We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { fst(X1, X2) -> n__fst(X1, X2)
  , fst(0(), Z) -> nil()
  , fst(s(X), cons(Y, Z)) ->
    cons(Y, n__fst(activate(X), activate(Z)))
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2))
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(X)
  , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2))
  , activate(n__len(X)) -> len(activate(X))
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , add(X1, X2) -> n__add(X1, X2)
  , add(0(), X) -> X
  , add(s(X), Y) -> s(n__add(activate(X), Y))
  , len(X) -> n__len(X)
  , len(nil()) -> 0()
  , len(cons(X, Z)) -> s(n__len(activate(Z))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

Arguments of following rules are not normal-forms:

{ fst(s(X), cons(Y, Z)) ->
  cons(Y, n__fst(activate(X), activate(Z)))
, add(s(X), Y) -> s(n__add(activate(X), Y)) }

All above mentioned rules can be savely removed.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { fst(X1, X2) -> n__fst(X1, X2)
  , fst(0(), Z) -> nil()
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2))
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(X)
  , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2))
  , activate(n__len(X)) -> len(activate(X))
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , add(X1, X2) -> n__add(X1, X2)
  , add(0(), X) -> X
  , len(X) -> n__len(X)
  , len(nil()) -> 0()
  , len(cons(X, Z)) -> s(n__len(activate(Z))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(fst) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1},
  Uargs(add) = {1, 2}, Uargs(len) = {1}, Uargs(n__len) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

     [fst](x1, x2) = [1] x1 + [1] x2 + [0]
                                          
               [0] = [4]                  
                                          
             [nil] = [0]                  
                                          
           [s](x1) = [1] x1 + [0]         
                                          
    [cons](x1, x2) = [1] x2 + [0]         
                                          
  [n__fst](x1, x2) = [1] x1 + [1] x2 + [0]
                                          
    [activate](x1) = [1] x1 + [0]         
                                          
        [from](x1) = [1] x1 + [0]         
                                          
     [n__from](x1) = [1] x1 + [0]         
                                          
        [n__s](x1) = [1] x1 + [0]         
                                          
     [add](x1, x2) = [1] x1 + [1] x2 + [0]
                                          
  [n__add](x1, x2) = [1] x1 + [1] x2 + [0]
                                          
         [len](x1) = [1] x1 + [0]         
                                          
      [n__len](x1) = [1] x1 + [0]         

The order satisfies the following ordering constraints:

               [fst(X1, X2)] =  [1] X1 + [1] X2 + [0]            
                             >= [1] X1 + [1] X2 + [0]            
                             =  [n__fst(X1, X2)]                 
                                                                 
               [fst(0(), Z)] =  [1] Z + [4]                      
                             >  [0]                              
                             =  [nil()]                          
                                                                 
                      [s(X)] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [n__s(X)]                        
                                                                 
               [activate(X)] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [X]                              
                                                                 
  [activate(n__fst(X1, X2))] =  [1] X1 + [1] X2 + [0]            
                             >= [1] X1 + [1] X2 + [0]            
                             =  [fst(activate(X1), activate(X2))]
                                                                 
      [activate(n__from(X))] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [from(activate(X))]              
                                                                 
         [activate(n__s(X))] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [s(X)]                           
                                                                 
  [activate(n__add(X1, X2))] =  [1] X1 + [1] X2 + [0]            
                             >= [1] X1 + [1] X2 + [0]            
                             =  [add(activate(X1), activate(X2))]
                                                                 
       [activate(n__len(X))] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [len(activate(X))]               
                                                                 
                   [from(X)] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [cons(X, n__from(n__s(X)))]      
                                                                 
                   [from(X)] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [n__from(X)]                     
                                                                 
               [add(X1, X2)] =  [1] X1 + [1] X2 + [0]            
                             >= [1] X1 + [1] X2 + [0]            
                             =  [n__add(X1, X2)]                 
                                                                 
               [add(0(), X)] =  [1] X + [4]                      
                             >  [1] X + [0]                      
                             =  [X]                              
                                                                 
                    [len(X)] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [n__len(X)]                      
                                                                 
                [len(nil())] =  [0]                              
                             ?  [4]                              
                             =  [0()]                            
                                                                 
           [len(cons(X, Z))] =  [1] Z + [0]                      
                             >= [1] Z + [0]                      
                             =  [s(n__len(activate(Z)))]         
                                                                 

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { fst(X1, X2) -> n__fst(X1, X2)
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2))
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(X)
  , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2))
  , activate(n__len(X)) -> len(activate(X))
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , add(X1, X2) -> n__add(X1, X2)
  , len(X) -> n__len(X)
  , len(nil()) -> 0()
  , len(cons(X, Z)) -> s(n__len(activate(Z))) }
Weak Trs:
  { fst(0(), Z) -> nil()
  , add(0(), X) -> X }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(fst) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1},
  Uargs(add) = {1, 2}, Uargs(len) = {1}, Uargs(n__len) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

     [fst](x1, x2) = [1] x1 + [1] x2 + [1]
                                          
               [0] = [4]                  
                                          
             [nil] = [0]                  
                                          
           [s](x1) = [1] x1 + [0]         
                                          
    [cons](x1, x2) = [1] x2 + [0]         
                                          
  [n__fst](x1, x2) = [1] x1 + [1] x2 + [0]
                                          
    [activate](x1) = [1] x1 + [0]         
                                          
        [from](x1) = [1] x1 + [0]         
                                          
     [n__from](x1) = [1] x1 + [0]         
                                          
        [n__s](x1) = [1] x1 + [0]         
                                          
     [add](x1, x2) = [1] x1 + [1] x2 + [0]
                                          
  [n__add](x1, x2) = [1] x1 + [1] x2 + [0]
                                          
         [len](x1) = [1] x1 + [0]         
                                          
      [n__len](x1) = [1] x1 + [0]         

The order satisfies the following ordering constraints:

               [fst(X1, X2)] =  [1] X1 + [1] X2 + [1]            
                             >  [1] X1 + [1] X2 + [0]            
                             =  [n__fst(X1, X2)]                 
                                                                 
               [fst(0(), Z)] =  [1] Z + [5]                      
                             >  [0]                              
                             =  [nil()]                          
                                                                 
                      [s(X)] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [n__s(X)]                        
                                                                 
               [activate(X)] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [X]                              
                                                                 
  [activate(n__fst(X1, X2))] =  [1] X1 + [1] X2 + [0]            
                             ?  [1] X1 + [1] X2 + [1]            
                             =  [fst(activate(X1), activate(X2))]
                                                                 
      [activate(n__from(X))] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [from(activate(X))]              
                                                                 
         [activate(n__s(X))] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [s(X)]                           
                                                                 
  [activate(n__add(X1, X2))] =  [1] X1 + [1] X2 + [0]            
                             >= [1] X1 + [1] X2 + [0]            
                             =  [add(activate(X1), activate(X2))]
                                                                 
       [activate(n__len(X))] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [len(activate(X))]               
                                                                 
