We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { a__app(X1, X2) -> app(X1, X2)
  , a__app(nil(), YS) -> mark(YS)
  , a__app(cons(X, XS), YS) -> cons(mark(X), app(XS, YS))
  , mark(nil()) -> nil()
  , mark(cons(X1, X2)) -> cons(mark(X1), X2)
  , mark(app(X1, X2)) -> a__app(mark(X1), mark(X2))
  , mark(from(X)) -> a__from(mark(X))
  , mark(s(X)) -> s(mark(X))
  , mark(zWadr(X1, X2)) -> a__zWadr(mark(X1), mark(X2))
  , mark(prefix(X)) -> a__prefix(mark(X))
  , a__from(X) -> cons(mark(X), from(s(X)))
  , a__from(X) -> from(X)
  , a__zWadr(X1, X2) -> zWadr(X1, X2)
  , a__zWadr(XS, nil()) -> nil()
  , a__zWadr(nil(), YS) -> nil()
  , a__zWadr(cons(X, XS), cons(Y, YS)) ->
    cons(a__app(mark(Y), cons(mark(X), nil())), zWadr(XS, YS))
  , a__prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
  , a__prefix(X) -> prefix(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(a__app) = {1, 2}, Uargs(cons) = {1}, Uargs(a__from) = {1},
  Uargs(s) = {1}, Uargs(a__zWadr) = {1, 2}, Uargs(a__prefix) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

    [a__app](x1, x2) = [1] x1 + [1] x2 + [1]
                                            
               [nil] = [0]                  
                                            
          [mark](x1) = [0]                  
                                            
      [cons](x1, x2) = [1] x1 + [0]         
                                            
       [app](x1, x2) = [1] x2 + [0]         
                                            
       [a__from](x1) = [1] x1 + [0]         
                                            
          [from](x1) = [1] x1 + [0]         
                                            
             [s](x1) = [1] x1 + [0]         
                                            
  [a__zWadr](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
     [zWadr](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
     [a__prefix](x1) = [1] x1 + [0]         
                                            
        [prefix](x1) = [1] x1 + [0]         

The order satisfies the following ordering constraints:

                      [a__app(X1, X2)] =  [1] X1 + [1] X2 + [1]                                       
                                       >  [1] X2 + [0]                                                
                                       =  [app(X1, X2)]                                               
                                                                                                      
                   [a__app(nil(), YS)] =  [1] YS + [1]                                                
                                       >  [0]                                                         
                                       =  [mark(YS)]                                                  
                                                                                                      
             [a__app(cons(X, XS), YS)] =  [1] YS + [1] X + [1]                                        
                                       >  [0]                                                         
                                       =  [cons(mark(X), app(XS, YS))]                                
                                                                                                      
                         [mark(nil())] =  [0]                                                         
                                       >= [0]                                                         
                                       =  [nil()]                                                     
                                                                                                      
                  [mark(cons(X1, X2))] =  [0]                                                         
                                       >= [0]                                                         
                                       =  [cons(mark(X1), X2)]                                        
                                                                                                      
                   [mark(app(X1, X2))] =  [0]                                                         
                                       ?  [1]                                                         
                                       =  [a__app(mark(X1), mark(X2))]                                
                                                                                                      
                       [mark(from(X))] =  [0]                                                         
                                       >= [0]                                                         
                                       =  [a__from(mark(X))]                                          
                                                                                                      
                          [mark(s(X))] =  [0]                                                         
                                       >= [0]                                                         
                                       =  [s(mark(X))]                                                
                                                                                                      
                 [mark(zWadr(X1, X2))] =  [0]                                                         
                                       >= [0]                                                         
                                       =  [a__zWadr(mark(X1), mark(X2))]                              
                                                                                                      
                     [mark(prefix(X))] =  [0]                                                         
                                       >= [0]                                                         
                                       =  [a__prefix(mark(X))]                                        
                                                                                                      
                          [a__from(X)] =  [1] X + [0]                                                 
                                       >= [0]                                                         
                                       =  [cons(mark(X), from(s(X)))]                                 
                                                                                                      
                          [a__from(X)] =  [1] X + [0]                                                 
                                       >= [1] X + [0]                                                 
                                       =  [from(X)]                                                   
                                                                                                      
                    [a__zWadr(X1, X2)] =  [1] X1 + [1] X2 + [0]                                       
                                       >= [1] X1 + [1] X2 + [0]                                       
                                       =  [zWadr(X1, X2)]                                             
                                                                                                      
                 [a__zWadr(XS, nil())] =  [1] XS + [0]                                                
                                       >= [0]                                                         
                                       =  [nil()]                                                     
                                                                                                      
                 [a__zWadr(nil(), YS)] =  [1] YS + [0]                                                
                                       >= [0]                                                         
                                       =  [nil()]                                                     
                                                                                                      
  [a__zWadr(cons(X, XS), cons(Y, YS))] =  [1] X + [1] Y + [0]                                         
                                       ?  [1]                                                         
                                       =  [cons(a__app(mark(Y), cons(mark(X), nil())), zWadr(XS, YS))]
                                                                                                      
                        [a__prefix(L)] =  [1] L + [0]                                                 
                                       >= [0]                                                         
                                       =  [cons(nil(), zWadr(L, prefix(L)))]                          
                                                                                                      
                        [a__prefix(X)] =  [1] X + [0]                                                 
                                       >= [1] X + [0]                                                 
                                       =  [prefix(X)]                                                 
                                                                                                      

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { mark(nil()) -> nil()
  , mark(cons(X1, X2)) -> cons(mark(X1), X2)
  , mark(app(X1, X2)) -> a__app(mark(X1), mark(X2))
  , mark(from(X)) -> a__from(mark(X))
  , mark(s(X)) -> s(mark(X))
  , mark(zWadr(X1, X2)) -> a__zWadr(mark(X1), mark(X2))
  , mark(prefix(X)) -> a__prefix(mark(X))
  , a__from(X) -> cons(mark(X), from(s(X)))
  , a__from(X) -> from(X)
  , a__zWadr(X1, X2) -> zWadr(X1, X2)
  , a__zWadr(XS, nil()) -> nil()
  , a__zWadr(nil(), YS) -> nil()
  , a__zWadr(cons(X, XS), cons(Y, YS)) ->
    cons(a__app(mark(Y), cons(mark(X), nil())), zWadr(XS, YS))
  , a__prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
  , a__prefix(X) -> prefix(X) }
Weak Trs:
  { a__app(X1, X2) -> app(X1, X2)
  , a__app(nil(), YS) -> mark(YS)
  , a__app(cons(X, XS), YS) -> cons(mark(X), app(XS, YS)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(a__app) = {1, 2}, Uargs(cons) = {1}, Uargs(a__from) = {1},
  Uargs(s) = {1}, Uargs(a__zWadr) = {1, 2}, Uargs(a__prefix) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

    [a__app](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
               [nil] = [4]                  
                                            
          [mark](x1) = [1] x1 + [0]         
                                            
      [cons](x1, x2) = [1] x1 + [0]         
                                            
       [app](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
       [a__from](x1) = [1] x1 + [0]         
                                            
          [from](x1) = [1] x1 + [0]         
                                            
             [s](x1) = [1] x1 + [0]         
                                            
  [a__zWadr](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
     [zWadr](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
     [a__prefix](x1) = [1] x1 + [1]         
                                            
        [prefix](x1) = [1] x1 + [0]         

The order satisfies the following ordering constraints:

                      [a__app(X1, X2)] =  [1] X1 + [1] X2 + [0]                                       
                                       >= [1] X1 + [1] X2 + [0]                                       
                                       =  [app(X1, X2)]                                               
                                                                                                      
                   [a__app(nil(), YS)] =  [1] YS + [4]                                                
                                       >  [1] YS + [0]                                                
                                       =  [mark(YS)]                                                  
                                                                                                      
             [a__app(cons(X, XS), YS)] =  [1] YS + [1] X + [0]                                        
                                       >= [1] X + [0]                                                 
                                       =  [cons(mark(X), app(XS, YS))]                                
                                                                                                      
