X)
  , a__if(false(), X, Y) -> mark(Y) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(s) = {1}, Uargs(a__div) = {1}, Uargs(a__if) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

   [a__minus](x1, x2) = [4]         
                                    
                  [0] = [0]         
                                    
              [s](x1) = [1] x1 + [0]
                                    
     [a__geq](x1, x2) = [1]         
                                    
               [true] = [1]         
                                    
              [false] = [1]         
                                    
     [a__div](x1, x2) = [1] x1 + [4]
                                    
  [a__if](x1, x2, x3) = [1] x1 + [7]
                                    
        [div](x1, x2) = [1] x1 + [0]
                                    
      [minus](x1, x2) = [1]         
                                    
           [mark](x1) = [1]         
                                    
        [geq](x1, x2) = [0]         
                                    
     [if](x1, x2, x3) = [1] x1 + [0]

The order satisfies the following ordering constraints:

      [a__minus(X1, X2)] =  [4]                                                  
                         >  [1]                                                  
                         =  [minus(X1, X2)]                                      
                                                                                 
      [a__minus(0(), Y)] =  [4]                                                  
                         >  [0]                                                  
                         =  [0()]                                                
                                                                                 
  [a__minus(s(X), s(Y))] =  [4]                                                  
                         >= [4]                                                  
                         =  [a__minus(X, Y)]                                     
                                                                                 
        [a__geq(X1, X2)] =  [1]                                                  
                         >  [0]                                                  
                         =  [geq(X1, X2)]                                        
                                                                                 
        [a__geq(X, 0())] =  [1]                                                  
                         >= [1]                                                  
                         =  [true()]                                             
                                                                                 
     [a__geq(0(), s(Y))] =  [1]                                                  
                         >= [1]                                                  
                         =  [false()]                                            
                                                                                 
    [a__geq(s(X), s(Y))] =  [1]                                                  
                         >= [1]                                                  
                         =  [a__geq(X, Y)]                                       
                                                                                 
        [a__div(X1, X2)] =  [1] X1 + [4]                                         
                         >  [1] X1 + [0]                                         
                         =  [div(X1, X2)]                                        
                                                                                 
     [a__div(0(), s(Y))] =  [4]                                                  
                         >  [0]                                                  
                         =  [0()]                                                
                                                                                 
    [a__div(s(X), s(Y))] =  [1] X + [4]                                          
                         ?  [8]                                                  
                         =  [a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())]
                                                                                 
     [a__if(X1, X2, X3)] =  [1] X1 + [7]                                         
                         >  [1] X1 + [0]                                         
                         =  [if(X1, X2, X3)]                                     
                                                                                 
   [a__if(true(), X, Y)] =  [8]                                                  
                         >  [1]                                                  
                         =  [mark(X)]                                            
                                                                                 
  [a__if(false(), X, Y)] =  [8]                                                  
                         >  [1]                                                  
                         =  [mark(Y)]                                            
                                                                                 
             [mark(0())] =  [1]                                                  
                         >  [0]                                                  
                         =  [0()]                                                
                                                                                 
            [mark(s(X))] =  [1]                                                  
                         >= [1]                                                  
                         =  [s(mark(X))]                                         
                                                                                 
          [mark(true())] =  [1]                                                  
                         >= [1]                                                  
                         =  [true()]                                             
                                                                                 
         [mark(false())] =  [1]                                                  
                         >= [1]                                                  
                         =  [false()]                                            
                                                                                 
     [mark(div(X1, X2))] =  [1]                                                  
                         ?  [5]                                                  
                         =  [a__div(mark(X1), X2)]                               
                                                                                 
   [mark(minus(X1, X2))] =  [1]                                                  
                         ?  [4]                                                  
                         =  [a__minus(X1, X2)]                                   
                                                                                 
     [mark(geq(X1, X2))] =  [1]                                                  
                         >= [1]                                                  
                         =  [a__geq(X1, X2)]                                     
                                                                                 
  [mark(if(X1, X2, X3))] =  [1]                                                  
                         ?  [8]                                                  
                         =  [a__if(mark(X1), X2, X3)]                            
                                                                                 

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { a__minus(s(X), s(Y)) -> a__minus(X, Y)
  , a__geq(s(X), s(Y)) -> a__geq(X, Y)
  , a__div(s(X), s(Y)) ->
    a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
  , mark(s(X)) -> s(mark(X))
  , mark(true()) -> true()
  , mark(false()) -> false()
  , mark(div(X1, X2)) -> a__div(mark(X1), X2)
  , mark(minus(X1, X2)) -> a__minus(X1, X2)
  , mark(geq(X1, X2)) -> a__geq(X1, X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) }
Weak Trs:
  { a__minus(X1, X2) -> minus(X1, X2)
  , a__minus(0(), Y) -> 0()
  , a__geq(X1, X2) -> geq(X1, X2)
  , a__geq(X, 0()) -> true()
  , a__geq(0(), s(Y)) -> false()
  , a__div(X1, X2) -> div(X1, X2)
  , a__div(0(), s(Y)) -> 0()
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(true(), X, Y) -> mark(X)
  , a__if(false(), X, Y) -> mark(Y)
  , mark(0()) -> 0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(s) = {1}, Uargs(a__div) = {1}, Uargs(a__if) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

   [a__minus](x1, x2) = [4]                           
                                                      
                  [0] = [1]                           
                                                      
              [s](x1) = [1] x1 + [0]                  
                                                      
     [a__geq](x1, x2) = [4]                           
                                                      
               [true] = [0]                           
                                                      
              [false] = [0]                           
                                                      
     [a__div](x1, x2) = [1] x1 + [0]                  
                                                      
  [a__if](x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [4]
                                                      
        [div](x1, x2) = [1] x1 + [0]                  
                                                      
      [minus](x1, x2) = [0]                           
                                                      
           [mark](x1) = [1] x1 + [1]                  
                                                      
        [geq](x1, x2) = [0]                           
                                                      
     [if](x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]

The order satisfies the following ordering constraints:

      [a__minus(X1, X2)] =  [4]                                                  
                         >  [0]                                                  
                         =  [minus(X1, X2)]                                      
                                                                                 
      [a__minus(0(), Y)] =  [4]                                                  
                         >  [1]                                                  
                         =  [0()]                                                
                                                                                 
  [a__minus(s(X), s(Y))] =  [4]                                                  
                         >= [4]                                                  
                         =  [a__minus(X, Y)]                                     
                                                                                 
        [a__geq(X1, X2)] =  [4]                                                  
                         >  [0]                                                  
                         =  [geq(X1, X2)]                                        
                                                                                 
        [a__geq(X, 0())] =  [4]                                                  
                         >  [0]                                                  
                         =  [true()]                                             
                                                                                 