                   [from(X)] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [cons(X, n__from(n__s(X)))]      
                                                                 
                   [from(X)] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [n__from(X)]                     
                                                                 
               [add(X1, X2)] =  [1] X1 + [1] X2 + [0]            
                             >= [1] X1 + [1] X2 + [0]            
                             =  [n__add(X1, X2)]                 
                                                                 
               [add(0(), X)] =  [1] X + [4]                      
                             >  [1] X + [0]                      
                             =  [X]                              
                                                                 
                    [len(X)] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [n__len(X)]                      
                                                                 
                [len(nil())] =  [0]                              
                             ?  [4]                              
                             =  [0()]                            
                                                                 
           [len(cons(X, Z))] =  [1] Z + [0]                      
                             >= [1] Z + [0]                      
                             =  [s(n__len(activate(Z)))]         
                                                                 

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2))
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(X)
  , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2))
  , activate(n__len(X)) -> len(activate(X))
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , add(X1, X2) -> n__add(X1, X2)
  , len(X) -> n__len(X)
  , len(nil()) -> 0()
  , len(cons(X, Z)) -> s(n__len(activate(Z))) }
Weak Trs:
  { fst(X1, X2) -> n__fst(X1, X2)
  , fst(0(), Z) -> nil()
  , add(0(), X) -> X }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(fst) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1},
  Uargs(add) = {1, 2}, Uargs(len) = {1}, Uargs(n__len) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

     [fst](x1, x2) = [1] x1 + [1] x2 + [0]
                                          
               [0] = [4]                  
                                          
             [nil] = [0]                  
                                          
           [s](x1) = [1] x1 + [0]         
                                          
    [cons](x1, x2) = [1] x2 + [0]         
                                          
  [n__fst](x1, x2) = [1] x1 + [1] x2 + [0]
                                          
    [activate](x1) = [1] x1 + [0]         
                                          
        [from](x1) = [1] x1 + [0]         
                                          
     [n__from](x1) = [1] x1 + [0]         
                                          
        [n__s](x1) = [1] x1 + [0]         
                                          
     [add](x1, x2) = [1] x1 + [1] x2 + [0]
                                          
  [n__add](x1, x2) = [1] x1 + [1] x2 + [0]
                                          
         [len](x1) = [1] x1 + [1]         
                                          
      [n__len](x1) = [1] x1 + [0]         

The order satisfies the following ordering constraints:

               [fst(X1, X2)] =  [1] X1 + [1] X2 + [0]            
                             >= [1] X1 + [1] X2 + [0]            
                             =  [n__fst(X1, X2)]                 
                                                                 
               [fst(0(), Z)] =  [1] Z + [4]                      
                             >  [0]                              
                             =  [nil()]                          
                                                                 
                      [s(X)] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [n__s(X)]                        
                                                                 
               [activate(X)] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [X]                              
                                                                 
  [activate(n__fst(X1, X2))] =  [1] X1 + [1] X2 + [0]            
                             >= [1] X1 + [1] X2 + [0]            
                             =  [fst(activate(X1), activate(X2))]
                                                                 
      [activate(n__from(X))] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [from(activate(X))]              
                                                                 
         [activate(n__s(X))] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [s(X)]                           
                                                                 
  [activate(n__add(X1, X2))] =  [1] X1 + [1] X2 + [0]            
                             >= [1] X1 + [1] X2 + [0]            
                             =  [add(activate(X1), activate(X2))]
                                                                 
       [activate(n__len(X))] =  [1] X + [0]                      
                             ?  [1] X + [1]                      
                             =  [len(activate(X))]               
                                                                 
                   [from(X)] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [cons(X, n__from(n__s(X)))]      
                                                                 
                   [from(X)] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [n__from(X)]                     
                                                                 
               [add(X1, X2)] =  [1] X1 + [1] X2 + [0]            
                             >= [1] X1 + [1] X2 + [0]            
                             =  [n__add(X1, X2)]                 
                                                                 
               [add(0(), X)] =  [1] X + [4]                      
                             >  [1] X + [0]                      
                             =  [X]                              
                                                                 
                    [len(X)] =  [1] X + [1]                      
                             >  [1] X + [0]                      
                             =  [n__len(X)]                      
                                                                 
                [len(nil())] =  [1]                              
                             ?  [4]                              
                             =  [0()]                            
                                                                 
           [len(cons(X, Z))] =  [1] Z + [1]                      
                             >  [1] Z + [0]                      
                             =  [s(n__len(activate(Z)))]         
                                                                 

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2))
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(X)
  , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2))
  , activate(n__len(X)) -> len(activate(X))
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , add(X1, X2) -> n__add(X1, X2)
  , len(nil()) -> 0() }
Weak Trs:
  { fst(X1, X2) -> n__fst(X1, X2)
  , fst(0(), Z) -> nil()
  , add(0(), X) -> X
  , len(X) -> n__len(X)
  , len(cons(X, Z)) -> s(n__len(activate(Z))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(fst) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1},
  Uargs(add) = {1, 2}, Uargs(len) = {1}, Uargs(n__len) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

     [fst](x1, x2) = [1] x1 + [1] x2 + [4]
                                          
               [0] = [4]                  
                                          
             [nil] = [4]                  
                                          
           [s](x1) = [1] x1 + [0]         
                                          
    [cons](x1, x2) = [1] x2 + [4]         
                                          
  [n__fst](x1, x2) = [1] x1 + [1] x2 + [0]
                                          
    [activate](x1) = [1] x1 + [0]         
                                          
        [from](x1) = [1] x1 + [0]         
                                          
     [n__from](x1) = [1] x1 + [0]         
                                          
        [n__s](x1) = [1] x1 + [0]         
                                          
     [add](x1, x2) = [1] x1 + [1] x2 + [0]
                                          
  [n__add](x1, x2) = [1] x1 + [1] x2 + [0]
                                          
         [len](x1) = [1] x1 + [4]         
                                          
      [n__len](x1) = [1] x1 + [0]         

The order satisfies the following ordering constraints:

               [fst(X1, X2)] =  [1] X1 + [1] X2 + [4]            
                             >  [1] X1 + [1] X2 + [0]            
                             =  [n__fst(X1, X2)]                 
                                                                 
               [fst(0(), Z)] =  [1] Z + [8]                      
                             >  [4]                              
                             =  [nil()]                          
                                                                 
                      [s(X)] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [n__s(X)]                        
                                                                 
               [activate(X)] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [X]                              
                                                                 
  [activate(n__fst(X1, X2))] =  [1] X1 + [1] X2 + [0]            
                             ?  [1] X1 + [1] X2 + [4]            
                             =  [fst(activate(X1), activate(X2))]
                                                                 
      [activate(n__from(X))] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [from(activate(X))]              
                                                                 
         [activate(n__s(X))] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [s(X)]                           
                                                                 
  [activate(n__add(X1, X2))] =  [1] X1 + [1] X2 + [0]            
                             >= [1] X1 + [1] X2 + [0]            
                             =  [add(activate(X1), activate(X2))]
                                                                 