                         [mark(nil())] =  [4]                                                         
                                       >= [4]                                                         
                                       =  [nil()]                                                     
                                                                                                      
                  [mark(cons(X1, X2))] =  [1] X1 + [0]                                                
                                       >= [1] X1 + [0]                                                
                                       =  [cons(mark(X1), X2)]                                        
                                                                                                      
                   [mark(app(X1, X2))] =  [1] X1 + [1] X2 + [0]                                       
                                       >= [1] X1 + [1] X2 + [0]                                       
                                       =  [a__app(mark(X1), mark(X2))]                                
                                                                                                      
                       [mark(from(X))] =  [1] X + [0]                                                 
                                       >= [1] X + [0]                                                 
                                       =  [a__from(mark(X))]                                          
                                                                                                      
                          [mark(s(X))] =  [1] X + [0]                                                 
                                       >= [1] X + [0]                                                 
                                       =  [s(mark(X))]                                                
                                                                                                      
                 [mark(zWadr(X1, X2))] =  [1] X1 + [1] X2 + [0]                                       
                                       >= [1] X1 + [1] X2 + [0]                                       
                                       =  [a__zWadr(mark(X1), mark(X2))]                              
                                                                                                      
                     [mark(prefix(X))] =  [1] X + [0]                                                 
                                       ?  [1] X + [1]                                                 
                                       =  [a__prefix(mark(X))]                                        
                                                                                                      
                          [a__from(X)] =  [1] X + [0]                                                 
                                       >= [1] X + [0]                                                 
                                       =  [cons(mark(X), from(s(X)))]                                 
                                                                                                      
                          [a__from(X)] =  [1] X + [0]                                                 
                                       >= [1] X + [0]                                                 
                                       =  [from(X)]                                                   
                                                                                                      
                    [a__zWadr(X1, X2)] =  [1] X1 + [1] X2 + [0]                                       
                                       >= [1] X1 + [1] X2 + [0]                                       
                                       =  [zWadr(X1, X2)]                                             
                                                                                                      
                 [a__zWadr(XS, nil())] =  [1] XS + [4]                                                
                                       >= [4]                                                         
                                       =  [nil()]                                                     
                                                                                                      
                 [a__zWadr(nil(), YS)] =  [1] YS + [4]                                                
                                       >= [4]                                                         
                                       =  [nil()]                                                     
                                                                                                      
  [a__zWadr(cons(X, XS), cons(Y, YS))] =  [1] X + [1] Y + [0]                                         
                                       >= [1] X + [1] Y + [0]                                         
                                       =  [cons(a__app(mark(Y), cons(mark(X), nil())), zWadr(XS, YS))]
                                                                                                      
                        [a__prefix(L)] =  [1] L + [1]                                                 
                                       ?  [4]                                                         
                                       =  [cons(nil(), zWadr(L, prefix(L)))]                          
                                                                                                      
                        [a__prefix(X)] =  [1] X + [1]                                                 
                                       >  [1] X + [0]                                                 
                                       =  [prefix(X)]                                                 
                                                                                                      

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { mark(nil()) -> nil()
  , mark(cons(X1, X2)) -> cons(mark(X1), X2)
  , mark(app(X1, X2)) -> a__app(mark(X1), mark(X2))
  , mark(from(X)) -> a__from(mark(X))
  , mark(s(X)) -> s(mark(X))
  , mark(zWadr(X1, X2)) -> a__zWadr(mark(X1), mark(X2))
  , mark(prefix(X)) -> a__prefix(mark(X))
  , a__from(X) -> cons(mark(X), from(s(X)))
  , a__from(X) -> from(X)
  , a__zWadr(X1, X2) -> zWadr(X1, X2)
  , a__zWadr(XS, nil()) -> nil()
  , a__zWadr(nil(), YS) -> nil()
  , a__zWadr(cons(X, XS), cons(Y, YS)) ->
    cons(a__app(mark(Y), cons(mark(X), nil())), zWadr(XS, YS))
  , a__prefix(L) -> cons(nil(), zWadr(L, prefix(L))) }
Weak Trs:
  { a__app(X1, X2) -> app(X1, X2)
  , a__app(nil(), YS) -> mark(YS)
  , a__app(cons(X, XS), YS) -> cons(mark(X), app(XS, YS))
  , a__prefix(X) -> prefix(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(a__app) = {1, 2}, Uargs(cons) = {1}, Uargs(a__from) = {1},
  Uargs(s) = {1}, Uargs(a__zWadr) = {1, 2}, Uargs(a__prefix) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

    [a__app](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
               [nil] = [4]                  
                                            
          [mark](x1) = [1] x1 + [0]         
                                            
      [cons](x1, x2) = [1] x1 + [0]         
                                            
       [app](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
       [a__from](x1) = [1] x1 + [0]         
                                            
          [from](x1) = [1] x1 + [4]         
                                            
             [s](x1) = [1] x1 + [0]         
                                            
  [a__zWadr](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
     [zWadr](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
     [a__prefix](x1) = [1] x1 + [4]         
                                            
        [prefix](x1) = [1] x1 + [0]         

The order satisfies the following ordering constraints:

                      [a__app(X1, X2)] =  [1] X1 + [1] X2 + [0]                                       
                                       >= [1] X1 + [1] X2 + [0]                                       
                                       =  [app(X1, X2)]                                               
                                                                                                      
                   [a__app(nil(), YS)] =  [1] YS + [4]                                                
                                       >  [1] YS + [0]                                                
                                       =  [mark(YS)]                                                  
                                                                                                      
             [a__app(cons(X, XS), YS)] =  [1] YS + [1] X + [0]                                        
                                       >= [1] X + [0]                                                 
                                       =  [cons(mark(X), app(XS, YS))]                                
                                                                                                      
                         [mark(nil())] =  [4]                                                         
                                       >= [4]                                                         
                                       =  [nil()]                                                     
                                                                                                      
                  [mark(cons(X1, X2))] =  [1] X1 + [0]                                                
                                       >= [1] X1 + [0]                                                
                                       =  [cons(mark(X1), X2)]                                        
                                                                                                      
                   [mark(app(X1, X2))] =  [1] X1 + [1] X2 + [0]                                       
                                       >= [1] X1 + [1] X2 + [0]                                       
                                       =  [a__app(mark(X1), mark(X2))]                                
                                                                                                      
                       [mark(from(X))] =  [1] X + [4]                                                 
                                       >  [1] X + [0]                                                 
                                       =  [a__from(mark(X))]                                          
                                                                                                      
                          [mark(s(X))] =  [1] X + [0]                                                 
                                       >= [1] X + [0]                                                 
                                       =  [s(mark(X))]                                                
                                                                                                      
                 [mark(zWadr(X1, X2))] =  [1] X1 + [1] X2 + [0]                                       
                                       >= [1] X1 + [1] X2 + [0]                                       
                                       =  [a__zWadr(mark(X1), mark(X2))]                              
                                                                                                      
                     [mark(prefix(X))] =  [1] X + [0]                                                 
                                       ?  [1] X + [4]                                                 
                                       =  [a__prefix(mark(X))]                                        
                                                                                                      
                          [a__from(X)] =  [1] X + [0]                                                 
                                       >= [1] X + [0]                                                 
                                       =  [cons(mark(X), from(s(X)))]                                 
                                                                                                      
                          [a__from(X)] =  [1] X + [0]                                                 
                                       ?  [1] X + [4]                                                 
                                       =  [from(X)]                                                   
                                                                                                      
                    [a__zWadr(X1, X2)] =  [1] X1 + [1] X2 + [0]                                       
                                       >= [1] X1 + [1] X2 + [0]                                       
                                       =  [zWadr(X1, X2)]                                             
                                                                                                      
                 [a__zWadr(XS, nil())] =  [1] XS + [4]                                                
                                       >= [4]                                                         
                                       =  [nil()]                                                     
                                                                                                      
                 [a__zWadr(nil(), YS)] =  [1] YS + [4]                                                
                                       >= [4]                                                         
                                       =  [nil()]                                                     
                                                                                                      