     [a__geq(0(), s(Y))] =  [4]                                                  
                         >  [0]                                                  
                         =  [false()]                                            
                                                                                 
    [a__geq(s(X), s(Y))] =  [4]                                                  
                         >= [4]                                                  
                         =  [a__geq(X, Y)]                                       
                                                                                 
        [a__div(X1, X2)] =  [1] X1 + [0]                                         
                         >= [1] X1 + [0]                                         
                         =  [div(X1, X2)]                                        
                                                                                 
     [a__div(0(), s(Y))] =  [1]                                                  
                         >= [1]                                                  
                         =  [0()]                                                
                                                                                 
    [a__div(s(X), s(Y))] =  [1] X + [0]                                          
                         ?  [9]                                                  
                         =  [a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())]
                                                                                 
     [a__if(X1, X2, X3)] =  [1] X1 + [1] X2 + [1] X3 + [4]                       
                         >  [1] X1 + [1] X2 + [1] X3 + [0]                       
                         =  [if(X1, X2, X3)]                                     
                                                                                 
   [a__if(true(), X, Y)] =  [1] Y + [1] X + [4]                                  
                         >  [1] X + [1]                                          
                         =  [mark(X)]                                            
                                                                                 
  [a__if(false(), X, Y)] =  [1] Y + [1] X + [4]                                  
                         >  [1] Y + [1]                                          
                         =  [mark(Y)]                                            
                                                                                 
             [mark(0())] =  [2]                                                  
                         >  [1]                                                  
                         =  [0()]                                                
                                                                                 
            [mark(s(X))] =  [1] X + [1]                                          
                         >= [1] X + [1]                                          
                         =  [s(mark(X))]                                         
                                                                                 
          [mark(true())] =  [1]                                                  
                         >  [0]                                                  
                         =  [true()]                                             
                                                                                 
         [mark(false())] =  [1]                                                  
                         >  [0]                                                  
                         =  [false()]                                            
                                                                                 
     [mark(div(X1, X2))] =  [1] X1 + [1]                                         
                         >= [1] X1 + [1]                                         
                         =  [a__div(mark(X1), X2)]                               
                                                                                 
   [mark(minus(X1, X2))] =  [1]                                                  
                         ?  [4]                                                  
                         =  [a__minus(X1, X2)]                                   
                                                                                 
     [mark(geq(X1, X2))] =  [1]                                                  
                         ?  [4]                                                  
                         =  [a__geq(X1, X2)]                                     
                                                                                 
  [mark(if(X1, X2, X3))] =  [1] X1 + [1] X2 + [1] X3 + [1]                       
                         ?  [1] X1 + [1] X2 + [1] X3 + [5]                       
                         =  [a__if(mark(X1), X2, X3)]                            
                                                                                 

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { a__minus(s(X), s(Y)) -> a__minus(X, Y)
  , a__geq(s(X), s(Y)) -> a__geq(X, Y)
  , a__div(s(X), s(Y)) ->
    a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
  , mark(s(X)) -> s(mark(X))
  , mark(div(X1, X2)) -> a__div(mark(X1), X2)
  , mark(minus(X1, X2)) -> a__minus(X1, X2)
  , mark(geq(X1, X2)) -> a__geq(X1, X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) }
Weak Trs:
  { a__minus(X1, X2) -> minus(X1, X2)
  , a__minus(0(), Y) -> 0()
  , a__geq(X1, X2) -> geq(X1, X2)
  , a__geq(X, 0()) -> true()
  , a__geq(0(), s(Y)) -> false()
  , a__div(X1, X2) -> div(X1, X2)
  , a__div(0(), s(Y)) -> 0()
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(true(), X, Y) -> mark(X)
  , a__if(false(), X, Y) -> mark(Y)
  , mark(0()) -> 0()
  , mark(true()) -> true()
  , mark(false()) -> false() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(s) = {1}, Uargs(a__div) = {1}, Uargs(a__if) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

   [a__minus](x1, x2) = [0]                           
                                                      
                  [0] = [0]                           
                                                      
              [s](x1) = [1] x1 + [0]                  
                                                      
     [a__geq](x1, x2) = [1] x1 + [0]                  
                                                      
               [true] = [0]                           
                                                      
              [false] = [0]                           
                                                      
     [a__div](x1, x2) = [1] x1 + [4]                  
                                                      
  [a__if](x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                                                      
        [div](x1, x2) = [1] x1 + [0]                  
                                                      
      [minus](x1, x2) = [0]                           
                                                      
           [mark](x1) = [1] x1 + [0]                  
                                                      
        [geq](x1, x2) = [1] x1 + [0]                  
                                                      
     [if](x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]

The order satisfies the following ordering constraints:

      [a__minus(X1, X2)] =  [0]                                                  
                         >= [0]                                                  
                         =  [minus(X1, X2)]                                      
                                                                                 
      [a__minus(0(), Y)] =  [0]                                                  
                         >= [0]                                                  
                         =  [0()]                                                
                                                                                 
  [a__minus(s(X), s(Y))] =  [0]                                                  
                         >= [0]                                                  
                         =  [a__minus(X, Y)]                                     
                                                                                 
        [a__geq(X1, X2)] =  [1] X1 + [0]                                         
                         >= [1] X1 + [0]                                         
                         =  [geq(X1, X2)]                                        
                                                                                 
        [a__geq(X, 0())] =  [1] X + [0]                                          
                         >= [0]                                                  
                         =  [true()]                                             
                                                                                 
     [a__geq(0(), s(Y))] =  [0]                                                  
                         >= [0]                                                  
                         =  [false()]                                            
                                                                                 
    [a__geq(s(X), s(Y))] =  [1] X + [0]                                          
                         >= [1] X + [0]                                          
                         =  [a__geq(X, Y)]                                       
                                                                                 
        [a__div(X1, X2)] =  [1] X1 + [4]                                         
                         >  [1] X1 + [0]                                         
                         =  [div(X1, X2)]                                        
                                                                                 
     [a__div(0(), s(Y))] =  [4]                                                  
                         >  [0]                                                  
                         =  [0()]                                                
                                                                                 
    [a__div(s(X), s(Y))] =  [1] X + [4]                                          
                         >  [1] X + [1]                                          
                         =  [a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())]
                                                                                 
     [a__if(X1, X2, X3)] =  [1] X1 + [1] X2 + [1] X3 + [1]                       
                         >  [1] X1 + [1] X2 + [1] X3 + [0]                       
                         =  [if(X1, X2, X3)]                                     
                                                                                 
   [a__if(true(), X, Y)] =  [1] Y + [1] X + [1]                                  
                         >  [1] X + [0]                                          
                         =  [mark(X)]                                            
                                                                                 