       [activate(n__len(X))] =  [1] X + [0]                      
                             ?  [1] X + [4]                      
                             =  [len(activate(X))]               
                                                                 
                   [from(X)] =  [1] X + [0]                      
                             ?  [1] X + [4]                      
                             =  [cons(X, n__from(n__s(X)))]      
                                                                 
                   [from(X)] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [n__from(X)]                     
                                                                 
               [add(X1, X2)] =  [1] X1 + [1] X2 + [0]            
                             >= [1] X1 + [1] X2 + [0]            
                             =  [n__add(X1, X2)]                 
                                                                 
               [add(0(), X)] =  [1] X + [4]                      
                             >  [1] X + [0]                      
                             =  [X]                              
                                                                 
                    [len(X)] =  [1] X + [4]                      
                             >  [1] X + [0]                      
                             =  [n__len(X)]                      
                                                                 
                [len(nil())] =  [8]                              
                             >  [4]                              
                             =  [0()]                            
                                                                 
           [len(cons(X, Z))] =  [1] Z + [8]                      
                             >  [1] Z + [0]                      
                             =  [s(n__len(activate(Z)))]         
                                                                 

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2))
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(X)
  , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2))
  , activate(n__len(X)) -> len(activate(X))
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , add(X1, X2) -> n__add(X1, X2) }
Weak Trs:
  { fst(X1, X2) -> n__fst(X1, X2)
  , fst(0(), Z) -> nil()
  , add(0(), X) -> X
  , len(X) -> n__len(X)
  , len(nil()) -> 0()
  , len(cons(X, Z)) -> s(n__len(activate(Z))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(fst) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1},
  Uargs(add) = {1, 2}, Uargs(len) = {1}, Uargs(n__len) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

     [fst](x1, x2) = [1] x1 + [1] x2 + [6]
                                          
               [0] = [2]                  
                                          
             [nil] = [0]                  
                                          
           [s](x1) = [1] x1 + [0]         
                                          
    [cons](x1, x2) = [1] x2 + [4]         
                                          
  [n__fst](x1, x2) = [1] x1 + [1] x2 + [0]
                                          
    [activate](x1) = [1] x1 + [1]         
                                          
        [from](x1) = [1] x1 + [0]         
                                          
     [n__from](x1) = [1] x1 + [0]         
                                          
        [n__s](x1) = [1] x1 + [0]         
                                          
     [add](x1, x2) = [1] x1 + [1] x2 + [2]
                                          
  [n__add](x1, x2) = [1] x1 + [1] x2 + [0]
                                          
         [len](x1) = [1] x1 + [4]         
                                          
      [n__len](x1) = [1] x1 + [0]         

The order satisfies the following ordering constraints:

               [fst(X1, X2)] =  [1] X1 + [1] X2 + [6]            
                             >  [1] X1 + [1] X2 + [0]            
                             =  [n__fst(X1, X2)]                 
                                                                 
               [fst(0(), Z)] =  [1] Z + [8]                      
                             >  [0]                              
                             =  [nil()]                          
                                                                 
                      [s(X)] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [n__s(X)]                        
                                                                 
               [activate(X)] =  [1] X + [1]                      
                             >  [1] X + [0]                      
                             =  [X]                              
                                                                 
  [activate(n__fst(X1, X2))] =  [1] X1 + [1] X2 + [1]            
                             ?  [1] X1 + [1] X2 + [8]            
                             =  [fst(activate(X1), activate(X2))]
                                                                 
      [activate(n__from(X))] =  [1] X + [1]                      
                             >= [1] X + [1]                      
                             =  [from(activate(X))]              
                                                                 
         [activate(n__s(X))] =  [1] X + [1]                      
                             >  [1] X + [0]                      
                             =  [s(X)]                           
                                                                 
  [activate(n__add(X1, X2))] =  [1] X1 + [1] X2 + [1]            
                             ?  [1] X1 + [1] X2 + [4]            
                             =  [add(activate(X1), activate(X2))]
                                                                 
       [activate(n__len(X))] =  [1] X + [1]                      
                             ?  [1] X + [5]                      
                             =  [len(activate(X))]               
                                                                 
                   [from(X)] =  [1] X + [0]                      
                             ?  [1] X + [4]                      
                             =  [cons(X, n__from(n__s(X)))]      
                                                                 
                   [from(X)] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [n__from(X)]                     
                                                                 
               [add(X1, X2)] =  [1] X1 + [1] X2 + [2]            
                             >  [1] X1 + [1] X2 + [0]            
                             =  [n__add(X1, X2)]                 
                                                                 
               [add(0(), X)] =  [1] X + [4]                      
                             >  [1] X + [0]                      
                             =  [X]                              
                                                                 
                    [len(X)] =  [1] X + [4]                      
                             >  [1] X + [0]                      
                             =  [n__len(X)]                      
                                                                 
                [len(nil())] =  [4]                              
                             >  [2]                              
                             =  [0()]                            
                                                                 
           [len(cons(X, Z))] =  [1] Z + [8]                      
                             >  [1] Z + [1]                      
                             =  [s(n__len(activate(Z)))]         
                                                                 

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { s(X) -> n__s(X)
  , activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2))
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2))
  , activate(n__len(X)) -> len(activate(X))
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X) }
Weak Trs:
  { fst(X1, X2) -> n__fst(X1, X2)
  , fst(0(), Z) -> nil()
  , activate(X) -> X
  , activate(n__s(X)) -> s(X)
  , add(X1, X2) -> n__add(X1, X2)
  , add(0(), X) -> X
  , len(X) -> n__len(X)
  , len(nil()) -> 0()
  , len(cons(X, Z)) -> s(n__len(activate(Z))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(fst) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1},
  Uargs(add) = {1, 2}, Uargs(len) = {1}, Uargs(n__len) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

     [fst](x1, x2) = [1] x1 + [1] x2 + [1]
                                          
               [0] = [3]                  
                                          
             [nil] = [0]                  
                                          
           [s](x1) = [1] x1 + [0]         
                                          
    [cons](x1, x2) = [1] x2 + [4]         
                                          
  [n__fst](x1, x2) = [1] x1 + [1] x2 + [0]
                                          
    [activate](x1) = [1] x1 + [0]         
                                          
        [from](x1) = [1] x1 + [0]         
                                          
     [n__from](x1) = [1] x1 + [4]         
                                          
        [n__s](x1) = [1] x1 + [4]         
                                          
     [add](x1, x2) = [1] x1 + [1] x2 + [0]
                                          
  [n__add](x1, x2) = [1] x1 + [1] x2 + [0]
                                          
         [len](x1) = [1] x1 + [4]         
                                          
      [n__len](x1) = [1] x1 + [0]         

The order satisfies the following ordering constraints:

               [fst(X1, X2)] =  [1] X1 + [1] X2 + [1]            
                             >  [1] X1 + [1] X2 + [0]            
                             =  [n__fst(X1, X2)]                 
                                                                 
