Runtime Complexity TRS:
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: INNERMOST

Renamed function symbols to avoid clashes with predefined symbol.

Runtime Complexity TRS:
The TRS R consists of the following rules:

active'(from'(X)) → mark'(cons'(X, from'(s'(X))))
active'(sel'(0', cons'(X, Y))) → mark'(X)
active'(sel'(s'(X), cons'(Y, Z))) → mark'(sel'(X, Z))
active'(from'(X)) → from'(active'(X))
active'(cons'(X1, X2)) → cons'(active'(X1), X2)
active'(s'(X)) → s'(active'(X))
active'(sel'(X1, X2)) → sel'(active'(X1), X2)
active'(sel'(X1, X2)) → sel'(X1, active'(X2))
from'(mark'(X)) → mark'(from'(X))
cons'(mark'(X1), X2) → mark'(cons'(X1, X2))
s'(mark'(X)) → mark'(s'(X))
sel'(mark'(X1), X2) → mark'(sel'(X1, X2))
sel'(X1, mark'(X2)) → mark'(sel'(X1, X2))
proper'(from'(X)) → from'(proper'(X))
proper'(cons'(X1, X2)) → cons'(proper'(X1), proper'(X2))
proper'(s'(X)) → s'(proper'(X))
proper'(sel'(X1, X2)) → sel'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
from'(ok'(X)) → ok'(from'(X))
cons'(ok'(X1), ok'(X2)) → ok'(cons'(X1, X2))
s'(ok'(X)) → ok'(s'(X))
sel'(ok'(X1), ok'(X2)) → ok'(sel'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Rewrite Strategy: INNERMOST

Infered types.

Rules:
active'(from'(X)) → mark'(cons'(X, from'(s'(X))))
active'(sel'(0', cons'(X, Y))) → mark'(X)
active'(sel'(s'(X), cons'(Y, Z))) → mark'(sel'(X, Z))
active'(from'(X)) → from'(active'(X))
active'(cons'(X1, X2)) → cons'(active'(X1), X2)
active'(s'(X)) → s'(active'(X))
active'(sel'(X1, X2)) → sel'(active'(X1), X2)
active'(sel'(X1, X2)) → sel'(X1, active'(X2))
from'(mark'(X)) → mark'(from'(X))
cons'(mark'(X1), X2) → mark'(cons'(X1, X2))
s'(mark'(X)) → mark'(s'(X))
sel'(mark'(X1), X2) → mark'(sel'(X1, X2))
sel'(X1, mark'(X2)) → mark'(sel'(X1, X2))
proper'(from'(X)) → from'(proper'(X))
proper'(cons'(X1, X2)) → cons'(proper'(X1), proper'(X2))
proper'(s'(X)) → s'(proper'(X))
proper'(sel'(X1, X2)) → sel'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
from'(ok'(X)) → ok'(from'(X))
cons'(ok'(X1), ok'(X2)) → ok'(cons'(X1, X2))
s'(ok'(X)) → ok'(s'(X))
sel'(ok'(X1), ok'(X2)) → ok'(sel'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':0':ok' → mark':0':ok'
from' :: mark':0':ok' → mark':0':ok'
mark' :: mark':0':ok' → mark':0':ok'
cons' :: mark':0':ok' → mark':0':ok' → mark':0':ok'
s' :: mark':0':ok' → mark':0':ok'
sel' :: mark':0':ok' → mark':0':ok' → mark':0':ok'
0' :: mark':0':ok'
proper' :: mark':0':ok' → mark':0':ok'
ok' :: mark':0':ok' → mark':0':ok'
top' :: mark':0':ok' → top'
_hole_mark':0':ok'1 :: mark':0':ok'
_hole_top'2 :: top'
_gen_mark':0':ok'3 :: Nat → mark':0':ok'

Heuristically decided to analyse the following defined symbols:
active', cons', from', s', sel', proper', top'

They will be analysed ascendingly in the following order:
cons' < active'
from' < active'
s' < active'
sel' < active'
active' < top'
cons' < proper'
from' < proper'
s' < proper'
sel' < proper'
proper' < top'