  [a__if(false(), X, Y)] =  [1] Y + [1] X + [1]                                  
                         >  [1] Y + [0]                                          
                         =  [mark(Y)]                                            
                                                                                 
             [mark(0())] =  [0]                                                  
                         >= [0]                                                  
                         =  [0()]                                                
                                                                                 
            [mark(s(X))] =  [1] X + [0]                                          
                         >= [1] X + [0]                                          
                         =  [s(mark(X))]                                         
                                                                                 
          [mark(true())] =  [0]                                                  
                         >= [0]                                                  
                         =  [true()]                                             
                                                                                 
         [mark(false())] =  [0]                                                  
                         >= [0]                                                  
                         =  [false()]                                            
                                                                                 
     [mark(div(X1, X2))] =  [1] X1 + [0]                                         
                         ?  [1] X1 + [4]                                         
                         =  [a__div(mark(X1), X2)]                               
                                                                                 
   [mark(minus(X1, X2))] =  [0]                                                  
                         >= [0]                                                  
                         =  [a__minus(X1, X2)]                                   
                                                                                 
     [mark(geq(X1, X2))] =  [1] X1 + [0]                                         
                         >= [1] X1 + [0]                                         
                         =  [a__geq(X1, X2)]                                     
                                                                                 
  [mark(if(X1, X2, X3))] =  [1] X1 + [1] X2 + [1] X3 + [0]                       
                         ?  [1] X1 + [1] X2 + [1] X3 + [1]                       
                         =  [a__if(mark(X1), X2, X3)]                            
                                                                                 

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { a__minus(s(X), s(Y)) -> a__minus(X, Y)
  , a__geq(s(X), s(Y)) -> a__geq(X, Y)
  , mark(s(X)) -> s(mark(X))
  , mark(div(X1, X2)) -> a__div(mark(X1), X2)
  , mark(minus(X1, X2)) -> a__minus(X1, X2)
  , mark(geq(X1, X2)) -> a__geq(X1, X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) }
Weak Trs:
  { a__minus(X1, X2) -> minus(X1, X2)
  , a__minus(0(), Y) -> 0()
  , a__geq(X1, X2) -> geq(X1, X2)
  , a__geq(X, 0()) -> true()
  , a__geq(0(), s(Y)) -> false()
  , a__div(X1, X2) -> div(X1, X2)
  , a__div(0(), s(Y)) -> 0()
  , a__div(s(X), s(Y)) ->
    a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(true(), X, Y) -> mark(X)
  , a__if(false(), X, Y) -> mark(Y)
  , mark(0()) -> 0()
  , mark(true()) -> true()
  , mark(false()) -> false() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(s) = {1}, Uargs(a__div) = {1}, Uargs(a__if) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

   [a__minus](x1, x2) = [0]         
                                    
                  [0] = [0]         
                                    
              [s](x1) = [1] x1 + [3]
                                    
     [a__geq](x1, x2) = [1]         
                                    
               [true] = [1]         
                                    
              [false] = [1]         
                                    
     [a__div](x1, x2) = [1] x1 + [0]
                                    
  [a__if](x1, x2, x3) = [1] x1 + [0]
                                    
        [div](x1, x2) = [1] x1 + [0]
                                    
      [minus](x1, x2) = [0]         
                                    
           [mark](x1) = [1]         
                                    
        [geq](x1, x2) = [0]         
                                    
     [if](x1, x2, x3) = [1] x1 + [0]

The order satisfies the following ordering constraints:

      [a__minus(X1, X2)] =  [0]                                                  
                         >= [0]                                                  
                         =  [minus(X1, X2)]                                      
                                                                                 
      [a__minus(0(), Y)] =  [0]                                                  
                         >= [0]                                                  
                         =  [0()]                                                
                                                                                 
  [a__minus(s(X), s(Y))] =  [0]                                                  
                         >= [0]                                                  
                         =  [a__minus(X, Y)]                                     
                                                                                 
        [a__geq(X1, X2)] =  [1]                                                  
                         >  [0]                                                  
                         =  [geq(X1, X2)]                                        
                                                                                 
        [a__geq(X, 0())] =  [1]                                                  
                         >= [1]                                                  
                         =  [true()]                                             
                                                                                 
     [a__geq(0(), s(Y))] =  [1]                                                  
                         >= [1]                                                  
                         =  [false()]                                            
                                                                                 
    [a__geq(s(X), s(Y))] =  [1]                                                  
                         >= [1]                                                  
                         =  [a__geq(X, Y)]                                       
                                                                                 
        [a__div(X1, X2)] =  [1] X1 + [0]                                         
                         >= [1] X1 + [0]                                         
                         =  [div(X1, X2)]                                        
                                                                                 
     [a__div(0(), s(Y))] =  [0]                                                  
                         >= [0]                                                  
                         =  [0()]                                                
                                                                                 
    [a__div(s(X), s(Y))] =  [1] X + [3]                                          
                         >  [1]                                                  
                         =  [a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())]
                                                                                 
     [a__if(X1, X2, X3)] =  [1] X1 + [0]                                         
                         >= [1] X1 + [0]                                         
                         =  [if(X1, X2, X3)]                                     
                                                                                 
   [a__if(true(), X, Y)] =  [1]                                                  
                         >= [1]                                                  
                         =  [mark(X)]                                            
                                                                                 
  [a__if(false(), X, Y)] =  [1]                                                  
                         >= [1]                                                  
                         =  [mark(Y)]                                            
                                                                                 
             [mark(0())] =  [1]                                                  
                         >  [0]                                                  
                         =  [0()]                                                
                                                                                 
            [mark(s(X))] =  [1]                                                  
                         ?  [4]                                                  
                         =  [s(mark(X))]                                         
                                                                                 
          [mark(true())] =  [1]                                                  
                         >= [1]                                                  
                         =  [true()]                                             
                                                                                 
         [mark(false())] =  [1]                                                  
                         >= [1]                                                  
                         =  [false()]                                            
                                                                                 
     [mark(div(X1, X2))] =  [1]                                                  
                         >= [1]                                                  
                         =  [a__div(mark(X1), X2)]                               
                                                                                 
   [mark(minus(X1, X2))] =  [1]                                                  
                         >  [0]                                                  
                         =  [a__minus(X1, X2)]                                   
                                                                                 
     [mark(geq(X1, X2))] =  [1]                                                  
                         >= [1]                                                  
                         =  [a__geq(X1, X2)]                                     
                                                                                 
  [mark(if(X1, X2, X3))] =  [1]                                                  
                         >= [1]                                                  
                         =  [a__if(mark(X1), X2, X3)]                            
                                                                                 