  [a__zWadr(cons(X, XS), cons(Y, YS))] =  [1] X + [1] Y + [0]                                         
                                       >= [1] X + [1] Y + [0]                                         
                                       =  [cons(a__app(mark(Y), cons(mark(X), nil())), zWadr(XS, YS))]
                                                                                                      
                        [a__prefix(L)] =  [1] L + [4]                                                 
                                       >= [4]                                                         
                                       =  [cons(nil(), zWadr(L, prefix(L)))]                          
                                                                                                      
                        [a__prefix(X)] =  [1] X + [4]                                                 
                                       >  [1] X + [0]                                                 
                                       =  [prefix(X)]                                                 
                                                                                                      

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { mark(nil()) -> nil()
  , mark(cons(X1, X2)) -> cons(mark(X1), X2)
  , mark(app(X1, X2)) -> a__app(mark(X1), mark(X2))
  , mark(s(X)) -> s(mark(X))
  , mark(zWadr(X1, X2)) -> a__zWadr(mark(X1), mark(X2))
  , mark(prefix(X)) -> a__prefix(mark(X))
  , a__from(X) -> cons(mark(X), from(s(X)))
  , a__from(X) -> from(X)
  , a__zWadr(X1, X2) -> zWadr(X1, X2)
  , a__zWadr(XS, nil()) -> nil()
  , a__zWadr(nil(), YS) -> nil()
  , a__zWadr(cons(X, XS), cons(Y, YS)) ->
    cons(a__app(mark(Y), cons(mark(X), nil())), zWadr(XS, YS))
  , a__prefix(L) -> cons(nil(), zWadr(L, prefix(L))) }
Weak Trs:
  { a__app(X1, X2) -> app(X1, X2)
  , a__app(nil(), YS) -> mark(YS)
  , a__app(cons(X, XS), YS) -> cons(mark(X), app(XS, YS))
  , mark(from(X)) -> a__from(mark(X))
  , a__prefix(X) -> prefix(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(a__app) = {1, 2}, Uargs(cons) = {1}, Uargs(a__from) = {1},
  Uargs(s) = {1}, Uargs(a__zWadr) = {1, 2}, Uargs(a__prefix) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

    [a__app](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
               [nil] = [4]                  
                                            
          [mark](x1) = [1] x1 + [0]         
                                            
      [cons](x1, x2) = [1] x1 + [0]         
                                            
       [app](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
       [a__from](x1) = [1] x1 + [0]         
                                            
          [from](x1) = [1] x1 + [0]         
                                            
             [s](x1) = [1] x1 + [0]         
                                            
  [a__zWadr](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
     [zWadr](x1, x2) = [1] x1 + [1] x2 + [4]
                                            
     [a__prefix](x1) = [1] x1 + [1]         
                                            
        [prefix](x1) = [1] x1 + [0]         

The order satisfies the following ordering constraints:

                      [a__app(X1, X2)] =  [1] X1 + [1] X2 + [0]                                       
                                       >= [1] X1 + [1] X2 + [0]                                       
                                       =  [app(X1, X2)]                                               
                                                                                                      
                   [a__app(nil(), YS)] =  [1] YS + [4]                                                
                                       >  [1] YS + [0]                                                
                                       =  [mark(YS)]                                                  
                                                                                                      
             [a__app(cons(X, XS), YS)] =  [1] YS + [1] X + [0]                                        
                                       >= [1] X + [0]                                                 
                                       =  [cons(mark(X), app(XS, YS))]                                
                                                                                                      
                         [mark(nil())] =  [4]                                                         
                                       >= [4]                                                         
                                       =  [nil()]                                                     
                                                                                                      
                  [mark(cons(X1, X2))] =  [1] X1 + [0]                                                
                                       >= [1] X1 + [0]                                                
                                       =  [cons(mark(X1), X2)]                                        
                                                                                                      
                   [mark(app(X1, X2))] =  [1] X1 + [1] X2 + [0]                                       
                                       >= [1] X1 + [1] X2 + [0]                                       
                                       =  [a__app(mark(X1), mark(X2))]                                
                                                                                                      
                       [mark(from(X))] =  [1] X + [0]                                                 
                                       >= [1] X + [0]                                                 
                                       =  [a__from(mark(X))]                                          
                                                                                                      
                          [mark(s(X))] =  [1] X + [0]                                                 
                                       >= [1] X + [0]                                                 
                                       =  [s(mark(X))]                                                
                                                                                                      
                 [mark(zWadr(X1, X2))] =  [1] X1 + [1] X2 + [4]                                       
                                       >  [1] X1 + [1] X2 + [0]                                       
                                       =  [a__zWadr(mark(X1), mark(X2))]                              
                                                                                                      
                     [mark(prefix(X))] =  [1] X + [0]                                                 
                                       ?  [1] X + [1]                                                 
                                       =  [a__prefix(mark(X))]                                        
                                                                                                      
                          [a__from(X)] =  [1] X + [0]                                                 
                                       >= [1] X + [0]                                                 
                                       =  [cons(mark(X), from(s(X)))]                                 
                                                                                                      
                          [a__from(X)] =  [1] X + [0]                                                 
                                       >= [1] X + [0]                                                 
                                       =  [from(X)]                                                   
                                                                                                      
                    [a__zWadr(X1, X2)] =  [1] X1 + [1] X2 + [0]                                       
                                       ?  [1] X1 + [1] X2 + [4]                                       
                                       =  [zWadr(X1, X2)]                                             
                                                                                                      
                 [a__zWadr(XS, nil())] =  [1] XS + [4]                                                
                                       >= [4]                                                         
                                       =  [nil()]                                                     
                                                                                                      
                 [a__zWadr(nil(), YS)] =  [1] YS + [4]                                                
                                       >= [4]                                                         
                                       =  [nil()]                                                     
                                                                                                      
  [a__zWadr(cons(X, XS), cons(Y, YS))] =  [1] X + [1] Y + [0]                                         
                                       >= [1] X + [1] Y + [0]                                         
                                       =  [cons(a__app(mark(Y), cons(mark(X), nil())), zWadr(XS, YS))]
                                                                                                      
                        [a__prefix(L)] =  [1] L + [1]                                                 
                                       ?  [4]                                                         
                                       =  [cons(nil(), zWadr(L, prefix(L)))]                          
                                                                                                      
                        [a__prefix(X)] =  [1] X + [1]                                                 
                                       >  [1] X + [0]                                                 
                                       =  [prefix(X)]                                                 
                                                                                                      

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { mark(nil()) -> nil()
  , mark(cons(X1, X2)) -> cons(mark(X1), X2)
  , mark(app(X1, X2)) -> a__app(mark(X1), mark(X2))
  , mark(s(X)) -> s(mark(X))
  , mark(prefix(X)) -> a__prefix(mark(X))
  , a__from(X) -> cons(mark(X), from(s(X)))
  , a__from(X) -> from(X)
  , a__zWadr(X1, X2) -> zWadr(X1, X2)
  , a__zWadr(XS, nil()) -> nil()
  , a__zWadr(nil(), YS) -> nil()
  , a__zWadr(cons(X, XS), cons(Y, YS)) ->
    cons(a__app(mark(Y), cons(mark(X), nil())), zWadr(XS, YS))
  , a__prefix(L) -> cons(nil(), zWadr(L, prefix(L))) }
Weak Trs:
  { a__app(X1, X2) -> app(X1, X2)
  , a__app(nil(), YS) -> mark(YS)
  , a__app(cons(X, XS), YS) -> cons(mark(X), app(XS, YS))
  , mark(from(X)) -> a__from(mark(X))
  , mark(zWadr(X1, X2)) -> a__zWadr(mark(X1), mark(X2))
  , a__prefix(X) -> prefix(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(a__app) = {1, 2}, Uargs(cons) = {1}, Uargs(a__from) = {1},
  Uargs(s) = {1}, Uargs(a__zWadr) = {1, 2}, Uargs(a__prefix) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

    [a__app](x1, x2) = [1] x1 + [1] x2 + [1]
                                            