Rules:
active'(from'(X)) → mark'(cons'(X, from'(s'(X))))
active'(sel'(0', cons'(X, Y))) → mark'(X)
active'(sel'(s'(X), cons'(Y, Z))) → mark'(sel'(X, Z))
active'(from'(X)) → from'(active'(X))
active'(cons'(X1, X2)) → cons'(active'(X1), X2)
active'(s'(X)) → s'(active'(X))
active'(sel'(X1, X2)) → sel'(active'(X1), X2)
active'(sel'(X1, X2)) → sel'(X1, active'(X2))
from'(mark'(X)) → mark'(from'(X))
cons'(mark'(X1), X2) → mark'(cons'(X1, X2))
s'(mark'(X)) → mark'(s'(X))
sel'(mark'(X1), X2) → mark'(sel'(X1, X2))
sel'(X1, mark'(X2)) → mark'(sel'(X1, X2))
proper'(from'(X)) → from'(proper'(X))
proper'(cons'(X1, X2)) → cons'(proper'(X1), proper'(X2))
proper'(s'(X)) → s'(proper'(X))
proper'(sel'(X1, X2)) → sel'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
from'(ok'(X)) → ok'(from'(X))
cons'(ok'(X1), ok'(X2)) → ok'(cons'(X1, X2))
s'(ok'(X)) → ok'(s'(X))
sel'(ok'(X1), ok'(X2)) → ok'(sel'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':0':ok' → mark':0':ok'
from' :: mark':0':ok' → mark':0':ok'
mark' :: mark':0':ok' → mark':0':ok'
cons' :: mark':0':ok' → mark':0':ok' → mark':0':ok'
s' :: mark':0':ok' → mark':0':ok'
sel' :: mark':0':ok' → mark':0':ok' → mark':0':ok'
0' :: mark':0':ok'
proper' :: mark':0':ok' → mark':0':ok'
ok' :: mark':0':ok' → mark':0':ok'
top' :: mark':0':ok' → top'
_hole_mark':0':ok'1 :: mark':0':ok'
_hole_top'2 :: top'
_gen_mark':0':ok'3 :: Nat → mark':0':ok'

Generator Equations:
_gen_mark':0':ok'3(0) ⇔ 0'
_gen_mark':0':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':0':ok'3(x))

The following defined symbols remain to be analysed:
cons', active', from', s', sel', proper', top'

They will be analysed ascendingly in the following order:
cons' < active'
from' < active'
s' < active'
sel' < active'
active' < top'
cons' < proper'
from' < proper'
s' < proper'
sel' < proper'
proper' < top'

Proved the following rewrite lemma:
cons'(_gen_mark':0':ok'3(+(1, _n5)), _gen_mark':0':ok'3(b)) → _*4, rt ∈ Ω(n5)

Induction Base:
cons'(_gen_mark':0':ok'3(+(1, 0)), _gen_mark':0':ok'3(b))

Induction Step:
cons'(_gen_mark':0':ok'3(+(1, +(_\$n6, 1))), _gen_mark':0':ok'3(_b610)) →RΩ(1)
mark'(cons'(_gen_mark':0':ok'3(+(1, _\$n6)), _gen_mark':0':ok'3(_b610))) →IH
mark'(_*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

Rules:
active'(from'(X)) → mark'(cons'(X, from'(s'(X))))
active'(sel'(0', cons'(X, Y))) → mark'(X)
active'(sel'(s'(X), cons'(Y, Z))) → mark'(sel'(X, Z))
active'(from'(X)) → from'(active'(X))
active'(cons'(X1, X2)) → cons'(active'(X1), X2)
active'(s'(X)) → s'(active'(X))
active'(sel'(X1, X2)) → sel'(active'(X1), X2)
active'(sel'(X1, X2)) → sel'(X1, active'(X2))
from'(mark'(X)) → mark'(from'(X))
cons'(mark'(X1), X2) → mark'(cons'(X1, X2))
s'(mark'(X)) → mark'(s'(X))
sel'(mark'(X1), X2) → mark'(sel'(X1, X2))
sel'(X1, mark'(X2)) → mark'(sel'(X1, X2))
proper'(from'(X)) → from'(proper'(X))
proper'(cons'(X1, X2)) → cons'(proper'(X1), proper'(X2))
proper'(s'(X)) → s'(proper'(X))
proper'(sel'(X1, X2)) → sel'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
from'(ok'(X)) → ok'(from'(X))
cons'(ok'(X1), ok'(X2)) → ok'(cons'(X1, X2))
s'(ok'(X)) → ok'(s'(X))
sel'(ok'(X1), ok'(X2)) → ok'(sel'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':0':ok' → mark':0':ok'
from' :: mark':0':ok' → mark':0':ok'
mark' :: mark':0':ok' → mark':0':ok'
cons' :: mark':0':ok' → mark':0':ok' → mark':0':ok'
s' :: mark':0':ok' → mark':0':ok'
sel' :: mark':0':ok' → mark':0':ok' → mark':0':ok'
0' :: mark':0':ok'
proper' :: mark':0':ok' → mark':0':ok'
ok' :: mark':0':ok' → mark':0':ok'
top' :: mark':0':ok' → top'
_hole_mark':0':ok'1 :: mark':0':ok'
_hole_top'2 :: top'
_gen_mark':0':ok'3 :: Nat → mark':0':ok'