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { a__minus(s(X), s(Y)) -> a__minus(X, Y)
  , a__geq(s(X), s(Y)) -> a__geq(X, Y)
  , mark(s(X)) -> s(mark(X))
  , mark(div(X1, X2)) -> a__div(mark(X1), X2)
  , mark(geq(X1, X2)) -> a__geq(X1, X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) }
Weak Trs:
  { a__minus(X1, X2) -> minus(X1, X2)
  , a__minus(0(), Y) -> 0()
  , a__geq(X1, X2) -> geq(X1, X2)
  , a__geq(X, 0()) -> true()
  , a__geq(0(), s(Y)) -> false()
  , a__div(X1, X2) -> div(X1, X2)
  , a__div(0(), s(Y)) -> 0()
  , a__div(s(X), s(Y)) ->
    a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(true(), X, Y) -> mark(X)
  , a__if(false(), X, Y) -> mark(Y)
  , mark(0()) -> 0()
  , mark(true()) -> true()
  , mark(false()) -> false()
  , mark(minus(X1, X2)) -> a__minus(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(s) = {1}, Uargs(a__div) = {1}, Uargs(a__if) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

   [a__minus](x1, x2) = [0]                           
                                                      
                  [0] = [0]                           
                                                      
              [s](x1) = [1] x1 + [4]                  
                                                      
     [a__geq](x1, x2) = [0]                           
                                                      
               [true] = [0]                           
                                                      
              [false] = [0]                           
                                                      
     [a__div](x1, x2) = [1] x1 + [4]                  
                                                      
  [a__if](x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [4]
                                                      
        [div](x1, x2) = [1] x1 + [0]                  
                                                      
      [minus](x1, x2) = [0]                           
                                                      
           [mark](x1) = [1] x1 + [4]                  
                                                      
        [geq](x1, x2) = [0]                           
                                                      
     [if](x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [4]

The order satisfies the following ordering constraints:

      [a__minus(X1, X2)] =  [0]                                                  
                         >= [0]                                                  
                         =  [minus(X1, X2)]                                      
                                                                                 
      [a__minus(0(), Y)] =  [0]                                                  
                         >= [0]                                                  
                         =  [0()]                                                
                                                                                 
  [a__minus(s(X), s(Y))] =  [0]                                                  
                         >= [0]                                                  
                         =  [a__minus(X, Y)]                                     
                                                                                 
        [a__geq(X1, X2)] =  [0]                                                  
                         >= [0]                                                  
                         =  [geq(X1, X2)]                                        
                                                                                 
        [a__geq(X, 0())] =  [0]                                                  
                         >= [0]                                                  
                         =  [true()]                                             
                                                                                 
     [a__geq(0(), s(Y))] =  [0]                                                  
                         >= [0]                                                  
                         =  [false()]                                            
                                                                                 
    [a__geq(s(X), s(Y))] =  [0]                                                  
                         >= [0]                                                  
                         =  [a__geq(X, Y)]                                       
                                                                                 
        [a__div(X1, X2)] =  [1] X1 + [4]                                         
                         >  [1] X1 + [0]                                         
                         =  [div(X1, X2)]                                        
                                                                                 
     [a__div(0(), s(Y))] =  [4]                                                  
                         >  [0]                                                  
                         =  [0()]                                                
                                                                                 
    [a__div(s(X), s(Y))] =  [1] X + [8]                                          
                         >= [8]                                                  
                         =  [a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())]
                                                                                 
     [a__if(X1, X2, X3)] =  [1] X1 + [1] X2 + [1] X3 + [4]                       
                         >= [1] X1 + [1] X2 + [1] X3 + [4]                       
                         =  [if(X1, X2, X3)]                                     
                                                                                 
   [a__if(true(), X, Y)] =  [1] Y + [1] X + [4]                                  
                         >= [1] X + [4]                                          
                         =  [mark(X)]                                            
                                                                                 
  [a__if(false(), X, Y)] =  [1] Y + [1] X + [4]                                  
                         >= [1] Y + [4]                                          
                         =  [mark(Y)]                                            
                                                                                 
             [mark(0())] =  [4]                                                  
                         >  [0]                                                  
                         =  [0()]                                                
                                                                                 
            [mark(s(X))] =  [1] X + [8]                                          
                         >= [1] X + [8]                                          
                         =  [s(mark(X))]                                         
                                                                                 
          [mark(true())] =  [4]                                                  
                         >  [0]                                                  
                         =  [true()]                                             
                                                                                 
         [mark(false())] =  [4]                                                  
                         >  [0]                                                  
                         =  [false()]                                            
                                                                                 
     [mark(div(X1, X2))] =  [1] X1 + [4]                                         
                         ?  [1] X1 + [8]                                         
                         =  [a__div(mark(X1), X2)]                               
                                                                                 
   [mark(minus(X1, X2))] =  [4]                                                  
                         >  [0]                                                  
                         =  [a__minus(X1, X2)]                                   
                                                                                 
     [mark(geq(X1, X2))] =  [4]                                                  
                         >  [0]                                                  
                         =  [a__geq(X1, X2)]                                     
                                                                                 
  [mark(if(X1, X2, X3))] =  [1] X1 + [1] X2 + [1] X3 + [8]                       
                         >= [1] X1 + [1] X2 + [1] X3 + [8]                       
                         =  [a__if(mark(X1), X2, X3)]                            
                                                                                 

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { a__minus(s(X), s(Y)) -> a__minus(X, Y)
  , a__geq(s(X), s(Y)) -> a__geq(X, Y)
  , mark(s(X)) -> s(mark(X))
  , mark(div(X1, X2)) -> a__div(mark(X1), X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) }
Weak Trs:
  { a__minus(X1, X2) -> minus(X1, X2)
  , a__minus(0(), Y) -> 0()
  , a__geq(X1, X2) -> geq(X1, X2)
  , a__geq(X, 0()) -> true()
  , a__geq(0(), s(Y)) -> false()
  , a__div(X1, X2) -> div(X1, X2)
  , a__div(0(), s(Y)) -> 0()
  , a__div(s(X), s(Y)) ->
    a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(true(), X, Y) -> mark(X)
  , a__if(false(), X, Y) -> mark(Y)
  , mark(0()) -> 0()
  , mark(true()) -> true()
  , mark(false()) -> false()
  , mark(minus(X1, X2)) -> a__minus(X1, X2)
  , mark(geq(X1, X2)) -> a__geq(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(s) = {1}, Uargs(a__div) = {1}, Uargs(a__if) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

   [a__minus](x1, x2) = [0]                           
                                                      
                  [0] = [0]                           
                                                      
              [s](x1) = [1] x1 + [1]                  
                                                      
     [a__geq](x1, x2) = [1] x1 + [1]                  
                                                      
               [true] = [0]                           
                                                      
              [false] = [1]                           
                                                      
     [a__div](x1, x2) = [1] x1 + [1] x2 + [1]         
                                                      