               [nil] = [4]                  
                                            
          [mark](x1) = [1] x1 + [0]         
                                            
      [cons](x1, x2) = [1] x1 + [0]         
                                            
       [app](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
       [a__from](x1) = [1] x1 + [1]         
                                            
          [from](x1) = [1] x1 + [1]         
                                            
             [s](x1) = [1] x1 + [0]         
                                            
  [a__zWadr](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
     [zWadr](x1, x2) = [1] x1 + [1] x2 + [5]
                                            
     [a__prefix](x1) = [1] x1 + [4]         
                                            
        [prefix](x1) = [1] x1 + [0]         

The order satisfies the following ordering constraints:

                      [a__app(X1, X2)] =  [1] X1 + [1] X2 + [1]                                       
                                       >  [1] X1 + [1] X2 + [0]                                       
                                       =  [app(X1, X2)]                                               
                                                                                                      
                   [a__app(nil(), YS)] =  [1] YS + [5]                                                
                                       >  [1] YS + [0]                                                
                                       =  [mark(YS)]                                                  
                                                                                                      
             [a__app(cons(X, XS), YS)] =  [1] YS + [1] X + [1]                                        
                                       >  [1] X + [0]                                                 
                                       =  [cons(mark(X), app(XS, YS))]                                
                                                                                                      
                         [mark(nil())] =  [4]                                                         
                                       >= [4]                                                         
                                       =  [nil()]                                                     
                                                                                                      
                  [mark(cons(X1, X2))] =  [1] X1 + [0]                                                
                                       >= [1] X1 + [0]                                                
                                       =  [cons(mark(X1), X2)]                                        
                                                                                                      
                   [mark(app(X1, X2))] =  [1] X1 + [1] X2 + [0]                                       
                                       ?  [1] X1 + [1] X2 + [1]                                       
                                       =  [a__app(mark(X1), mark(X2))]                                
                                                                                                      
                       [mark(from(X))] =  [1] X + [1]                                                 
                                       >= [1] X + [1]                                                 
                                       =  [a__from(mark(X))]                                          
                                                                                                      
                          [mark(s(X))] =  [1] X + [0]                                                 
                                       >= [1] X + [0]                                                 
                                       =  [s(mark(X))]                                                
                                                                                                      
                 [mark(zWadr(X1, X2))] =  [1] X1 + [1] X2 + [5]                                       
                                       >  [1] X1 + [1] X2 + [0]                                       
                                       =  [a__zWadr(mark(X1), mark(X2))]                              
                                                                                                      
                     [mark(prefix(X))] =  [1] X + [0]                                                 
                                       ?  [1] X + [4]                                                 
                                       =  [a__prefix(mark(X))]                                        
                                                                                                      
                          [a__from(X)] =  [1] X + [1]                                                 
                                       >  [1] X + [0]                                                 
                                       =  [cons(mark(X), from(s(X)))]                                 
                                                                                                      
                          [a__from(X)] =  [1] X + [1]                                                 
                                       >= [1] X + [1]                                                 
                                       =  [from(X)]                                                   
                                                                                                      
                    [a__zWadr(X1, X2)] =  [1] X1 + [1] X2 + [0]                                       
                                       ?  [1] X1 + [1] X2 + [5]                                       
                                       =  [zWadr(X1, X2)]                                             
                                                                                                      
                 [a__zWadr(XS, nil())] =  [1] XS + [4]                                                
                                       >= [4]                                                         
                                       =  [nil()]                                                     
                                                                                                      
                 [a__zWadr(nil(), YS)] =  [1] YS + [4]                                                
                                       >= [4]                                                         
                                       =  [nil()]                                                     
                                                                                                      
  [a__zWadr(cons(X, XS), cons(Y, YS))] =  [1] X + [1] Y + [0]                                         
                                       ?  [1] X + [1] Y + [1]                                         
                                       =  [cons(a__app(mark(Y), cons(mark(X), nil())), zWadr(XS, YS))]
                                                                                                      
                        [a__prefix(L)] =  [1] L + [4]                                                 
                                       >= [4]                                                         
                                       =  [cons(nil(), zWadr(L, prefix(L)))]                          
                                                                                                      
                        [a__prefix(X)] =  [1] X + [4]                                                 
                                       >  [1] X + [0]                                                 
                                       =  [prefix(X)]                                                 
                                                                                                      

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { mark(nil()) -> nil()
  , mark(cons(X1, X2)) -> cons(mark(X1), X2)
  , mark(app(X1, X2)) -> a__app(mark(X1), mark(X2))
  , mark(s(X)) -> s(mark(X))
  , mark(prefix(X)) -> a__prefix(mark(X))
  , a__from(X) -> from(X)
  , a__zWadr(X1, X2) -> zWadr(X1, X2)
  , a__zWadr(XS, nil()) -> nil()
  , a__zWadr(nil(), YS) -> nil()
  , a__zWadr(cons(X, XS), cons(Y, YS)) ->
    cons(a__app(mark(Y), cons(mark(X), nil())), zWadr(XS, YS))
  , a__prefix(L) -> cons(nil(), zWadr(L, prefix(L))) }
Weak Trs:
  { a__app(X1, X2) -> app(X1, X2)
  , a__app(nil(), YS) -> mark(YS)
  , a__app(cons(X, XS), YS) -> cons(mark(X), app(XS, YS))
  , mark(from(X)) -> a__from(mark(X))
  , mark(zWadr(X1, X2)) -> a__zWadr(mark(X1), mark(X2))
  , a__from(X) -> cons(mark(X), from(s(X)))
  , a__prefix(X) -> prefix(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(a__app) = {1, 2}, Uargs(cons) = {1}, Uargs(a__from) = {1},
  Uargs(s) = {1}, Uargs(a__zWadr) = {1, 2}, Uargs(a__prefix) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

    [a__app](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
               [nil] = [4]                  
                                            
          [mark](x1) = [1] x1 + [0]         
                                            
      [cons](x1, x2) = [1] x1 + [0]         
                                            
       [app](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
       [a__from](x1) = [1] x1 + [1]         
                                            
          [from](x1) = [1] x1 + [4]         
                                            
             [s](x1) = [1] x1 + [0]         
                                            
  [a__zWadr](x1, x2) = [1] x1 + [1] x2 + [1]
                                            
     [zWadr](x1, x2) = [1] x1 + [1] x2 + [1]
                                            
     [a__prefix](x1) = [1] x1 + [1]         
                                            
        [prefix](x1) = [1] x1 + [1]         

The order satisfies the following ordering constraints:

                      [a__app(X1, X2)] =  [1] X1 + [1] X2 + [0]                                       
                                       >= [1] X1 + [1] X2 + [0]                                       
                                       =  [app(X1, X2)]                                               
                                                                                                      
                   [a__app(nil(), YS)] =  [1] YS + [4]                                                
                                       >  [1] YS + [0]                                                
                                       =  [mark(YS)]                                                  
                                                                                                      
             [a__app(cons(X, XS), YS)] =  [1] YS + [1] X + [0]                                        
                                       >= [1] X + [0]                                                 
                                       =  [cons(mark(X), app(XS, YS))]                                
                                                                                                      
                         [mark(nil())] =  [4]                                                         
                                       >= [4]                                                         
                                       =  [nil()]                                                     
                                                                                                      
                  [mark(cons(X1, X2))] =  [1] X1 + [0]                                                
                                       >= [1] X1 + [0]                                                
                                       =  [cons(mark(X1), X2)]                                        
                                                                                                      
                   [mark(app(X1, X2))] =  [1] X1 + [1] X2 + [0]                                       
                                       >= [1] X1 + [1] X2 + [0]                                       
                                       =  [a__app(mark(X1), mark(X2))]                                
                                                                                                      
                       [mark(from(X))] =  [1] X + [4]                                                 
                                       >  [1] X + [1]                                                 
                                       =  [a__from(mark(X))]                                          
                                                                                                      
                          [mark(s(X))] =  [1] X + [0]                                                 
                                       >= [1] X + [0]                                                 
                                       =  [s(mark(X))]                                                
                                                                                                      