Lemmas:
cons'(_gen_mark':0':ok'3(+(1, _n5)), _gen_mark':0':ok'3(b)) → _*4, rt ∈ Ω(n5)

Generator Equations:
_gen_mark':0':ok'3(0) ⇔ 0'
_gen_mark':0':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':0':ok'3(x))

The following defined symbols remain to be analysed:
from', active', s', sel', proper', top'

They will be analysed ascendingly in the following order:
from' < active'
s' < active'
sel' < active'
active' < top'
from' < proper'
s' < proper'
sel' < proper'
proper' < top'

Proved the following rewrite lemma:
from'(_gen_mark':0':ok'3(+(1, _n1661))) → _*4, rt ∈ Ω(n1661)

Induction Base:
from'(_gen_mark':0':ok'3(+(1, 0)))

Induction Step:
from'(_gen_mark':0':ok'3(+(1, +(_\$n1662, 1)))) →RΩ(1)
mark'(from'(_gen_mark':0':ok'3(+(1, _\$n1662)))) →IH
mark'(_*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

Rules:
active'(from'(X)) → mark'(cons'(X, from'(s'(X))))
active'(sel'(0', cons'(X, Y))) → mark'(X)
active'(sel'(s'(X), cons'(Y, Z))) → mark'(sel'(X, Z))
active'(from'(X)) → from'(active'(X))
active'(cons'(X1, X2)) → cons'(active'(X1), X2)
active'(s'(X)) → s'(active'(X))
active'(sel'(X1, X2)) → sel'(active'(X1), X2)
active'(sel'(X1, X2)) → sel'(X1, active'(X2))
from'(mark'(X)) → mark'(from'(X))
cons'(mark'(X1), X2) → mark'(cons'(X1, X2))
s'(mark'(X)) → mark'(s'(X))
sel'(mark'(X1), X2) → mark'(sel'(X1, X2))
sel'(X1, mark'(X2)) → mark'(sel'(X1, X2))
proper'(from'(X)) → from'(proper'(X))
proper'(cons'(X1, X2)) → cons'(proper'(X1), proper'(X2))
proper'(s'(X)) → s'(proper'(X))
proper'(sel'(X1, X2)) → sel'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
from'(ok'(X)) → ok'(from'(X))
cons'(ok'(X1), ok'(X2)) → ok'(cons'(X1, X2))
s'(ok'(X)) → ok'(s'(X))
sel'(ok'(X1), ok'(X2)) → ok'(sel'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':0':ok' → mark':0':ok'
from' :: mark':0':ok' → mark':0':ok'
mark' :: mark':0':ok' → mark':0':ok'
cons' :: mark':0':ok' → mark':0':ok' → mark':0':ok'
s' :: mark':0':ok' → mark':0':ok'
sel' :: mark':0':ok' → mark':0':ok' → mark':0':ok'
0' :: mark':0':ok'
proper' :: mark':0':ok' → mark':0':ok'
ok' :: mark':0':ok' → mark':0':ok'
top' :: mark':0':ok' → top'
_hole_mark':0':ok'1 :: mark':0':ok'
_hole_top'2 :: top'
_gen_mark':0':ok'3 :: Nat → mark':0':ok'