  [a__if](x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                                                      
        [div](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                      
      [minus](x1, x2) = [0]                           
                                                      
           [mark](x1) = [1] x1 + [0]                  
                                                      
        [geq](x1, x2) = [1] x1 + [1]                  
                                                      
     [if](x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]

The order satisfies the following ordering constraints:

      [a__minus(X1, X2)] =  [0]                                                  
                         >= [0]                                                  
                         =  [minus(X1, X2)]                                      
                                                                                 
      [a__minus(0(), Y)] =  [0]                                                  
                         >= [0]                                                  
                         =  [0()]                                                
                                                                                 
  [a__minus(s(X), s(Y))] =  [0]                                                  
                         >= [0]                                                  
                         =  [a__minus(X, Y)]                                     
                                                                                 
        [a__geq(X1, X2)] =  [1] X1 + [1]                                         
                         >= [1] X1 + [1]                                         
                         =  [geq(X1, X2)]                                        
                                                                                 
        [a__geq(X, 0())] =  [1] X + [1]                                          
                         >  [0]                                                  
                         =  [true()]                                             
                                                                                 
     [a__geq(0(), s(Y))] =  [1]                                                  
                         >= [1]                                                  
                         =  [false()]                                            
                                                                                 
    [a__geq(s(X), s(Y))] =  [1] X + [2]                                          
                         >  [1] X + [1]                                          
                         =  [a__geq(X, Y)]                                       
                                                                                 
        [a__div(X1, X2)] =  [1] X1 + [1] X2 + [1]                                
                         >  [1] X1 + [1] X2 + [0]                                
                         =  [div(X1, X2)]                                        
                                                                                 
     [a__div(0(), s(Y))] =  [1] Y + [2]                                          
                         >  [0]                                                  
                         =  [0()]                                                
                                                                                 
    [a__div(s(X), s(Y))] =  [1] Y + [1] X + [3]                                  
                         >= [1] Y + [1] X + [3]                                  
                         =  [a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())]
                                                                                 
     [a__if(X1, X2, X3)] =  [1] X1 + [1] X2 + [1] X3 + [0]                       
                         >= [1] X1 + [1] X2 + [1] X3 + [0]                       
                         =  [if(X1, X2, X3)]                                     
                                                                                 
   [a__if(true(), X, Y)] =  [1] Y + [1] X + [0]                                  
                         >= [1] X + [0]                                          
                         =  [mark(X)]                                            
                                                                                 
  [a__if(false(), X, Y)] =  [1] Y + [1] X + [1]                                  
                         >  [1] Y + [0]                                          
                         =  [mark(Y)]                                            
                                                                                 
             [mark(0())] =  [0]                                                  
                         >= [0]                                                  
                         =  [0()]                                                
                                                                                 
            [mark(s(X))] =  [1] X + [1]                                          
                         >= [1] X + [1]                                          
                         =  [s(mark(X))]                                         
                                                                                 
          [mark(true())] =  [0]                                                  
                         >= [0]                                                  
                         =  [true()]                                             
                                                                                 
         [mark(false())] =  [1]                                                  
                         >= [1]                                                  
                         =  [false()]                                            
                                                                                 
     [mark(div(X1, X2))] =  [1] X1 + [1] X2 + [0]                                
                         ?  [1] X1 + [1] X2 + [1]                                
                         =  [a__div(mark(X1), X2)]                               
                                                                                 
   [mark(minus(X1, X2))] =  [0]                                                  
                         >= [0]                                                  
                         =  [a__minus(X1, X2)]                                   
                                                                                 
     [mark(geq(X1, X2))] =  [1] X1 + [1]                                         
                         >= [1] X1 + [1]                                         
                         =  [a__geq(X1, X2)]                                     
                                                                                 
  [mark(if(X1, X2, X3))] =  [1] X1 + [1] X2 + [1] X3 + [0]                       
                         >= [1] X1 + [1] X2 + [1] X3 + [0]                       
                         =  [a__if(mark(X1), X2, X3)]                            
                                                                                 

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { a__minus(s(X), s(Y)) -> a__minus(X, Y)
  , mark(s(X)) -> s(mark(X))
  , mark(div(X1, X2)) -> a__div(mark(X1), X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) }
Weak Trs:
  { a__minus(X1, X2) -> minus(X1, X2)
  , a__minus(0(), Y) -> 0()
  , a__geq(X1, X2) -> geq(X1, X2)
  , a__geq(X, 0()) -> true()
  , a__geq(0(), s(Y)) -> false()
  , a__geq(s(X), s(Y)) -> a__geq(X, Y)
  , a__div(X1, X2) -> div(X1, X2)
  , a__div(0(), s(Y)) -> 0()
  , a__div(s(X), s(Y)) ->
    a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(true(), X, Y) -> mark(X)
  , a__if(false(), X, Y) -> mark(Y)
  , mark(0()) -> 0()
  , mark(true()) -> true()
  , mark(false()) -> false()
  , mark(minus(X1, X2)) -> a__minus(X1, X2)
  , mark(geq(X1, X2)) -> a__geq(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(s) = {1}, Uargs(a__div) = {1}, Uargs(a__if) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

   [a__minus](x1, x2) = [1] x1 + [0]                  
                                                      
                  [0] = [0]                           
                                                      
              [s](x1) = [1] x1 + [4]                  
                                                      
     [a__geq](x1, x2) = [0]                           
                                                      
               [true] = [0]                           
                                                      
              [false] = [0]                           
                                                      
     [a__div](x1, x2) = [1] x1 + [4]                  
                                                      
  [a__if](x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [4]
                                                      
        [div](x1, x2) = [1] x1 + [0]                  
                                                      
      [minus](x1, x2) = [1] x1 + [0]                  
                                                      
           [mark](x1) = [1] x1 + [4]                  
                                                      
        [geq](x1, x2) = [0]                           
                                                      
     [if](x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]

The order satisfies the following ordering constraints:

      [a__minus(X1, X2)] =  [1] X1 + [0]                                         
                         >= [1] X1 + [0]                                         
                         =  [minus(X1, X2)]                                      
                                                                                 
      [a__minus(0(), Y)] =  [0]                                                  
                         >= [0]                                                  
                         =  [0()]                                                
                                                                                 
  [a__minus(s(X), s(Y))] =  [1] X + [4]                                          
                         >  [1] X + [0]                                          
                         =  [a__minus(X, Y)]                                     
                                                                                 
        [a__geq(X1, X2)] =  [0]                                                  
                         >= [0]                                                  
                         =  [geq(X1, X2)]                                        
                                                                                 
        [a__geq(X, 0())] =  [0]                                                  
                         >= [0]                                                  
                         =  [true()]                                             
                                                                                 
     [a__geq(0(), s(Y))] =  [0]                                                  
                         >= [0]                                                  
                         =  [false()]                                            
                                                                                 