                 [mark(zWadr(X1, X2))] =  [1] X1 + [1] X2 + [1]                                       
                                       >= [1] X1 + [1] X2 + [1]                                       
                                       =  [a__zWadr(mark(X1), mark(X2))]                              
                                                                                                      
                     [mark(prefix(X))] =  [1] X + [1]                                                 
                                       >= [1] X + [1]                                                 
                                       =  [a__prefix(mark(X))]                                        
                                                                                                      
                          [a__from(X)] =  [1] X + [1]                                                 
                                       >  [1] X + [0]                                                 
                                       =  [cons(mark(X), from(s(X)))]                                 
                                                                                                      
                          [a__from(X)] =  [1] X + [1]                                                 
                                       ?  [1] X + [4]                                                 
                                       =  [from(X)]                                                   
                                                                                                      
                    [a__zWadr(X1, X2)] =  [1] X1 + [1] X2 + [1]                                       
                                       >= [1] X1 + [1] X2 + [1]                                       
                                       =  [zWadr(X1, X2)]                                             
                                                                                                      
                 [a__zWadr(XS, nil())] =  [1] XS + [5]                                                
                                       >  [4]                                                         
                                       =  [nil()]                                                     
                                                                                                      
                 [a__zWadr(nil(), YS)] =  [1] YS + [5]                                                
                                       >  [4]                                                         
                                       =  [nil()]                                                     
                                                                                                      
  [a__zWadr(cons(X, XS), cons(Y, YS))] =  [1] X + [1] Y + [1]                                         
                                       >  [1] X + [1] Y + [0]                                         
                                       =  [cons(a__app(mark(Y), cons(mark(X), nil())), zWadr(XS, YS))]
                                                                                                      
                        [a__prefix(L)] =  [1] L + [1]                                                 
                                       ?  [4]                                                         
                                       =  [cons(nil(), zWadr(L, prefix(L)))]                          
                                                                                                      
                        [a__prefix(X)] =  [1] X + [1]                                                 
                                       >= [1] X + [1]                                                 
                                       =  [prefix(X)]                                                 
                                                                                                      

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { mark(nil()) -> nil()
  , mark(cons(X1, X2)) -> cons(mark(X1), X2)
  , mark(app(X1, X2)) -> a__app(mark(X1), mark(X2))
  , mark(s(X)) -> s(mark(X))
  , mark(prefix(X)) -> a__prefix(mark(X))
  , a__from(X) -> from(X)
  , a__zWadr(X1, X2) -> zWadr(X1, X2)
  , a__prefix(L) -> cons(nil(), zWadr(L, prefix(L))) }
Weak Trs:
  { a__app(X1, X2) -> app(X1, X2)
  , a__app(nil(), YS) -> mark(YS)
  , a__app(cons(X, XS), YS) -> cons(mark(X), app(XS, YS))
  , mark(from(X)) -> a__from(mark(X))
  , mark(zWadr(X1, X2)) -> a__zWadr(mark(X1), mark(X2))
  , a__from(X) -> cons(mark(X), from(s(X)))
  , a__zWadr(XS, nil()) -> nil()
  , a__zWadr(nil(), YS) -> nil()
  , a__zWadr(cons(X, XS), cons(Y, YS)) ->
    cons(a__app(mark(Y), cons(mark(X), nil())), zWadr(XS, YS))
  , a__prefix(X) -> prefix(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(a__app) = {1, 2}, Uargs(cons) = {1}, Uargs(a__from) = {1},
  Uargs(s) = {1}, Uargs(a__zWadr) = {1, 2}, Uargs(a__prefix) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

    [a__app](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
               [nil] = [0]                  
                                            
          [mark](x1) = [1] x1 + [0]         
                                            
      [cons](x1, x2) = [1] x1 + [0]         
                                            
       [app](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
       [a__from](x1) = [1] x1 + [1]         
                                            
          [from](x1) = [1] x1 + [4]         
                                            
             [s](x1) = [1] x1 + [0]         
                                            
  [a__zWadr](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
     [zWadr](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
     [a__prefix](x1) = [1] x1 + [1]         
                                            
        [prefix](x1) = [1] x1 + [0]         

The order satisfies the following ordering constraints:

                      [a__app(X1, X2)] =  [1] X1 + [1] X2 + [0]                                       
                                       >= [1] X1 + [1] X2 + [0]                                       
                                       =  [app(X1, X2)]                                               
                                                                                                      
                   [a__app(nil(), YS)] =  [1] YS + [0]                                                
                                       >= [1] YS + [0]                                                
                                       =  [mark(YS)]                                                  
                                                                                                      
             [a__app(cons(X, XS), YS)] =  [1] YS + [1] X + [0]                                        
                                       >= [1] X + [0]                                                 
                                       =  [cons(mark(X), app(XS, YS))]                                
                                                                                                      
                         [mark(nil())] =  [0]                                                         
                                       >= [0]                                                         
                                       =  [nil()]                                                     
                                                                                                      
                  [mark(cons(X1, X2))] =  [1] X1 + [0]                                                
                                       >= [1] X1 + [0]                                                
                                       =  [cons(mark(X1), X2)]                                        
                                                                                                      
                   [mark(app(X1, X2))] =  [1] X1 + [1] X2 + [0]                                       
                                       >= [1] X1 + [1] X2 + [0]                                       
                                       =  [a__app(mark(X1), mark(X2))]                                
                                                                                                      
                       [mark(from(X))] =  [1] X + [4]                                                 
                                       >  [1] X + [1]                                                 
                                       =  [a__from(mark(X))]                                          
                                                                                                      
                          [mark(s(X))] =  [1] X + [0]                                                 
                                       >= [1] X + [0]                                                 
                                       =  [s(mark(X))]                                                
                                                                                                      
                 [mark(zWadr(X1, X2))] =  [1] X1 + [1] X2 + [0]                                       
                                       >= [1] X1 + [1] X2 + [0]                                       
                                       =  [a__zWadr(mark(X1), mark(X2))]                              
                                                                                                      
                     [mark(prefix(X))] =  [1] X + [0]                                                 
                                       ?  [1] X + [1]                                                 
                                       =  [a__prefix(mark(X))]                                        
                                                                                                      
                          [a__from(X)] =  [1] X + [1]                                                 
                                       >  [1] X + [0]                                                 
                                       =  [cons(mark(X), from(s(X)))]                                 
                                                                                                      
                          [a__from(X)] =  [1] X + [1]                                                 
                                       ?  [1] X + [4]                                                 
                                       =  [from(X)]                                                   
                                                                                                      
                    [a__zWadr(X1, X2)] =  [1] X1 + [1] X2 + [0]                                       
                                       >= [1] X1 + [1] X2 + [0]                                       
                                       =  [zWadr(X1, X2)]                                             
                                                                                                      
                 [a__zWadr(XS, nil())] =  [1] XS + [0]                                                
                                       >= [0]                                                         
                                       =  [nil()]                                                     
                                                                                                      
                 [a__zWadr(nil(), YS)] =  [1] YS + [0]                                                
                                       >= [0]                                                         
                                       =  [nil()]                                                     
                                                                                                      
  [a__zWadr(cons(X, XS), cons(Y, YS))] =  [1] X + [1] Y + [0]                                         
                                       >= [1] X + [1] Y + [0]                                         
                                       =  [cons(a__app(mark(Y), cons(mark(X), nil())), zWadr(XS, YS))]
                                                                                                      
                        [a__prefix(L)] =  [1] L + [1]                                                 
                                       >  [0]                                                         
                                       =  [cons(nil(), zWadr(L, prefix(L)))]                          
                                                                                                      
                        [a__prefix(X)] =  [1] X + [1]                                                 
                                       >  [1] X + [0]                                                 
                                       =  [prefix(X)]                                                 
                                                                                                      