               [fst(0(), Z)] =  [1] Z + [4]                      
                             >  [0]                              
                             =  [nil()]                          
                                                                 
                      [s(X)] =  [1] X + [0]                      
                             ?  [1] X + [4]                      
                             =  [n__s(X)]                        
                                                                 
               [activate(X)] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [X]                              
                                                                 
  [activate(n__fst(X1, X2))] =  [1] X1 + [1] X2 + [0]            
                             ?  [1] X1 + [1] X2 + [1]            
                             =  [fst(activate(X1), activate(X2))]
                                                                 
      [activate(n__from(X))] =  [1] X + [4]                      
                             >  [1] X + [0]                      
                             =  [from(activate(X))]              
                                                                 
         [activate(n__s(X))] =  [1] X + [4]                      
                             >  [1] X + [0]                      
                             =  [s(X)]                           
                                                                 
  [activate(n__add(X1, X2))] =  [1] X1 + [1] X2 + [0]            
                             >= [1] X1 + [1] X2 + [0]            
                             =  [add(activate(X1), activate(X2))]
                                                                 
       [activate(n__len(X))] =  [1] X + [0]                      
                             ?  [1] X + [4]                      
                             =  [len(activate(X))]               
                                                                 
                   [from(X)] =  [1] X + [0]                      
                             ?  [1] X + [12]                     
                             =  [cons(X, n__from(n__s(X)))]      
                                                                 
                   [from(X)] =  [1] X + [0]                      
                             ?  [1] X + [4]                      
                             =  [n__from(X)]                     
                                                                 
               [add(X1, X2)] =  [1] X1 + [1] X2 + [0]            
                             >= [1] X1 + [1] X2 + [0]            
                             =  [n__add(X1, X2)]                 
                                                                 
               [add(0(), X)] =  [1] X + [3]                      
                             >  [1] X + [0]                      
                             =  [X]                              
                                                                 
                    [len(X)] =  [1] X + [4]                      
                             >  [1] X + [0]                      
                             =  [n__len(X)]                      
                                                                 
                [len(nil())] =  [4]                              
                             >  [3]                              
                             =  [0()]                            
                                                                 
           [len(cons(X, Z))] =  [1] Z + [8]                      
                             >  [1] Z + [0]                      
                             =  [s(n__len(activate(Z)))]         
                                                                 

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { s(X) -> n__s(X)
  , activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2))
  , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2))
  , activate(n__len(X)) -> len(activate(X))
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X) }
Weak Trs:
  { fst(X1, X2) -> n__fst(X1, X2)
  , fst(0(), Z) -> nil()
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(X)
  , add(X1, X2) -> n__add(X1, X2)
  , add(0(), X) -> X
  , len(X) -> n__len(X)
  , len(nil()) -> 0()
  , len(cons(X, Z)) -> s(n__len(activate(Z))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(fst) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1},
  Uargs(add) = {1, 2}, Uargs(len) = {1}, Uargs(n__len) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

     [fst](x1, x2) = [1] x1 + [1] x2 + [6]
                                          
               [0] = [0]                  
                                          
             [nil] = [0]                  
                                          
           [s](x1) = [1] x1 + [1]         
                                          
    [cons](x1, x2) = [1] x2 + [0]         
                                          
  [n__fst](x1, x2) = [1] x1 + [1] x2 + [0]
                                          
    [activate](x1) = [1] x1 + [1]         
                                          
        [from](x1) = [1] x1 + [0]         
                                          
     [n__from](x1) = [1] x1 + [0]         
                                          
        [n__s](x1) = [1] x1 + [0]         
                                          
     [add](x1, x2) = [1] x1 + [1] x2 + [0]
                                          
  [n__add](x1, x2) = [1] x1 + [1] x2 + [0]
                                          
         [len](x1) = [1] x1 + [4]         
                                          
      [n__len](x1) = [1] x1 + [0]         

The order satisfies the following ordering constraints:

               [fst(X1, X2)] =  [1] X1 + [1] X2 + [6]            
                             >  [1] X1 + [1] X2 + [0]            
                             =  [n__fst(X1, X2)]                 
                                                                 
               [fst(0(), Z)] =  [1] Z + [6]                      
                             >  [0]                              
                             =  [nil()]                          
                                                                 
                      [s(X)] =  [1] X + [1]                      
                             >  [1] X + [0]                      
                             =  [n__s(X)]                        
                                                                 
               [activate(X)] =  [1] X + [1]                      
                             >  [1] X + [0]                      
                             =  [X]                              
                                                                 
  [activate(n__fst(X1, X2))] =  [1] X1 + [1] X2 + [1]            
                             ?  [1] X1 + [1] X2 + [8]            
                             =  [fst(activate(X1), activate(X2))]
                                                                 
      [activate(n__from(X))] =  [1] X + [1]                      
                             >= [1] X + [1]                      
                             =  [from(activate(X))]              
                                                                 
         [activate(n__s(X))] =  [1] X + [1]                      
                             >= [1] X + [1]                      
                             =  [s(X)]                           
                                                                 
  [activate(n__add(X1, X2))] =  [1] X1 + [1] X2 + [1]            
                             ?  [1] X1 + [1] X2 + [2]            
                             =  [add(activate(X1), activate(X2))]
                                                                 
       [activate(n__len(X))] =  [1] X + [1]                      
                             ?  [1] X + [5]                      
                             =  [len(activate(X))]               
                                                                 
                   [from(X)] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [cons(X, n__from(n__s(X)))]      
                                                                 
                   [from(X)] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [n__from(X)]                     
                                                                 
               [add(X1, X2)] =  [1] X1 + [1] X2 + [0]            
                             >= [1] X1 + [1] X2 + [0]            
                             =  [n__add(X1, X2)]                 
                                                                 
               [add(0(), X)] =  [1] X + [0]                      
                             >= [1] X + [0]                      
                             =  [X]                              
                                                                 
                    [len(X)] =  [1] X + [4]                      
                             >  [1] X + [0]                      
                             =  [n__len(X)]                      
                                                                 
                [len(nil())] =  [4]                              
                             >  [0]                              
                             =  [0()]                            
                                                                 
           [len(cons(X, Z))] =  [1] Z + [4]                      
                             >  [1] Z + [2]                      
                             =  [s(n__len(activate(Z)))]         
                                                                 

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2))
  , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2))
  , activate(n__len(X)) -> len(activate(X))
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X) }
Weak Trs:
  { fst(X1, X2) -> n__fst(X1, X2)
  , fst(0(), Z) -> nil()
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(X)
  , add(X1, X2) -> n__add(X1, X2)
  , add(0(), X) -> X
  , len(X) -> n__len(X)
  , len(nil()) -> 0()
  , len(cons(X, Z)) -> s(n__len(activate(Z))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 2' to
orient following rules strictly.

Trs:
  { activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) }

The induced complexity on above rules (modulo remaining rules) is
YES(?,O(n^1)) . These rules are moved into the corresponding weak
component(s).