    [a__geq(s(X), s(Y))] =  [0]                                                  
                         >= [0]                                                  
                         =  [a__geq(X, Y)]                                       
                                                                                 
        [a__div(X1, X2)] =  [1] X1 + [4]                                         
                         >  [1] X1 + [0]                                         
                         =  [div(X1, X2)]                                        
                                                                                 
     [a__div(0(), s(Y))] =  [4]                                                  
                         >  [0]                                                  
                         =  [0()]                                                
                                                                                 
    [a__div(s(X), s(Y))] =  [1] X + [8]                                          
                         >= [1] X + [8]                                          
                         =  [a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())]
                                                                                 
     [a__if(X1, X2, X3)] =  [1] X1 + [1] X2 + [1] X3 + [4]                       
                         >  [1] X1 + [1] X2 + [1] X3 + [0]                       
                         =  [if(X1, X2, X3)]                                     
                                                                                 
   [a__if(true(), X, Y)] =  [1] Y + [1] X + [4]                                  
                         >= [1] X + [4]                                          
                         =  [mark(X)]                                            
                                                                                 
  [a__if(false(), X, Y)] =  [1] Y + [1] X + [4]                                  
                         >= [1] Y + [4]                                          
                         =  [mark(Y)]                                            
                                                                                 
             [mark(0())] =  [4]                                                  
                         >  [0]                                                  
                         =  [0()]                                                
                                                                                 
            [mark(s(X))] =  [1] X + [8]                                          
                         >= [1] X + [8]                                          
                         =  [s(mark(X))]                                         
                                                                                 
          [mark(true())] =  [4]                                                  
                         >  [0]                                                  
                         =  [true()]                                             
                                                                                 
         [mark(false())] =  [4]                                                  
                         >  [0]                                                  
                         =  [false()]                                            
                                                                                 
     [mark(div(X1, X2))] =  [1] X1 + [4]                                         
                         ?  [1] X1 + [8]                                         
                         =  [a__div(mark(X1), X2)]                               
                                                                                 
   [mark(minus(X1, X2))] =  [1] X1 + [4]                                         
                         >  [1] X1 + [0]                                         
                         =  [a__minus(X1, X2)]                                   
                                                                                 
     [mark(geq(X1, X2))] =  [4]                                                  
                         >  [0]                                                  
                         =  [a__geq(X1, X2)]                                     
                                                                                 
  [mark(if(X1, X2, X3))] =  [1] X1 + [1] X2 + [1] X3 + [4]                       
                         ?  [1] X1 + [1] X2 + [1] X3 + [8]                       
                         =  [a__if(mark(X1), X2, X3)]                            
                                                                                 

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { mark(s(X)) -> s(mark(X))
  , mark(div(X1, X2)) -> a__div(mark(X1), X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) }
Weak Trs:
  { a__minus(X1, X2) -> minus(X1, X2)
  , a__minus(0(), Y) -> 0()
  , a__minus(s(X), s(Y)) -> a__minus(X, Y)
  , a__geq(X1, X2) -> geq(X1, X2)
  , a__geq(X, 0()) -> true()
  , a__geq(0(), s(Y)) -> false()
  , a__geq(s(X), s(Y)) -> a__geq(X, Y)
  , a__div(X1, X2) -> div(X1, X2)
  , a__div(0(), s(Y)) -> 0()
  , a__div(s(X), s(Y)) ->
    a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(true(), X, Y) -> mark(X)
  , a__if(false(), X, Y) -> mark(Y)
  , mark(0()) -> 0()
  , mark(true()) -> true()
  , mark(false()) -> false()
  , mark(minus(X1, X2)) -> a__minus(X1, X2)
  , mark(geq(X1, X2)) -> a__geq(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 2' to
orient following rules strictly.

Trs: { mark(s(X)) -> s(mark(X)) }

The induced complexity on above rules (modulo remaining rules) is
YES(?,O(n^1)) . These rules are moved into the corresponding weak
component(s).

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(s) = {1}, Uargs(a__div) = {1}, Uargs(a__if) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA) and not(IDA(1)).
  
     [a__minus](x1, x2) = [0]                                 
                          [0]                                 
                                                              
                    [0] = [0]                                 
                          [0]                                 
                                                              
                [s](x1) = [1 1] x1 + [0]                      
                          [0 0]      [1]                      
                                                              
       [a__geq](x1, x2) = [1 0] x1 + [0]                      
                          [0 0]      [1]                      
                                                              
                 [true] = [0]                                 
                          [1]                                 
                                                              
                [false] = [0]                                 
                          [1]                                 
                                                              
       [a__div](x1, x2) = [1 7] x1 + [0 3] x2 + [5]           
                          [0 0]      [0 0]      [1]           
                                                              
    [a__if](x1, x2, x3) = [1 4] x1 + [3 2] x2 + [3 2] x3 + [0]
                          [0 0]      [0 1]      [0 1]      [0]
                                                              
          [div](x1, x2) = [1 3] x1 + [0 1] x2 + [1]           
                          [0 0]      [0 0]      [1]           
                                                              
        [minus](x1, x2) = [0]                                 
                          [0]                                 
                                                              
             [mark](x1) = [3 2] x1 + [4]                      
                          [0 1]      [0]                      
                                                              
          [geq](x1, x2) = [1 0] x1 + [0]                      
                          [0 0]      [1]                      
                                                              
       [if](x1, x2, x3) = [1 4] x1 + [1 0] x2 + [1 0] x3 + [0]
                          [0 0]      [0 1]      [0 1]      [0]
  
  The order satisfies the following ordering constraints:
  
        [a__minus(X1, X2)] =  [0]                                                  
                              [0]                                                  
                           >= [0]                                                  
                              [0]                                                  
                           =  [minus(X1, X2)]                                      
                                                                                   
        [a__minus(0(), Y)] =  [0]                                                  
                              [0]                                                  
                           >= [0]                                                  
                              [0]                                                  
                           =  [0()]                                                
                                                                                   
    [a__minus(s(X), s(Y))] =  [0]                                                  
                              [0]                                                  
                           >= [0]                                                  
                              [0]                                                  
                           =  [a__minus(X, Y)]                                     
                                                                                   
          [a__geq(X1, X2)] =  [1 0] X1 + [0]                                       
                              [0 0]      [1]                                       
                           >= [1 0] X1 + [0]                                       
                              [0 0]      [1]                                       
                           =  [geq(X1, X2)]                                        
                                                                                   
          [a__geq(X, 0())] =  [1 0] X + [0]                                        
                              [0 0]     [1]                                        
                           >= [0]                                                  
                              [1]                                                  
                           =  [true()]                                             
                                                                                   