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { mark(nil()) -> nil()
  , mark(cons(X1, X2)) -> cons(mark(X1), X2)
  , mark(app(X1, X2)) -> a__app(mark(X1), mark(X2))
  , mark(s(X)) -> s(mark(X))
  , mark(prefix(X)) -> a__prefix(mark(X))
  , a__from(X) -> from(X)
  , a__zWadr(X1, X2) -> zWadr(X1, X2) }
Weak Trs:
  { a__app(X1, X2) -> app(X1, X2)
  , a__app(nil(), YS) -> mark(YS)
  , a__app(cons(X, XS), YS) -> cons(mark(X), app(XS, YS))
  , mark(from(X)) -> a__from(mark(X))
  , mark(zWadr(X1, X2)) -> a__zWadr(mark(X1), mark(X2))
  , a__from(X) -> cons(mark(X), from(s(X)))
  , a__zWadr(XS, nil()) -> nil()
  , a__zWadr(nil(), YS) -> nil()
  , a__zWadr(cons(X, XS), cons(Y, YS)) ->
    cons(a__app(mark(Y), cons(mark(X), nil())), zWadr(XS, YS))
  , a__prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
  , a__prefix(X) -> prefix(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(a__app) = {1, 2}, Uargs(cons) = {1}, Uargs(a__from) = {1},
  Uargs(s) = {1}, Uargs(a__zWadr) = {1, 2}, Uargs(a__prefix) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

    [a__app](x1, x2) = [1] x1 + [1] x2 + [3]
                                            
               [nil] = [0]                  
                                            
          [mark](x1) = [1] x1 + [1]         
                                            
      [cons](x1, x2) = [1] x1 + [0]         
                                            
       [app](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
       [a__from](x1) = [1] x1 + [3]         
                                            
          [from](x1) = [1] x1 + [4]         
                                            
             [s](x1) = [1] x1 + [0]         
                                            
  [a__zWadr](x1, x2) = [1] x1 + [1] x2 + [5]
                                            
     [zWadr](x1, x2) = [1] x1 + [1] x2 + [7]
                                            
     [a__prefix](x1) = [1] x1 + [7]         
                                            
        [prefix](x1) = [1] x1 + [4]         

The order satisfies the following ordering constraints:

                      [a__app(X1, X2)] =  [1] X1 + [1] X2 + [3]                                       
                                       >  [1] X1 + [1] X2 + [0]                                       
                                       =  [app(X1, X2)]                                               
                                                                                                      
                   [a__app(nil(), YS)] =  [1] YS + [3]                                                
                                       >  [1] YS + [1]                                                
                                       =  [mark(YS)]                                                  
                                                                                                      
             [a__app(cons(X, XS), YS)] =  [1] YS + [1] X + [3]                                        
                                       >  [1] X + [1]                                                 
                                       =  [cons(mark(X), app(XS, YS))]                                
                                                                                                      
                         [mark(nil())] =  [1]                                                         
                                       >  [0]                                                         
                                       =  [nil()]                                                     
                                                                                                      
                  [mark(cons(X1, X2))] =  [1] X1 + [1]                                                
                                       >= [1] X1 + [1]                                                
                                       =  [cons(mark(X1), X2)]                                        
                                                                                                      
                   [mark(app(X1, X2))] =  [1] X1 + [1] X2 + [1]                                       
                                       ?  [1] X1 + [1] X2 + [5]                                       
                                       =  [a__app(mark(X1), mark(X2))]                                
                                                                                                      
                       [mark(from(X))] =  [1] X + [5]                                                 
                                       >  [1] X + [4]                                                 
                                       =  [a__from(mark(X))]                                          
                                                                                                      
                          [mark(s(X))] =  [1] X + [1]                                                 
                                       >= [1] X + [1]                                                 
                                       =  [s(mark(X))]                                                
                                                                                                      
                 [mark(zWadr(X1, X2))] =  [1] X1 + [1] X2 + [8]                                       
                                       >  [1] X1 + [1] X2 + [7]                                       
                                       =  [a__zWadr(mark(X1), mark(X2))]                              
                                                                                                      
                     [mark(prefix(X))] =  [1] X + [5]                                                 
                                       ?  [1] X + [8]                                                 
                                       =  [a__prefix(mark(X))]                                        
                                                                                                      
                          [a__from(X)] =  [1] X + [3]                                                 
                                       >  [1] X + [1]                                                 
                                       =  [cons(mark(X), from(s(X)))]                                 
                                                                                                      
                          [a__from(X)] =  [1] X + [3]                                                 
                                       ?  [1] X + [4]                                                 
                                       =  [from(X)]                                                   
                                                                                                      
                    [a__zWadr(X1, X2)] =  [1] X1 + [1] X2 + [5]                                       
                                       ?  [1] X1 + [1] X2 + [7]                                       
                                       =  [zWadr(X1, X2)]                                             
                                                                                                      
                 [a__zWadr(XS, nil())] =  [1] XS + [5]                                                
                                       >  [0]                                                         
                                       =  [nil()]                                                     
                                                                                                      
                 [a__zWadr(nil(), YS)] =  [1] YS + [5]                                                
                                       >  [0]                                                         
                                       =  [nil()]                                                     
                                                                                                      
  [a__zWadr(cons(X, XS), cons(Y, YS))] =  [1] X + [1] Y + [5]                                         
                                       >= [1] X + [1] Y + [5]                                         
                                       =  [cons(a__app(mark(Y), cons(mark(X), nil())), zWadr(XS, YS))]
                                                                                                      
                        [a__prefix(L)] =  [1] L + [7]                                                 
                                       >  [0]                                                         
                                       =  [cons(nil(), zWadr(L, prefix(L)))]                          
                                                                                                      
                        [a__prefix(X)] =  [1] X + [7]                                                 
                                       >  [1] X + [4]                                                 
                                       =  [prefix(X)]                                                 
                                                                                                      

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { mark(cons(X1, X2)) -> cons(mark(X1), X2)
  , mark(app(X1, X2)) -> a__app(mark(X1), mark(X2))
  , mark(s(X)) -> s(mark(X))
  , mark(prefix(X)) -> a__prefix(mark(X))
  , a__from(X) -> from(X)
  , a__zWadr(X1, X2) -> zWadr(X1, X2) }
Weak Trs:
  { a__app(X1, X2) -> app(X1, X2)
  , a__app(nil(), YS) -> mark(YS)
  , a__app(cons(X, XS), YS) -> cons(mark(X), app(XS, YS))
  , mark(nil()) -> nil()
  , mark(from(X)) -> a__from(mark(X))
  , mark(zWadr(X1, X2)) -> a__zWadr(mark(X1), mark(X2))
  , a__from(X) -> cons(mark(X), from(s(X)))
  , a__zWadr(XS, nil()) -> nil()
  , a__zWadr(nil(), YS) -> nil()
  , a__zWadr(cons(X, XS), cons(Y, YS)) ->
    cons(a__app(mark(Y), cons(mark(X), nil())), zWadr(XS, YS))
  , a__prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
  , a__prefix(X) -> prefix(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We use the processor 'matrix interpretation of dimension 2' to
orient following rules strictly.

Trs:
  { mark(cons(X1, X2)) -> cons(mark(X1), X2)
  , mark(prefix(X)) -> a__prefix(mark(X))
  , a__from(X) -> from(X) }

The induced complexity on above rules (modulo remaining rules) is
YES(?,O(n^2)) . These rules are moved into the corresponding weak
component(s).