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(fst) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1},
    Uargs(add) = {1, 2}, Uargs(len) = {1}, Uargs(n__len) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA) and not(IDA(1)).
  
       [fst](x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                       [0 1]      [0 1]      [0]
                                                
                 [0] = [0]                      
                       [0]                      
                                                
               [nil] = [0]                      
                       [0]                      
                                                
             [s](x1) = [1 0] x1 + [0]           
                       [0 0]      [0]           
                                                
      [cons](x1, x2) = [0 0] x1 + [1 1] x2 + [0]
                       [0 1]      [0 0]      [0]
                                                
    [n__fst](x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                       [0 1]      [0 1]      [0]
                                                
      [activate](x1) = [1 1] x1 + [0]           
                       [0 1]      [0]           
                                                
          [from](x1) = [1 0] x1 + [0]           
                       [0 1]      [0]           
                                                
       [n__from](x1) = [1 0] x1 + [0]           
                       [0 1]      [0]           
                                                
          [n__s](x1) = [1 0] x1 + [0]           
                       [0 0]      [0]           
                                                
       [add](x1, x2) = [1 0] x1 + [1 0] x2 + [4]
                       [0 1]      [0 1]      [1]
                                                
    [n__add](x1, x2) = [1 0] x1 + [1 0] x2 + [4]
                       [0 1]      [0 1]      [1]
                                                
           [len](x1) = [1 0] x1 + [1]           
                       [0 1]      [1]           
                                                
        [n__len](x1) = [1 0] x1 + [0]           
                       [0 1]      [1]           
  
  The order satisfies the following ordering constraints:
  
                 [fst(X1, X2)] =  [1 0] X1 + [1 0] X2 + [0]        
                                  [0 1]      [0 1]      [0]        
                               >= [1 0] X1 + [1 0] X2 + [0]        
                                  [0 1]      [0 1]      [0]        
                               =  [n__fst(X1, X2)]                 
                                                                   
                 [fst(0(), Z)] =  [1 0] Z + [0]                    
                                  [0 1]     [0]                    
                               >= [0]                              
                                  [0]                              
                               =  [nil()]                          
                                                                   
                        [s(X)] =  [1 0] X + [0]                    
                                  [0 0]     [0]                    
                               >= [1 0] X + [0]                    
                                  [0 0]     [0]                    
                               =  [n__s(X)]                        
                                                                   
                 [activate(X)] =  [1 1] X + [0]                    
                                  [0 1]     [0]                    
                               >= [1 0] X + [0]                    
                                  [0 1]     [0]                    
                               =  [X]                              
                                                                   
    [activate(n__fst(X1, X2))] =  [1 1] X1 + [1 1] X2 + [0]        
                                  [0 1]      [0 1]      [0]        
                               >= [1 1] X1 + [1 1] X2 + [0]        
                                  [0 1]      [0 1]      [0]        
                               =  [fst(activate(X1), activate(X2))]
                                                                   
        [activate(n__from(X))] =  [1 1] X + [0]                    
                                  [0 1]     [0]                    
                               >= [1 1] X + [0]                    
                                  [0 1]     [0]                    
                               =  [from(activate(X))]              
                                                                   
           [activate(n__s(X))] =  [1 0] X + [0]                    
                                  [0 0]     [0]                    
                               >= [1 0] X + [0]                    
                                  [0 0]     [0]                    
                               =  [s(X)]                           
                                                                   
    [activate(n__add(X1, X2))] =  [1 1] X1 + [1 1] X2 + [5]        
                                  [0 1]      [0 1]      [1]        
                               >  [1 1] X1 + [1 1] X2 + [4]        
                                  [0 1]      [0 1]      [1]        
                               =  [add(activate(X1), activate(X2))]
                                                                   
         [activate(n__len(X))] =  [1 1] X + [1]                    
                                  [0 1]     [1]                    
                               >= [1 1] X + [1]                    
                                  [0 1]     [1]                    
                               =  [len(activate(X))]               
                                                                   
                     [from(X)] =  [1 0] X + [0]                    
                                  [0 1]     [0]                    
                               >= [1 0] X + [0]                    
                                  [0 1]     [0]                    
                               =  [cons(X, n__from(n__s(X)))]      
                                                                   
                     [from(X)] =  [1 0] X + [0]                    
                                  [0 1]     [0]                    
                               >= [1 0] X + [0]                    
                                  [0 1]     [0]                    
                               =  [n__from(X)]                     
                                                                   
                 [add(X1, X2)] =  [1 0] X1 + [1 0] X2 + [4]        
                                  [0 1]      [0 1]      [1]        
                               >= [1 0] X1 + [1 0] X2 + [4]        
                                  [0 1]      [0 1]      [1]        
                               =  [n__add(X1, X2)]                 
                                                                   
                 [add(0(), X)] =  [1 0] X + [4]                    
                                  [0 1]     [1]                    
                               >  [1 0] X + [0]                    
                                  [0 1]     [0]                    
                               =  [X]                              
                                                                   
                      [len(X)] =  [1 0] X + [1]                    
                                  [0 1]     [1]                    
                               >  [1 0] X + [0]                    
                                  [0 1]     [1]                    
                               =  [n__len(X)]                      
                                                                   
                  [len(nil())] =  [1]                              
                                  [1]                              
                               >  [0]                              
                                  [0]                              
                               =  [0()]                            
                                                                   
             [len(cons(X, Z))] =  [1 1] Z + [0 0] X + [1]          
                                  [0 0]     [0 1]     [1]          
                               >  [1 1] Z + [0]                    
                                  [0 0]     [0]                    
                               =  [s(n__len(activate(Z)))]         
                                                                   

We return to the main proof.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2))
  , activate(n__len(X)) -> len(activate(X))
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X) }
Weak Trs:
  { fst(X1, X2) -> n__fst(X1, X2)
  , fst(0(), Z) -> nil()
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(X)
  , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2))
  , add(X1, X2) -> n__add(X1, X2)
  , add(0(), X) -> X
  , len(X) -> n__len(X)
  , len(nil()) -> 0()
  , len(cons(X, Z)) -> s(n__len(activate(Z))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 2' to
orient following rules strictly.

Trs:
  { activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2))
  , activate(n__len(X)) -> len(activate(X)) }

The induced complexity on above rules (modulo remaining rules) is
YES(?,O(n^1)) . These rules are moved into the corresponding weak
component(s).

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(fst) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1},
    Uargs(add) = {1, 2}, Uargs(len) = {1}, Uargs(n__len) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA) and not(IDA(1)).
  