       [a__geq(0(), s(Y))] =  [0]                                                  
                              [1]                                                  
                           >= [0]                                                  
                              [1]                                                  
                           =  [false()]                                            
                                                                                   
      [a__geq(s(X), s(Y))] =  [1 1] X + [0]                                        
                              [0 0]     [1]                                        
                           >= [1 0] X + [0]                                        
                              [0 0]     [1]                                        
                           =  [a__geq(X, Y)]                                       
                                                                                   
          [a__div(X1, X2)] =  [1 7] X1 + [0 3] X2 + [5]                            
                              [0 0]      [0 0]      [1]                            
                           >  [1 3] X1 + [0 1] X2 + [1]                            
                              [0 0]      [0 0]      [1]                            
                           =  [div(X1, X2)]                                        
                                                                                   
       [a__div(0(), s(Y))] =  [8]                                                  
                              [1]                                                  
                           >  [0]                                                  
                              [0]                                                  
                           =  [0()]                                                
                                                                                   
      [a__div(s(X), s(Y))] =  [1 1] X + [15]                                       
                              [0 0]     [1]                                        
                           >= [1 0] X + [15]                                       
                              [0 0]     [1]                                        
                           =  [a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())]
                                                                                   
       [a__if(X1, X2, X3)] =  [1 4] X1 + [3 2] X2 + [3 2] X3 + [0]                 
                              [0 0]      [0 1]      [0 1]      [0]                 
                           >= [1 4] X1 + [1 0] X2 + [1 0] X3 + [0]                 
                              [0 0]      [0 1]      [0 1]      [0]                 
                           =  [if(X1, X2, X3)]                                     
                                                                                   
     [a__if(true(), X, Y)] =  [3 2] Y + [3 2] X + [4]                              
                              [0 1]     [0 1]     [0]                              
                           >= [3 2] X + [4]                                        
                              [0 1]     [0]                                        
                           =  [mark(X)]                                            
                                                                                   
    [a__if(false(), X, Y)] =  [3 2] Y + [3 2] X + [4]                              
                              [0 1]     [0 1]     [0]                              
                           >= [3 2] Y + [4]                                        
                              [0 1]     [0]                                        
                           =  [mark(Y)]                                            
                                                                                   
               [mark(0())] =  [4]                                                  
                              [0]                                                  
                           >  [0]                                                  
                              [0]                                                  
                           =  [0()]                                                
                                                                                   
              [mark(s(X))] =  [3 3] X + [6]                                        
                              [0 0]     [1]                                        
                           >  [3 3] X + [4]                                        
                              [0 0]     [1]                                        
                           =  [s(mark(X))]                                         
                                                                                   
            [mark(true())] =  [6]                                                  
                              [1]                                                  
                           >  [0]                                                  
                              [1]                                                  
                           =  [true()]                                             
                                                                                   
           [mark(false())] =  [6]                                                  
                              [1]                                                  
                           >  [0]                                                  
                              [1]                                                  
                           =  [false()]                                            
                                                                                   
       [mark(div(X1, X2))] =  [3 9] X1 + [0 3] X2 + [9]                            
                              [0 0]      [0 0]      [1]                            
                           >= [3 9] X1 + [0 3] X2 + [9]                            
                              [0 0]      [0 0]      [1]                            
                           =  [a__div(mark(X1), X2)]                               
                                                                                   
     [mark(minus(X1, X2))] =  [4]                                                  
                              [0]                                                  
                           >  [0]                                                  
                              [0]                                                  
                           =  [a__minus(X1, X2)]                                   
                                                                                   
       [mark(geq(X1, X2))] =  [3 0] X1 + [6]                                       
                              [0 0]      [1]                                       
                           >  [1 0] X1 + [0]                                       
                              [0 0]      [1]                                       
                           =  [a__geq(X1, X2)]                                     
                                                                                   
    [mark(if(X1, X2, X3))] =  [3 12] X1 + [3 2] X2 + [3 2] X3 + [4]                
                              [0  0]      [0 1]      [0 1]      [0]                
                           >= [3 6] X1 + [3 2] X2 + [3 2] X3 + [4]                 
                              [0 0]      [0 1]      [0 1]      [0]                 
                           =  [a__if(mark(X1), X2, X3)]                            
                                                                                   

We return to the main proof.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { mark(div(X1, X2)) -> a__div(mark(X1), X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) }
Weak Trs:
  { a__minus(X1, X2) -> minus(X1, X2)
  , a__minus(0(), Y) -> 0()
  , a__minus(s(X), s(Y)) -> a__minus(X, Y)
  , a__geq(X1, X2) -> geq(X1, X2)
  , a__geq(X, 0()) -> true()
  , a__geq(0(), s(Y)) -> false()
  , a__geq(s(X), s(Y)) -> a__geq(X, Y)
  , a__div(X1, X2) -> div(X1, X2)
  , a__div(0(), s(Y)) -> 0()
  , a__div(s(X), s(Y)) ->
    a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(true(), X, Y) -> mark(X)
  , a__if(false(), X, Y) -> mark(Y)
  , mark(0()) -> 0()
  , mark(s(X)) -> s(mark(X))
  , mark(true()) -> true()
  , mark(false()) -> false()
  , mark(minus(X1, X2)) -> a__minus(X1, X2)
  , mark(geq(X1, X2)) -> a__geq(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 2' to
orient following rules strictly.

Trs:
  { mark(div(X1, X2)) -> a__div(mark(X1), X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) }

The induced complexity on above rules (modulo remaining rules) is
YES(?,O(n^1)) . These rules are moved into the corresponding weak
component(s).

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(s) = {1}, Uargs(a__div) = {1}, Uargs(a__if) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA) and not(IDA(1)).
  
     [a__minus](x1, x2) = [0]                                 
                          [0]                                 
                                                              
                    [0] = [0]                                 
                          [0]                                 
                                                              
                [s](x1) = [1 0] x1 + [0]                      
                          [0 0]      [7]                      
                                                              
       [a__geq](x1, x2) = [0 0] x2 + [4]                      
                          [1 0]      [4]                      
                                                              
                 [true] = [4]                                 
                          [4]                                 
                                                              
                [false] = [2]                                 
                          [0]                                 
                                                              
       [a__div](x1, x2) = [1 1] x1 + [0 0] x2 + [7]           
                          [0 0]      [0 1]      [1]           
                                                              
    [a__if](x1, x2, x3) = [1 0] x1 + [3 0] x2 + [3 0] x3 + [1]
                          [0 0]      [0 1]      [0 1]      [0]
                                                              
          [div](x1, x2) = [1 1] x1 + [0 0] x2 + [3]           
                          [0 0]      [0 1]      [1]           
                                                              
        [minus](x1, x2) = [0]                                 
                          [0]                                 
                                                              