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(a__app) = {1, 2}, Uargs(cons) = {1}, Uargs(a__from) = {1},
    Uargs(s) = {1}, Uargs(a__zWadr) = {1, 2}, Uargs(a__prefix) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
      [a__app](x1, x2) = [1 5] x1 + [1 3] x2 + [1]
                         [0 1]      [0 1]      [1]
                                                  
                 [nil] = [1]                      
                         [1]                      
                                                  
            [mark](x1) = [1 2] x1 + [2]           
                         [0 1]      [0]           
                                                  
        [cons](x1, x2) = [1 0] x1 + [0]           
                         [0 1]      [1]           
                                                  
         [app](x1, x2) = [1 5] x1 + [1 3] x2 + [1]
                         [0 1]      [0 1]      [1]
                                                  
         [a__from](x1) = [1 3] x1 + [7]           
                         [0 1]      [3]           
                                                  
            [from](x1) = [1 3] x1 + [2]           
                         [0 1]      [3]           
                                                  
               [s](x1) = [1 4] x1 + [0]           
                         [0 1]      [0]           
                                                  
    [a__zWadr](x1, x2) = [1 6] x1 + [1 7] x2 + [0]
                         [0 1]      [0 1]      [1]
                                                  
       [zWadr](x1, x2) = [1 6] x1 + [1 7] x2 + [0]
                         [0 1]      [0 1]      [1]
                                                  
       [a__prefix](x1) = [1 1] x1 + [7]           
                         [0 1]      [3]           
                                                  
          [prefix](x1) = [1 1] x1 + [2]           
                         [0 1]      [3]           
  
  The order satisfies the following ordering constraints:
  
                        [a__app(X1, X2)] =  [1 5] X1 + [1 3] X2 + [1]                                   
                                            [0 1]      [0 1]      [1]                                   
                                         >= [1 5] X1 + [1 3] X2 + [1]                                   
                                            [0 1]      [0 1]      [1]                                   
                                         =  [app(X1, X2)]                                               
                                                                                                        
                     [a__app(nil(), YS)] =  [1 3] YS + [7]                                              
                                            [0 1]      [2]                                              
                                         >  [1 2] YS + [2]                                              
                                            [0 1]      [0]                                              
                                         =  [mark(YS)]                                                  
                                                                                                        
               [a__app(cons(X, XS), YS)] =  [1 3] YS + [1 5] X + [6]                                    
                                            [0 1]      [0 1]     [2]                                    
                                         >  [1 2] X + [2]                                               
                                            [0 1]     [1]                                               
                                         =  [cons(mark(X), app(XS, YS))]                                
                                                                                                        
                           [mark(nil())] =  [5]                                                         
                                            [1]                                                         
                                         >  [1]                                                         
                                            [1]                                                         
                                         =  [nil()]                                                     
                                                                                                        
                    [mark(cons(X1, X2))] =  [1 2] X1 + [4]                                              
                                            [0 1]      [1]                                              
                                         >  [1 2] X1 + [2]                                              
                                            [0 1]      [1]                                              
                                         =  [cons(mark(X1), X2)]                                        
                                                                                                        
                     [mark(app(X1, X2))] =  [1 7] X1 + [1 5] X2 + [5]                                   
                                            [0 1]      [0 1]      [1]                                   
                                         >= [1 7] X1 + [1 5] X2 + [5]                                   
                                            [0 1]      [0 1]      [1]                                   
                                         =  [a__app(mark(X1), mark(X2))]                                
                                                                                                        
                         [mark(from(X))] =  [1 5] X + [10]                                              
                                            [0 1]     [3]                                               
                                         >  [1 5] X + [9]                                               
                                            [0 1]     [3]                                               
                                         =  [a__from(mark(X))]                                          
                                                                                                        
                            [mark(s(X))] =  [1 6] X + [2]                                               
                                            [0 1]     [0]                                               
                                         >= [1 6] X + [2]                                               
                                            [0 1]     [0]                                               
                                         =  [s(mark(X))]                                                
                                                                                                        
                   [mark(zWadr(X1, X2))] =  [1 8] X1 + [1 9] X2 + [4]                                   
                                            [0 1]      [0 1]      [1]                                   
                                         >= [1 8] X1 + [1 9] X2 + [4]                                   
                                            [0 1]      [0 1]      [1]                                   
                                         =  [a__zWadr(mark(X1), mark(X2))]                              
                                                                                                        
                       [mark(prefix(X))] =  [1 3] X + [10]                                              
                                            [0 1]     [3]                                               
                                         >  [1 3] X + [9]                                               
                                            [0 1]     [3]                                               
                                         =  [a__prefix(mark(X))]                                        
                                                                                                        
                            [a__from(X)] =  [1 3] X + [7]                                               
                                            [0 1]     [3]                                               
                                         >  [1 2] X + [2]                                               
                                            [0 1]     [1]                                               
                                         =  [cons(mark(X), from(s(X)))]                                 
                                                                                                        
                            [a__from(X)] =  [1 3] X + [7]                                               
                                            [0 1]     [3]                                               
                                         >  [1 3] X + [2]                                               
                                            [0 1]     [3]                                               
                                         =  [from(X)]                                                   
                                                                                                        
                      [a__zWadr(X1, X2)] =  [1 6] X1 + [1 7] X2 + [0]                                   
                                            [0 1]      [0 1]      [1]                                   
                                         >= [1 6] X1 + [1 7] X2 + [0]                                   
                                            [0 1]      [0 1]      [1]                                   
                                         =  [zWadr(X1, X2)]                                             
                                                                                                        
                   [a__zWadr(XS, nil())] =  [1 6] XS + [8]                                              
                                            [0 1]      [2]                                              
                                         >  [1]                                                         
                                            [1]                                                         
                                         =  [nil()]                                                     
                                                                                                        
                   [a__zWadr(nil(), YS)] =  [1 7] YS + [7]                                              
                                            [0 1]      [2]                                              
                                         >  [1]                                                         
                                            [1]                                                         
                                         =  [nil()]                                                     
                                                                                                        
    [a__zWadr(cons(X, XS), cons(Y, YS))] =  [1 6] X + [1 7] Y + [13]                                    
                                            [0 1]     [0 1]     [3]                                     
                                         >  [1 5] X + [1 7] Y + [8]                                     
                                            [0 1]     [0 1]     [3]                                     
                                         =  [cons(a__app(mark(Y), cons(mark(X), nil())), zWadr(XS, YS))]
                                                                                                        
                          [a__prefix(L)] =  [1 1] L + [7]                                               
                                            [0 1]     [3]                                               
                                         >  [1]                                                         
                                            [2]                                                         
                                         =  [cons(nil(), zWadr(L, prefix(L)))]                          
                                                                                                        
                          [a__prefix(X)] =  [1 1] X + [7]                                               
                                            [0 1]     [3]                                               
                                         >  [1 1] X + [2]                                               
                                            [0 1]     [3]                                               
                                         =  [prefix(X)]                                                 
                                                                                                        

We return to the main proof.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { mark(app(X1, X2)) -> a__app(mark(X1), mark(X2))
  , mark(s(X)) -> s(mark(X))
  , a__zWadr(X1, X2) -> zWadr(X1, X2) }
Weak Trs:
  { a__app(X1, X2) -> app(X1, X2)
  , a__app(nil(), YS) -> mark(YS)
  , a__app(cons(X, XS), YS) -> cons(mark(X), app(XS, YS))
  , mark(nil()) -> nil()
  , mark(cons(X1, X2)) -> cons(mark(X1), X2)
  , mark(from(X)) -> a__from(mark(X))
  , mark(zWadr(X1, X2)) -> a__zWadr(mark(X1), mark(X2))
  , mark(prefix(X)) -> a__prefix(mark(X))
  , a__from(X) -> cons(mark(X), from(s(X)))
  , a__from(X) -> from(X)
  , a__zWadr(XS, nil()) -> nil()
  , a__zWadr(nil(), YS) -> nil()
  , a__zWadr(cons(X, XS), cons(Y, YS)) ->
    cons(a__app(mark(Y), cons(mark(X), nil())), zWadr(XS, YS))
  , a__prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
  , a__prefix(X) -> prefix(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We use the processor 'matrix interpretation of dimension 2' to
orient following rules strictly.

Trs:
  { mark(app(X1, X2)) -> a__app(mark(X1), mark(X2))
  , mark(s(X)) -> s(mark(X))
  , a__zWadr(X1, X2) -> zWadr(X1, X2) }

The induced complexity on above rules (modulo remaining rules) is
YES(?,O(n^2)) . These rules are moved into the corresponding weak
component(s).