       [fst](x1, x2) = [1 0] x1 + [1 0] x2 + [5]
                       [0 1]      [0 1]      [2]
                                                
                 [0] = [4]                      
                       [0]                      
                                                
               [nil] = [6]                      
                       [0]                      
                                                
             [s](x1) = [1 0] x1 + [1]           
                       [0 0]      [0]           
                                                
      [cons](x1, x2) = [1 6] x2 + [0]           
                       [0 0]      [0]           
                                                
    [n__fst](x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                       [0 1]      [0 1]      [2]
                                                
      [activate](x1) = [1 5] x1 + [1]           
                       [1 1]      [0]           
                                                
          [from](x1) = [1 0] x1 + [1]           
                       [0 1]      [1]           
                                                
       [n__from](x1) = [1 0] x1 + [1]           
                       [0 1]      [0]           
                                                
          [n__s](x1) = [1 0] x1 + [0]           
                       [0 0]      [0]           
                                                
       [add](x1, x2) = [1 0] x1 + [1 0] x2 + [7]
                       [0 1]      [0 1]      [1]
                                                
    [n__add](x1, x2) = [1 0] x1 + [1 0] x2 + [7]
                       [0 1]      [0 1]      [1]
                                                
           [len](x1) = [1 0] x1 + [2]           
                       [0 1]      [1]           
                                                
        [n__len](x1) = [1 0] x1 + [0]           
                       [0 1]      [1]           
  
  The order satisfies the following ordering constraints:
  
                 [fst(X1, X2)] =  [1 0] X1 + [1 0] X2 + [5]        
                                  [0 1]      [0 1]      [2]        
                               >  [1 0] X1 + [1 0] X2 + [0]        
                                  [0 1]      [0 1]      [2]        
                               =  [n__fst(X1, X2)]                 
                                                                   
                 [fst(0(), Z)] =  [1 0] Z + [9]                    
                                  [0 1]     [2]                    
                               >  [6]                              
                                  [0]                              
                               =  [nil()]                          
                                                                   
                        [s(X)] =  [1 0] X + [1]                    
                                  [0 0]     [0]                    
                               >  [1 0] X + [0]                    
                                  [0 0]     [0]                    
                               =  [n__s(X)]                        
                                                                   
                 [activate(X)] =  [1 5] X + [1]                    
                                  [1 1]     [0]                    
                               >  [1 0] X + [0]                    
                                  [0 1]     [0]                    
                               =  [X]                              
                                                                   
    [activate(n__fst(X1, X2))] =  [1 5] X1 + [1 5] X2 + [11]       
                                  [1 1]      [1 1]      [2]        
                               >  [1 5] X1 + [1 5] X2 + [7]        
                                  [1 1]      [1 1]      [2]        
                               =  [fst(activate(X1), activate(X2))]
                                                                   
        [activate(n__from(X))] =  [1 5] X + [2]                    
                                  [1 1]     [1]                    
                               >= [1 5] X + [2]                    
                                  [1 1]     [1]                    
                               =  [from(activate(X))]              
                                                                   
           [activate(n__s(X))] =  [1 0] X + [1]                    
                                  [1 0]     [0]                    
                               >= [1 0] X + [1]                    
                                  [0 0]     [0]                    
                               =  [s(X)]                           
                                                                   
    [activate(n__add(X1, X2))] =  [1 5] X1 + [1 5] X2 + [13]       
                                  [1 1]      [1 1]      [8]        
                               >  [1 5] X1 + [1 5] X2 + [9]        
                                  [1 1]      [1 1]      [1]        
                               =  [add(activate(X1), activate(X2))]
                                                                   
         [activate(n__len(X))] =  [1 5] X + [6]                    
                                  [1 1]     [1]                    
                               >  [1 5] X + [3]                    
                                  [1 1]     [1]                    
                               =  [len(activate(X))]               
                                                                   
                     [from(X)] =  [1 0] X + [1]                    
                                  [0 1]     [1]                    
                               >= [1 0] X + [1]                    
                                  [0 0]     [0]                    
                               =  [cons(X, n__from(n__s(X)))]      
                                                                   
                     [from(X)] =  [1 0] X + [1]                    
                                  [0 1]     [1]                    
                               >= [1 0] X + [1]                    
                                  [0 1]     [0]                    
                               =  [n__from(X)]                     
                                                                   
                 [add(X1, X2)] =  [1 0] X1 + [1 0] X2 + [7]        
                                  [0 1]      [0 1]      [1]        
                               >= [1 0] X1 + [1 0] X2 + [7]        
                                  [0 1]      [0 1]      [1]        
                               =  [n__add(X1, X2)]                 
                                                                   
                 [add(0(), X)] =  [1 0] X + [11]                   
                                  [0 1]     [1]                    
                               >  [1 0] X + [0]                    
                                  [0 1]     [0]                    
                               =  [X]                              
                                                                   
                      [len(X)] =  [1 0] X + [2]                    
                                  [0 1]     [1]                    
                               >  [1 0] X + [0]                    
                                  [0 1]     [1]                    
                               =  [n__len(X)]                      
                                                                   
                  [len(nil())] =  [8]                              
                                  [1]                              
                               >  [4]                              
                                  [0]                              
                               =  [0()]                            
                                                                   
             [len(cons(X, Z))] =  [1 6] Z + [2]                    
                                  [0 0]     [1]                    
                               >= [1 5] Z + [2]                    
                                  [0 0]     [0]                    
                               =  [s(n__len(activate(Z)))]         
                                                                   

We return to the main proof.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X) }
Weak Trs:
  { fst(X1, X2) -> n__fst(X1, X2)
  , fst(0(), Z) -> nil()
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2))
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(X)
  , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2))
  , activate(n__len(X)) -> len(activate(X))
  , add(X1, X2) -> n__add(X1, X2)
  , add(0(), X) -> X
  , len(X) -> n__len(X)
  , len(nil()) -> 0()
  , len(cons(X, Z)) -> s(n__len(activate(Z))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 2' to
orient following rules strictly.

Trs: { from(X) -> n__from(X) }

The induced complexity on above rules (modulo remaining rules) is
YES(?,O(n^1)) . These rules are moved into the corresponding weak
component(s).

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(fst) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1},
    Uargs(add) = {1, 2}, Uargs(len) = {1}, Uargs(n__len) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA) and not(IDA(1)).
  