Lemmas:
cons'(_gen_mark':0':ok'3(+(1, _n5)), _gen_mark':0':ok'3(b)) → _*4, rt ∈ Ω(n5)
from'(_gen_mark':0':ok'3(+(1, _n1661))) → _*4, rt ∈ Ω(n1661)

Generator Equations:
_gen_mark':0':ok'3(0) ⇔ 0'
_gen_mark':0':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':0':ok'3(x))

The following defined symbols remain to be analysed:
s', active', sel', proper', top'

They will be analysed ascendingly in the following order:
s' < active'
sel' < active'
active' < top'
s' < proper'
sel' < proper'
proper' < top'

Proved the following rewrite lemma:
s'(_gen_mark':0':ok'3(+(1, _n2844))) → _*4, rt ∈ Ω(n2844)

Induction Base:
s'(_gen_mark':0':ok'3(+(1, 0)))

Induction Step:
s'(_gen_mark':0':ok'3(+(1, +(_\$n2845, 1)))) →RΩ(1)
mark'(s'(_gen_mark':0':ok'3(+(1, _\$n2845)))) →IH
mark'(_*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

Rules:
active'(from'(X)) → mark'(cons'(X, from'(s'(X))))
active'(sel'(0', cons'(X, Y))) → mark'(X)
active'(sel'(s'(X), cons'(Y, Z))) → mark'(sel'(X, Z))
active'(from'(X)) → from'(active'(X))
active'(cons'(X1, X2)) → cons'(active'(X1), X2)
active'(s'(X)) → s'(active'(X))
active'(sel'(X1, X2)) → sel'(active'(X1), X2)
active'(sel'(X1, X2)) → sel'(X1, active'(X2))
from'(mark'(X)) → mark'(from'(X))
cons'(mark'(X1), X2) → mark'(cons'(X1, X2))
s'(mark'(X)) → mark'(s'(X))
sel'(mark'(X1), X2) → mark'(sel'(X1, X2))
sel'(X1, mark'(X2)) → mark'(sel'(X1, X2))
proper'(from'(X)) → from'(proper'(X))
proper'(cons'(X1, X2)) → cons'(proper'(X1), proper'(X2))
proper'(s'(X)) → s'(proper'(X))
proper'(sel'(X1, X2)) → sel'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
from'(ok'(X)) → ok'(from'(X))
cons'(ok'(X1), ok'(X2)) → ok'(cons'(X1, X2))
s'(ok'(X)) → ok'(s'(X))
sel'(ok'(X1), ok'(X2)) → ok'(sel'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':0':ok' → mark':0':ok'
from' :: mark':0':ok' → mark':0':ok'
mark' :: mark':0':ok' → mark':0':ok'
cons' :: mark':0':ok' → mark':0':ok' → mark':0':ok'
s' :: mark':0':ok' → mark':0':ok'
sel' :: mark':0':ok' → mark':0':ok' → mark':0':ok'
0' :: mark':0':ok'
proper' :: mark':0':ok' → mark':0':ok'
ok' :: mark':0':ok' → mark':0':ok'
top' :: mark':0':ok' → top'
_hole_mark':0':ok'1 :: mark':0':ok'
_hole_top'2 :: top'
_gen_mark':0':ok'3 :: Nat → mark':0':ok'

Lemmas:
cons'(_gen_mark':0':ok'3(+(1, _n5)), _gen_mark':0':ok'3(b)) → _*4, rt ∈ Ω(n5)
from'(_gen_mark':0':ok'3(+(1, _n1661))) → _*4, rt ∈ Ω(n1661)
s'(_gen_mark':0':ok'3(+(1, _n2844))) → _*4, rt ∈ Ω(n2844)

Generator Equations:
_gen_mark':0':ok'3(0) ⇔ 0'
_gen_mark':0':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':0':ok'3(x))

The following defined symbols remain to be analysed:
sel', active', proper', top'

They will be analysed ascendingly in the following order:
sel' < active'
active' < top'
sel' < proper'
proper' < top'

Proved the following rewrite lemma:
sel'(_gen_mark':0':ok'3(+(1, _n4151)), _gen_mark':0':ok'3(b)) → _*4, rt ∈ Ω(n4151)