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(a__app) = {1, 2}, Uargs(cons) = {1}, Uargs(a__from) = {1},
    Uargs(s) = {1}, Uargs(a__zWadr) = {1, 2}, Uargs(a__prefix) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
      [a__app](x1, x2) = [1 1] x1 + [1 1] x2 + [2]
                         [0 1]      [0 1]      [5]
                                                  
                 [nil] = [6]                      
                         [0]                      
                                                  
            [mark](x1) = [1 1] x1 + [0]           
                         [0 1]      [0]           
                                                  
        [cons](x1, x2) = [1 0] x1 + [0]           
                         [0 1]      [3]           
                                                  
         [app](x1, x2) = [1 1] x1 + [1 1] x2 + [0]
                         [0 1]      [0 1]      [5]
                                                  
         [a__from](x1) = [1 7] x1 + [4]           
                         [0 1]      [3]           
                                                  
            [from](x1) = [1 7] x1 + [1]           
                         [0 1]      [3]           
                                                  
               [s](x1) = [1 0] x1 + [4]           
                         [0 1]      [2]           
                                                  
    [a__zWadr](x1, x2) = [1 2] x1 + [1 2] x2 + [3]
                         [0 1]      [0 1]      [7]
                                                  
       [zWadr](x1, x2) = [1 2] x1 + [1 2] x2 + [0]
                         [0 1]      [0 1]      [7]
                                                  
       [a__prefix](x1) = [1 0] x1 + [7]           
                         [0 1]      [3]           
                                                  
          [prefix](x1) = [1 0] x1 + [4]           
                         [0 1]      [3]           
  
  The order satisfies the following ordering constraints:
  
                        [a__app(X1, X2)] =  [1 1] X1 + [1 1] X2 + [2]                                   
                                            [0 1]      [0 1]      [5]                                   
                                         >  [1 1] X1 + [1 1] X2 + [0]                                   
                                            [0 1]      [0 1]      [5]                                   
                                         =  [app(X1, X2)]                                               
                                                                                                        
                     [a__app(nil(), YS)] =  [1 1] YS + [8]                                              
                                            [0 1]      [5]                                              
                                         >  [1 1] YS + [0]                                              
                                            [0 1]      [0]                                              
                                         =  [mark(YS)]                                                  
                                                                                                        
               [a__app(cons(X, XS), YS)] =  [1 1] YS + [1 1] X + [5]                                    
                                            [0 1]      [0 1]     [8]                                    
                                         >  [1 1] X + [0]                                               
                                            [0 1]     [3]                                               
                                         =  [cons(mark(X), app(XS, YS))]                                
                                                                                                        
                           [mark(nil())] =  [6]                                                         
                                            [0]                                                         
                                         >= [6]                                                         
                                            [0]                                                         
                                         =  [nil()]                                                     
                                                                                                        
                    [mark(cons(X1, X2))] =  [1 1] X1 + [3]                                              
                                            [0 1]      [3]                                              
                                         >  [1 1] X1 + [0]                                              
                                            [0 1]      [3]                                              
                                         =  [cons(mark(X1), X2)]                                        
                                                                                                        
                     [mark(app(X1, X2))] =  [1 2] X1 + [1 2] X2 + [5]                                   
                                            [0 1]      [0 1]      [5]                                   
                                         >  [1 2] X1 + [1 2] X2 + [2]                                   
                                            [0 1]      [0 1]      [5]                                   
                                         =  [a__app(mark(X1), mark(X2))]                                
                                                                                                        
                         [mark(from(X))] =  [1 8] X + [4]                                               
                                            [0 1]     [3]                                               
                                         >= [1 8] X + [4]                                               
                                            [0 1]     [3]                                               
                                         =  [a__from(mark(X))]                                          
                                                                                                        
                            [mark(s(X))] =  [1 1] X + [6]                                               
                                            [0 1]     [2]                                               
                                         >  [1 1] X + [4]                                               
                                            [0 1]     [2]                                               
                                         =  [s(mark(X))]                                                
                                                                                                        
                   [mark(zWadr(X1, X2))] =  [1 3] X1 + [1 3] X2 + [7]                                   
                                            [0 1]      [0 1]      [7]                                   
                                         >  [1 3] X1 + [1 3] X2 + [3]                                   
                                            [0 1]      [0 1]      [7]                                   
                                         =  [a__zWadr(mark(X1), mark(X2))]                              
                                                                                                        
                       [mark(prefix(X))] =  [1 1] X + [7]                                               
                                            [0 1]     [3]                                               
                                         >= [1 1] X + [7]                                               
                                            [0 1]     [3]                                               
                                         =  [a__prefix(mark(X))]                                        
                                                                                                        
                            [a__from(X)] =  [1 7] X + [4]                                               
                                            [0 1]     [3]                                               
                                         >  [1 1] X + [0]                                               
                                            [0 1]     [3]                                               
                                         =  [cons(mark(X), from(s(X)))]                                 
                                                                                                        
                            [a__from(X)] =  [1 7] X + [4]                                               
                                            [0 1]     [3]                                               
                                         >  [1 7] X + [1]                                               
                                            [0 1]     [3]                                               
                                         =  [from(X)]                                                   
                                                                                                        
                      [a__zWadr(X1, X2)] =  [1 2] X1 + [1 2] X2 + [3]                                   
                                            [0 1]      [0 1]      [7]                                   
                                         >  [1 2] X1 + [1 2] X2 + [0]                                   
                                            [0 1]      [0 1]      [7]                                   
                                         =  [zWadr(X1, X2)]                                             
                                                                                                        
                   [a__zWadr(XS, nil())] =  [1 2] XS + [9]                                              
                                            [0 1]      [7]                                              
                                         >  [6]                                                         
                                            [0]                                                         
                                         =  [nil()]                                                     
                                                                                                        
                   [a__zWadr(nil(), YS)] =  [1 2] YS + [9]                                              
                                            [0 1]      [7]                                              
                                         >  [6]                                                         
                                            [0]                                                         
                                         =  [nil()]                                                     
                                                                                                        
    [a__zWadr(cons(X, XS), cons(Y, YS))] =  [1 2] X + [1 2] Y + [15]                                    
                                            [0 1]     [0 1]     [13]                                    
                                         >  [1 2] X + [1 2] Y + [5]                                     
                                            [0 1]     [0 1]     [11]                                    
                                         =  [cons(a__app(mark(Y), cons(mark(X), nil())), zWadr(XS, YS))]
                                                                                                        
                          [a__prefix(L)] =  [1 0] L + [7]                                               
                                            [0 1]     [3]                                               
                                         >  [6]                                                         
                                            [3]                                                         
                                         =  [cons(nil(), zWadr(L, prefix(L)))]                          
                                                                                                        
                          [a__prefix(X)] =  [1 0] X + [7]                                               
                                            [0 1]     [3]                                               
                                         >  [1 0] X + [4]                                               
                                            [0 1]     [3]                                               
                                         =  [prefix(X)]                                                 
                                                                                                        

We return to the main proof.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak Trs:
  { a__app(X1, X2) -> app(X1, X2)
  , a__app(nil(), YS) -> mark(YS)
  , a__app(cons(X, XS), YS) -> cons(mark(X), app(XS, YS))
  , mark(nil()) -> nil()
  , mark(cons(X1, X2)) -> cons(mark(X1), X2)
  , mark(app(X1, X2)) -> a__app(mark(X1), mark(X2))
  , mark(from(X)) -> a__from(mark(X))
  , mark(s(X)) -> s(mark(X))
  , mark(zWadr(X1, X2)) -> a__zWadr(mark(X1), mark(X2))
  , mark(prefix(X)) -> a__prefix(mark(X))
  , a__from(X) -> cons(mark(X), from(s(X)))
  , a__from(X) -> from(X)
  , a__zWadr(X1, X2) -> zWadr(X1, X2)
  , a__zWadr(XS, nil()) -> nil()
  , a__zWadr(nil(), YS) -> nil()
  , a__zWadr(cons(X, XS), cons(Y, YS)) ->
    cons(a__app(mark(Y), cons(mark(X), nil())), zWadr(XS, YS))
  , a__prefix(L) -> cons(nil(), zWadr(L, prefix(L)))
  , a__prefix(X) -> prefix(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(n^2))