       [fst](x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                       [0 1]      [0 1]      [0]
                                                
                 [0] = [0]                      
                       [4]                      
                                                
               [nil] = [0]                      
                       [4]                      
                                                
             [s](x1) = [1 0] x1 + [0]           
                       [0 0]      [0]           
                                                
      [cons](x1, x2) = [1 1] x2 + [0]           
                       [0 0]      [0]           
                                                
    [n__fst](x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                       [0 1]      [0 1]      [0]
                                                
      [activate](x1) = [1 1] x1 + [0]           
                       [0 1]      [0]           
                                                
          [from](x1) = [1 0] x1 + [1]           
                       [0 1]      [1]           
                                                
       [n__from](x1) = [1 0] x1 + [0]           
                       [0 1]      [1]           
                                                
          [n__s](x1) = [1 0] x1 + [0]           
                       [0 0]      [0]           
                                                
       [add](x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                       [0 1]      [0 1]      [1]
                                                
    [n__add](x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                       [0 1]      [0 1]      [1]
                                                
           [len](x1) = [1 0] x1 + [0]           
                       [0 1]      [0]           
                                                
        [n__len](x1) = [1 0] x1 + [0]           
                       [0 1]      [0]           
  
  The order satisfies the following ordering constraints:
  
                 [fst(X1, X2)] =  [1 0] X1 + [1 0] X2 + [0]        
                                  [0 1]      [0 1]      [0]        
                               >= [1 0] X1 + [1 0] X2 + [0]        
                                  [0 1]      [0 1]      [0]        
                               =  [n__fst(X1, X2)]                 
                                                                   
                 [fst(0(), Z)] =  [1 0] Z + [0]                    
                                  [0 1]     [4]                    
                               >= [0]                              
                                  [4]                              
                               =  [nil()]                          
                                                                   
                        [s(X)] =  [1 0] X + [0]                    
                                  [0 0]     [0]                    
                               >= [1 0] X + [0]                    
                                  [0 0]     [0]                    
                               =  [n__s(X)]                        
                                                                   
                 [activate(X)] =  [1 1] X + [0]                    
                                  [0 1]     [0]                    
                               >= [1 0] X + [0]                    
                                  [0 1]     [0]                    
                               =  [X]                              
                                                                   
    [activate(n__fst(X1, X2))] =  [1 1] X1 + [1 1] X2 + [0]        
                                  [0 1]      [0 1]      [0]        
                               >= [1 1] X1 + [1 1] X2 + [0]        
                                  [0 1]      [0 1]      [0]        
                               =  [fst(activate(X1), activate(X2))]
                                                                   
        [activate(n__from(X))] =  [1 1] X + [1]                    
                                  [0 1]     [1]                    
                               >= [1 1] X + [1]                    
                                  [0 1]     [1]                    
                               =  [from(activate(X))]              
                                                                   
           [activate(n__s(X))] =  [1 0] X + [0]                    
                                  [0 0]     [0]                    
                               >= [1 0] X + [0]                    
                                  [0 0]     [0]                    
                               =  [s(X)]                           
                                                                   
    [activate(n__add(X1, X2))] =  [1 1] X1 + [1 1] X2 + [1]        
                                  [0 1]      [0 1]      [1]        
                               >  [1 1] X1 + [1 1] X2 + [0]        
                                  [0 1]      [0 1]      [1]        
                               =  [add(activate(X1), activate(X2))]
                                                                   
         [activate(n__len(X))] =  [1 1] X + [0]                    
                                  [0 1]     [0]                    
                               >= [1 1] X + [0]                    
                                  [0 1]     [0]                    
                               =  [len(activate(X))]               
                                                                   
                     [from(X)] =  [1 0] X + [1]                    
                                  [0 1]     [1]                    
                               >= [1 0] X + [1]                    
                                  [0 0]     [0]                    
                               =  [cons(X, n__from(n__s(X)))]      
                                                                   
                     [from(X)] =  [1 0] X + [1]                    
                                  [0 1]     [1]                    
                               >  [1 0] X + [0]                    
                                  [0 1]     [1]                    
                               =  [n__from(X)]                     
                                                                   
                 [add(X1, X2)] =  [1 0] X1 + [1 0] X2 + [0]        
                                  [0 1]      [0 1]      [1]        
                               >= [1 0] X1 + [1 0] X2 + [0]        
                                  [0 1]      [0 1]      [1]        
                               =  [n__add(X1, X2)]                 
                                                                   
                 [add(0(), X)] =  [1 0] X + [0]                    
                                  [0 1]     [5]                    
                               >= [1 0] X + [0]                    
                                  [0 1]     [0]                    
                               =  [X]                              
                                                                   
                      [len(X)] =  [1 0] X + [0]                    
                                  [0 1]     [0]                    
                               >= [1 0] X + [0]                    
                                  [0 1]     [0]                    
                               =  [n__len(X)]                      
                                                                   
                  [len(nil())] =  [0]                              
                                  [4]                              
                               >= [0]                              
                                  [4]                              
                               =  [0()]                            
                                                                   
             [len(cons(X, Z))] =  [1 1] Z + [0]                    
                                  [0 0]     [0]                    
                               >= [1 1] Z + [0]                    
                                  [0 0]     [0]                    
                               =  [s(n__len(activate(Z)))]         
                                                                   

We return to the main proof.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs: { from(X) -> cons(X, n__from(n__s(X))) }
Weak Trs:
  { fst(X1, X2) -> n__fst(X1, X2)
  , fst(0(), Z) -> nil()
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2))
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(X)
  , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2))
  , activate(n__len(X)) -> len(activate(X))
  , from(X) -> n__from(X)
  , add(X1, X2) -> n__add(X1, X2)
  , add(0(), X) -> X
  , len(X) -> n__len(X)
  , len(nil()) -> 0()
  , len(cons(X, Z)) -> s(n__len(activate(Z))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 3' to
orient following rules strictly.

Trs: { from(X) -> cons(X, n__from(n__s(X))) }

The induced complexity on above rules (modulo remaining rules) is
YES(?,O(n^1)) . These rules are moved into the corresponding weak
component(s).

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(fst) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1},
    Uargs(add) = {1, 2}, Uargs(len) = {1}, Uargs(n__len) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA) and not(IDA(1)).
  
                       [1 0 0]      [1 0 0]      [6]
       [fst](x1, x2) = [0 1 0] x1 + [0 1 0] x2 + [1]
                       [0 0 1]      [0 0 1]      [1]
                                                    
                       [3]                          
                 [0] = [0]                          
                       [0]                          
                                                    
                       [4]                          
               [nil] = [0]                          
                       [0]                          
                                                    
                       [1 0 0]      [4]             
             [s](x1) = [0 0 0] x1 + [0]             
                       [0 0 0]      [2]             
                                                    
                       [0 0 0]      [1 7 0]      [0]
      [cons](x1, x2) = [0 1 0] x1 + [0 0 0] x2 + [4]
                       [0 0 1]      [0 0 1]      [1]
                                                    
                       [1 0 0]      [1 0 0]      [5]
    [n__fst](x1, x2) = [0 1 0] x1 + [0 1 0] x2 + [0]
                       [0 0 1]      [0 0 1]      [1]
                                                    
                       [1 7 2]      [1]             
      [activate](x1) = [0 7 2] x1 + [1]             
                       [0 0 2]      [0]             
                                                    
                       [1 0 0]      [6]             
          [from](x1) = [0 1 0] x1 + [4]             
                       [0 0 1]      [4]             
                                                    
                       [1 0 0]      [3]             
       [n__from](x1) = [0 1 0] x1 + [0]             
                       [0 0 1]      [2]             
                                                    
                       [1 0 0]      [2]             
          [n__s](x1) = [0 0 0] x1 + [0]             
                       [0 0 0]      [1]             
                                                    
                       [1 0 0]      [1 0 0]      [6]
       [add](x1, x2) = [0 1 2] x1 + [0 1 0] x2 + [2]
                       [0 0 0]      [0 0 1]      [6]
                                                    