Induction Base:
sel'(_gen_mark':0':ok'3(+(1, 0)), _gen_mark':0':ok'3(b))

Induction Step:
sel'(_gen_mark':0':ok'3(+(1, +(_\$n4152, 1))), _gen_mark':0':ok'3(_b5728)) →RΩ(1)
mark'(sel'(_gen_mark':0':ok'3(+(1, _\$n4152)), _gen_mark':0':ok'3(_b5728))) →IH
mark'(_*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

Rules:
active'(from'(X)) → mark'(cons'(X, from'(s'(X))))
active'(sel'(0', cons'(X, Y))) → mark'(X)
active'(sel'(s'(X), cons'(Y, Z))) → mark'(sel'(X, Z))
active'(from'(X)) → from'(active'(X))
active'(cons'(X1, X2)) → cons'(active'(X1), X2)
active'(s'(X)) → s'(active'(X))
active'(sel'(X1, X2)) → sel'(active'(X1), X2)
active'(sel'(X1, X2)) → sel'(X1, active'(X2))
from'(mark'(X)) → mark'(from'(X))
cons'(mark'(X1), X2) → mark'(cons'(X1, X2))
s'(mark'(X)) → mark'(s'(X))
sel'(mark'(X1), X2) → mark'(sel'(X1, X2))
sel'(X1, mark'(X2)) → mark'(sel'(X1, X2))
proper'(from'(X)) → from'(proper'(X))
proper'(cons'(X1, X2)) → cons'(proper'(X1), proper'(X2))
proper'(s'(X)) → s'(proper'(X))
proper'(sel'(X1, X2)) → sel'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
from'(ok'(X)) → ok'(from'(X))
cons'(ok'(X1), ok'(X2)) → ok'(cons'(X1, X2))
s'(ok'(X)) → ok'(s'(X))
sel'(ok'(X1), ok'(X2)) → ok'(sel'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':0':ok' → mark':0':ok'
from' :: mark':0':ok' → mark':0':ok'
mark' :: mark':0':ok' → mark':0':ok'
cons' :: mark':0':ok' → mark':0':ok' → mark':0':ok'
s' :: mark':0':ok' → mark':0':ok'
sel' :: mark':0':ok' → mark':0':ok' → mark':0':ok'
0' :: mark':0':ok'
proper' :: mark':0':ok' → mark':0':ok'
ok' :: mark':0':ok' → mark':0':ok'
top' :: mark':0':ok' → top'
_hole_mark':0':ok'1 :: mark':0':ok'
_hole_top'2 :: top'
_gen_mark':0':ok'3 :: Nat → mark':0':ok'

Lemmas:
cons'(_gen_mark':0':ok'3(+(1, _n5)), _gen_mark':0':ok'3(b)) → _*4, rt ∈ Ω(n5)
from'(_gen_mark':0':ok'3(+(1, _n1661))) → _*4, rt ∈ Ω(n1661)
s'(_gen_mark':0':ok'3(+(1, _n2844))) → _*4, rt ∈ Ω(n2844)
sel'(_gen_mark':0':ok'3(+(1, _n4151)), _gen_mark':0':ok'3(b)) → _*4, rt ∈ Ω(n4151)

Generator Equations:
_gen_mark':0':ok'3(0) ⇔ 0'
_gen_mark':0':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':0':ok'3(x))

The following defined symbols remain to be analysed:
active', proper', top'

They will be analysed ascendingly in the following order:
active' < top'
proper' < top'

Could not prove a rewrite lemma for the defined symbol active'.