             [mark](x1) = [3 0] x1 + [3]                      
                          [0 1]      [0]                      
                                                              
          [geq](x1, x2) = [0 0] x2 + [2]                      
                          [1 0]      [4]                      
                                                              
       [if](x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1]
                          [0 0]      [0 1]      [0 1]      [0]
  
  The order satisfies the following ordering constraints:
  
        [a__minus(X1, X2)] =  [0]                                                  
                              [0]                                                  
                           >= [0]                                                  
                              [0]                                                  
                           =  [minus(X1, X2)]                                      
                                                                                   
        [a__minus(0(), Y)] =  [0]                                                  
                              [0]                                                  
                           >= [0]                                                  
                              [0]                                                  
                           =  [0()]                                                
                                                                                   
    [a__minus(s(X), s(Y))] =  [0]                                                  
                              [0]                                                  
                           >= [0]                                                  
                              [0]                                                  
                           =  [a__minus(X, Y)]                                     
                                                                                   
          [a__geq(X1, X2)] =  [0 0] X2 + [4]                                       
                              [1 0]      [4]                                       
                           >  [0 0] X2 + [2]                                       
                              [1 0]      [4]                                       
                           =  [geq(X1, X2)]                                        
                                                                                   
          [a__geq(X, 0())] =  [4]                                                  
                              [4]                                                  
                           >= [4]                                                  
                              [4]                                                  
                           =  [true()]                                             
                                                                                   
       [a__geq(0(), s(Y))] =  [0 0] Y + [4]                                        
                              [1 0]     [4]                                        
                           >  [2]                                                  
                              [0]                                                  
                           =  [false()]                                            
                                                                                   
      [a__geq(s(X), s(Y))] =  [0 0] Y + [4]                                        
                              [1 0]     [4]                                        
                           >= [0 0] Y + [4]                                        
                              [1 0]     [4]                                        
                           =  [a__geq(X, Y)]                                       
                                                                                   
          [a__div(X1, X2)] =  [1 1] X1 + [0 0] X2 + [7]                            
                              [0 0]      [0 1]      [1]                            
                           >  [1 1] X1 + [0 0] X2 + [3]                            
                              [0 0]      [0 1]      [1]                            
                           =  [div(X1, X2)]                                        
                                                                                   
       [a__div(0(), s(Y))] =  [7]                                                  
                              [8]                                                  
                           >  [0]                                                  
                              [0]                                                  
                           =  [0()]                                                
                                                                                   
      [a__div(s(X), s(Y))] =  [1 0] X + [14]                                       
                              [0 0]     [8]                                        
                           >= [14]                                                 
                              [7]                                                  
                           =  [a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())]
                                                                                   
       [a__if(X1, X2, X3)] =  [1 0] X1 + [3 0] X2 + [3 0] X3 + [1]                 
                              [0 0]      [0 1]      [0 1]      [0]                 
                           >= [1 0] X1 + [1 0] X2 + [1 0] X3 + [1]                 
                              [0 0]      [0 1]      [0 1]      [0]                 
                           =  [if(X1, X2, X3)]                                     
                                                                                   
     [a__if(true(), X, Y)] =  [3 0] Y + [3 0] X + [5]                              
                              [0 1]     [0 1]     [0]                              
                           >  [3 0] X + [3]                                        
                              [0 1]     [0]                                        
                           =  [mark(X)]                                            
                                                                                   
    [a__if(false(), X, Y)] =  [3 0] Y + [3 0] X + [3]                              
                              [0 1]     [0 1]     [0]                              
                           >= [3 0] Y + [3]                                        
                              [0 1]     [0]                                        
                           =  [mark(Y)]                                            
                                                                                   
               [mark(0())] =  [3]                                                  
                              [0]                                                  
                           >  [0]                                                  
                              [0]                                                  
                           =  [0()]                                                
                                                                                   
              [mark(s(X))] =  [3 0] X + [3]                                        
                              [0 0]     [7]                                        
                           >= [3 0] X + [3]                                        
                              [0 0]     [7]                                        
                           =  [s(mark(X))]                                         
                                                                                   
            [mark(true())] =  [15]                                                 
                              [4]                                                  
                           >  [4]                                                  
                              [4]                                                  
                           =  [true()]                                             
                                                                                   
           [mark(false())] =  [9]                                                  
                              [0]                                                  
                           >  [2]                                                  
                              [0]                                                  
                           =  [false()]                                            
                                                                                   
       [mark(div(X1, X2))] =  [3 3] X1 + [0 0] X2 + [12]                           
                              [0 0]      [0 1]      [1]                            
                           >  [3 1] X1 + [0 0] X2 + [10]                           
                              [0 0]      [0 1]      [1]                            
                           =  [a__div(mark(X1), X2)]                               
                                                                                   
     [mark(minus(X1, X2))] =  [3]                                                  
                              [0]                                                  
                           >  [0]                                                  
                              [0]                                                  
                           =  [a__minus(X1, X2)]                                   
                                                                                   
       [mark(geq(X1, X2))] =  [0 0] X2 + [9]                                       
                              [1 0]      [4]                                       
                           >  [0 0] X2 + [4]                                       
                              [1 0]      [4]                                       
                           =  [a__geq(X1, X2)]                                     
                                                                                   
    [mark(if(X1, X2, X3))] =  [3 0] X1 + [3 0] X2 + [3 0] X3 + [6]                 
                              [0 0]      [0 1]      [0 1]      [0]                 
                           >  [3 0] X1 + [3 0] X2 + [3 0] X3 + [4]                 
                              [0 0]      [0 1]      [0 1]      [0]                 
                           =  [a__if(mark(X1), X2, X3)]                            
                                                                                   

We return to the main proof.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak Trs:
  { a__minus(X1, X2) -> minus(X1, X2)
  , a__minus(0(), Y) -> 0()
  , a__minus(s(X), s(Y)) -> a__minus(X, Y)
  , a__geq(X1, X2) -> geq(X1, X2)
  , a__geq(X, 0()) -> true()
  , a__geq(0(), s(Y)) -> false()
  , a__geq(s(X), s(Y)) -> a__geq(X, Y)
  , a__div(X1, X2) -> div(X1, X2)
  , a__div(0(), s(Y)) -> 0()
  , a__div(s(X), s(Y)) ->
    a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(true(), X, Y) -> mark(X)
  , a__if(false(), X, Y) -> mark(Y)
  , mark(0()) -> 0()
  , mark(s(X)) -> s(mark(X))
  , mark(true()) -> true()
  , mark(false()) -> false()
  , mark(div(X1, X2)) -> a__div(mark(X1), X2)
  , mark(minus(X1, X2)) -> a__minus(X1, X2)
  , mark(geq(X1, X2)) -> a__geq(X1, X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(n^1))