                       [1 0 0]      [1 0 0]      [0]
    [n__add](x1, x2) = [0 1 2] x1 + [0 1 0] x2 + [0]
                       [0 0 0]      [0 0 1]      [4]
                                                    
                       [1 0 3]      [7]             
           [len](x1) = [0 1 5] x1 + [0]             
                       [0 0 0]      [3]             
                                                    
                       [1 0 0]      [4]             
        [n__len](x1) = [0 1 2] x1 + [0]             
                       [0 0 0]      [3]             
  
  The order satisfies the following ordering constraints:
  
                 [fst(X1, X2)] =  [1 0 0]      [1 0 0]      [6]    
                                  [0 1 0] X1 + [0 1 0] X2 + [1]    
                                  [0 0 1]      [0 0 1]      [1]    
                               >  [1 0 0]      [1 0 0]      [5]    
                                  [0 1 0] X1 + [0 1 0] X2 + [0]    
                                  [0 0 1]      [0 0 1]      [1]    
                               =  [n__fst(X1, X2)]                 
                                                                   
                 [fst(0(), Z)] =  [1 0 0]     [9]                  
                                  [0 1 0] Z + [1]                  
                                  [0 0 1]     [1]                  
                               >  [4]                              
                                  [0]                              
                                  [0]                              
                               =  [nil()]                          
                                                                   
                        [s(X)] =  [1 0 0]     [4]                  
                                  [0 0 0] X + [0]                  
                                  [0 0 0]     [2]                  
                               >  [1 0 0]     [2]                  
                                  [0 0 0] X + [0]                  
                                  [0 0 0]     [1]                  
                               =  [n__s(X)]                        
                                                                   
                 [activate(X)] =  [1 7 2]     [1]                  
                                  [0 7 2] X + [1]                  
                                  [0 0 2]     [0]                  
                               >  [1 0 0]     [0]                  
                                  [0 1 0] X + [0]                  
                                  [0 0 1]     [0]                  
                               =  [X]                              
                                                                   
    [activate(n__fst(X1, X2))] =  [1 7 2]      [1 7 2]      [8]    
                                  [0 7 2] X1 + [0 7 2] X2 + [3]    
                                  [0 0 2]      [0 0 2]      [2]    
                               >= [1 7 2]      [1 7 2]      [8]    
                                  [0 7 2] X1 + [0 7 2] X2 + [3]    
                                  [0 0 2]      [0 0 2]      [1]    
                               =  [fst(activate(X1), activate(X2))]
                                                                   
        [activate(n__from(X))] =  [1 7 2]     [8]                  
                                  [0 7 2] X + [5]                  
                                  [0 0 2]     [4]                  
                               >  [1 7 2]     [7]                  
                                  [0 7 2] X + [5]                  
                                  [0 0 2]     [4]                  
                               =  [from(activate(X))]              
                                                                   
           [activate(n__s(X))] =  [1 0 0]     [5]                  
                                  [0 0 0] X + [3]                  
                                  [0 0 0]     [2]                  
                               >  [1 0 0]     [4]                  
                                  [0 0 0] X + [0]                  
                                  [0 0 0]     [2]                  
                               =  [s(X)]                           
                                                                   
    [activate(n__add(X1, X2))] =  [1 7 14]      [1 7 2]      [9]   
                                  [0 7 14] X1 + [0 7 2] X2 + [9]   
                                  [0 0  0]      [0 0 2]      [8]   
                               >  [1 7 2]      [1 7 2]      [8]    
                                  [0 7 6] X1 + [0 7 2] X2 + [4]    
                                  [0 0 0]      [0 0 2]      [6]    
                               =  [add(activate(X1), activate(X2))]
                                                                   
         [activate(n__len(X))] =  [1 7 14]     [11]                
                                  [0 7 14] X + [7]                 
                                  [0 0  0]     [6]                 
                               >  [1 7  8]     [8]                 
                                  [0 7 12] X + [1]                 
                                  [0 0  0]     [3]                 
                               =  [len(activate(X))]               
                                                                   
                     [from(X)] =  [1 0 0]     [6]                  
                                  [0 1 0] X + [4]                  
                                  [0 0 1]     [4]                  
                               >  [1 0 0]     [5]                  
                                  [0 1 0] X + [4]                  
                                  [0 0 1]     [4]                  
                               =  [cons(X, n__from(n__s(X)))]      
                                                                   
                     [from(X)] =  [1 0 0]     [6]                  
                                  [0 1 0] X + [4]                  
                                  [0 0 1]     [4]                  
                               >  [1 0 0]     [3]                  
                                  [0 1 0] X + [0]                  
                                  [0 0 1]     [2]                  
                               =  [n__from(X)]                     
                                                                   
                 [add(X1, X2)] =  [1 0 0]      [1 0 0]      [6]    
                                  [0 1 2] X1 + [0 1 0] X2 + [2]    
                                  [0 0 0]      [0 0 1]      [6]    
                               >  [1 0 0]      [1 0 0]      [0]    
                                  [0 1 2] X1 + [0 1 0] X2 + [0]    
                                  [0 0 0]      [0 0 1]      [4]    
                               =  [n__add(X1, X2)]                 
                                                                   
                 [add(0(), X)] =  [1 0 0]     [9]                  
                                  [0 1 0] X + [2]                  
                                  [0 0 1]     [6]                  
                               >  [1 0 0]     [0]                  
                                  [0 1 0] X + [0]                  
                                  [0 0 1]     [0]                  
                               =  [X]                              
                                                                   
                      [len(X)] =  [1 0 3]     [7]                  
                                  [0 1 5] X + [0]                  
                                  [0 0 0]     [3]                  
                               >  [1 0 0]     [4]                  
                                  [0 1 2] X + [0]                  
                                  [0 0 0]     [3]                  
                               =  [n__len(X)]                      
                                                                   
                  [len(nil())] =  [11]                             
                                  [0]                              
                                  [3]                              
                               >  [3]                              
                                  [0]                              
                                  [0]                              
                               =  [0()]                            
                                                                   
             [len(cons(X, Z))] =  [1 7 3]     [0 0 3]     [10]     
                                  [0 0 5] Z + [0 1 5] X + [9]      
                                  [0 0 0]     [0 0 0]     [3]      
                               >  [1 7 2]     [9]                  
                                  [0 0 0] Z + [0]                  
                                  [0 0 0]     [2]                  
                               =  [s(n__len(activate(Z)))]         
                                                                   

We return to the main proof.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak Trs:
  { fst(X1, X2) -> n__fst(X1, X2)
  , fst(0(), Z) -> nil()
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2))
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(X)
  , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2))
  , activate(n__len(X)) -> len(activate(X))
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , add(X1, X2) -> n__add(X1, X2)
  , add(0(), X) -> X
  , len(X) -> n__len(X)
  , len(nil()) -> 0()
  , len(cons(X, Z)) -> s(n__len(activate(Z))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(n^1))