Rules:
active'(from'(X)) → mark'(cons'(X, from'(s'(X))))
active'(sel'(0', cons'(X, Y))) → mark'(X)
active'(sel'(s'(X), cons'(Y, Z))) → mark'(sel'(X, Z))
active'(from'(X)) → from'(active'(X))
active'(cons'(X1, X2)) → cons'(active'(X1), X2)
active'(s'(X)) → s'(active'(X))
active'(sel'(X1, X2)) → sel'(active'(X1), X2)
active'(sel'(X1, X2)) → sel'(X1, active'(X2))
from'(mark'(X)) → mark'(from'(X))
cons'(mark'(X1), X2) → mark'(cons'(X1, X2))
s'(mark'(X)) → mark'(s'(X))
sel'(mark'(X1), X2) → mark'(sel'(X1, X2))
sel'(X1, mark'(X2)) → mark'(sel'(X1, X2))
proper'(from'(X)) → from'(proper'(X))
proper'(cons'(X1, X2)) → cons'(proper'(X1), proper'(X2))
proper'(s'(X)) → s'(proper'(X))
proper'(sel'(X1, X2)) → sel'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
from'(ok'(X)) → ok'(from'(X))
cons'(ok'(X1), ok'(X2)) → ok'(cons'(X1, X2))
s'(ok'(X)) → ok'(s'(X))
sel'(ok'(X1), ok'(X2)) → ok'(sel'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':0':ok' → mark':0':ok'
from' :: mark':0':ok' → mark':0':ok'
mark' :: mark':0':ok' → mark':0':ok'
cons' :: mark':0':ok' → mark':0':ok' → mark':0':ok'
s' :: mark':0':ok' → mark':0':ok'
sel' :: mark':0':ok' → mark':0':ok' → mark':0':ok'
0' :: mark':0':ok'
proper' :: mark':0':ok' → mark':0':ok'
ok' :: mark':0':ok' → mark':0':ok'
top' :: mark':0':ok' → top'
_hole_mark':0':ok'1 :: mark':0':ok'
_hole_top'2 :: top'
_gen_mark':0':ok'3 :: Nat → mark':0':ok'

Lemmas:
cons'(_gen_mark':0':ok'3(+(1, _n5)), _gen_mark':0':ok'3(b)) → _*4, rt ∈ Ω(n5)
from'(_gen_mark':0':ok'3(+(1, _n1661))) → _*4, rt ∈ Ω(n1661)
s'(_gen_mark':0':ok'3(+(1, _n2844))) → _*4, rt ∈ Ω(n2844)
sel'(_gen_mark':0':ok'3(+(1, _n4151)), _gen_mark':0':ok'3(b)) → _*4, rt ∈ Ω(n4151)

Generator Equations:
_gen_mark':0':ok'3(0) ⇔ 0'
_gen_mark':0':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':0':ok'3(x))

The following defined symbols remain to be analysed:
proper', top'

They will be analysed ascendingly in the following order:
proper' < top'

Could not prove a rewrite lemma for the defined symbol proper'.

Rules:
active'(from'(X)) → mark'(cons'(X, from'(s'(X))))
active'(sel'(0', cons'(X, Y))) → mark'(X)
active'(sel'(s'(X), cons'(Y, Z))) → mark'(sel'(X, Z))
active'(from'(X)) → from'(active'(X))
active'(cons'(X1, X2)) → cons'(active'(X1), X2)
active'(s'(X)) → s'(active'(X))
active'(sel'(X1, X2)) → sel'(active'(X1), X2)
active'(sel'(X1, X2)) → sel'(X1, active'(X2))
from'(mark'(X)) → mark'(from'(X))
cons'(mark'(X1), X2) → mark'(cons'(X1, X2))
s'(mark'(X)) → mark'(s'(X))
sel'(mark'(X1), X2) → mark'(sel'(X1, X2))
sel'(X1, mark'(X2)) → mark'(sel'(X1, X2))
proper'(from'(X)) → from'(proper'(X))
proper'(cons'(X1, X2)) → cons'(proper'(X1), proper'(X2))
proper'(s'(X)) → s'(proper'(X))
proper'(sel'(X1, X2)) → sel'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
from'(ok'(X)) → ok'(from'(X))
cons'(ok'(X1), ok'(X2)) → ok'(cons'(X1, X2))
s'(ok'(X)) → ok'(s'(X))
sel'(ok'(X1), ok'(X2)) → ok'(sel'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':0':ok' → mark':0':ok'
from' :: mark':0':ok' → mark':0':ok'
mark' :: mark':0':ok' → mark':0':ok'
cons' :: mark':0':ok' → mark':0':ok' → mark':0':ok'
s' :: mark':0':ok' → mark':0':ok'
sel' :: mark':0':ok' → mark':0':ok' → mark':0':ok'
0' :: mark':0':ok'
proper' :: mark':0':ok' → mark':0':ok'
ok' :: mark':0':ok' → mark':0':ok'
top' :: mark':0':ok' → top'
_hole_mark':0':ok'1 :: mark':0':ok'
_hole_top'2 :: top'
_gen_mark':0':ok'3 :: Nat → mark':0':ok'

Lemmas:
cons'(_gen_mark':0':ok'3(+(1, _n5)), _gen_mark':0':ok'3(b)) → _*4, rt ∈ Ω(n5)
from'(_gen_mark':0':ok'3(+(1, _n1661))) → _*4, rt ∈ Ω(n1661)
s'(_gen_mark':0':ok'3(+(1, _n2844))) → _*4, rt ∈ Ω(n2844)
sel'(_gen_mark':0':ok'3(+(1, _n4151)), _gen_mark':0':ok'3(b)) → _*4, rt ∈ Ω(n4151)

Generator Equations:
_gen_mark':0':ok'3(0) ⇔ 0'
_gen_mark':0':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':0':ok'3(x))

The following defined symbols remain to be analysed:
top'

Could not prove a rewrite lemma for the defined symbol top'.

Rules:
active'(from'(X)) → mark'(cons'(X, from'(s'(X))))
active'(sel'(0', cons'(X, Y))) → mark'(X)
active'(sel'(s'(X), cons'(Y, Z))) → mark'(sel'(X, Z))
active'(from'(X)) → from'(active'(X))
active'(cons'(X1, X2)) → cons'(active'(X1), X2)
active'(s'(X)) → s'(active'(X))
active'(sel'(X1, X2)) → sel'(active'(X1), X2)
active'(sel'(X1, X2)) → sel'(X1, active'(X2))
from'(mark'(X)) → mark'(from'(X))
cons'(mark'(X1), X2) → mark'(cons'(X1, X2))
s'(mark'(X)) → mark'(s'(X))
sel'(mark'(X1), X2) → mark'(sel'(X1, X2))
sel'(X1, mark'(X2)) → mark'(sel'(X1, X2))
proper'(from'(X)) → from'(proper'(X))
proper'(cons'(X1, X2)) → cons'(proper'(X1), proper'(X2))
proper'(s'(X)) → s'(proper'(X))
proper'(sel'(X1, X2)) → sel'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
from'(ok'(X)) → ok'(from'(X))
cons'(ok'(X1), ok'(X2)) → ok'(cons'(X1, X2))
s'(ok'(X)) → ok'(s'(X))
sel'(ok'(X1), ok'(X2)) → ok'(sel'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':0':ok' → mark':0':ok'
from' :: mark':0':ok' → mark':0':ok'
mark' :: mark':0':ok' → mark':0':ok'
cons' :: mark':0':ok' → mark':0':ok' → mark':0':ok'
s' :: mark':0':ok' → mark':0':ok'
sel' :: mark':0':ok' → mark':0':ok' → mark':0':ok'
0' :: mark':0':ok'
proper' :: mark':0':ok' → mark':0':ok'
ok' :: mark':0':ok' → mark':0':ok'
top' :: mark':0':ok' → top'
_hole_mark':0':ok'1 :: mark':0':ok'
_hole_top'2 :: top'
_gen_mark':0':ok'3 :: Nat → mark':0':ok'

Lemmas:
cons'(_gen_mark':0':ok'3(+(1, _n5)), _gen_mark':0':ok'3(b)) → _*4, rt ∈ Ω(n5)
from'(_gen_mark':0':ok'3(+(1, _n1661))) → _*4, rt ∈ Ω(n1661)
s'(_gen_mark':0':ok'3(+(1, _n2844))) → _*4, rt ∈ Ω(n2844)
sel'(_gen_mark':0':ok'3(+(1, _n4151)), _gen_mark':0':ok'3(b)) → _*4, rt ∈ Ω(n4151)

Generator Equations:
_gen_mark':0':ok'3(0) ⇔ 0'
_gen_mark':0':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':0':ok'3(x))

No more defined symbols left to analyse.

The lowerbound Ω(n) was proven with the following lemma:
cons'(_gen_mark':0':ok'3(+(1, _n5)), _gen_mark':0':ok'3(b)) → _*4, rt ∈ Ω(n5)