We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { fst(X1, X2) -> n__fst(X1, X2) , fst(0(), Z) -> nil() , fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) , s(X) -> n__s(X) , activate(X) -> X , activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(X) , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) , activate(n__len(X)) -> len(activate(X)) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , add(X1, X2) -> n__add(X1, X2) , add(0(), X) -> X , add(s(X), Y) -> s(n__add(activate(X), Y)) , len(X) -> n__len(X) , len(nil()) -> 0() , len(cons(X, Z)) -> s(n__len(activate(Z))) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) Arguments of following rules are not normal-forms: { fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) , add(s(X), Y) -> s(n__add(activate(X), Y)) } All above mentioned rules can be savely removed. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { fst(X1, X2) -> n__fst(X1, X2) , fst(0(), Z) -> nil() , s(X) -> n__s(X) , activate(X) -> X , activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(X) , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) , activate(n__len(X)) -> len(activate(X)) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , add(X1, X2) -> n__add(X1, X2) , add(0(), X) -> X , len(X) -> n__len(X) , len(nil()) -> 0() , len(cons(X, Z)) -> s(n__len(activate(Z))) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(fst) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1}, Uargs(add) = {1, 2}, Uargs(len) = {1}, Uargs(n__len) = {1} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [fst](x1, x2) = [1] x1 + [1] x2 + [0] [0] = [4] [nil] = [0] [s](x1) = [1] x1 + [0] [cons](x1, x2) = [1] x2 + [0] [n__fst](x1, x2) = [1] x1 + [1] x2 + [0] [activate](x1) = [1] x1 + [0] [from](x1) = [1] x1 + [0] [n__from](x1) = [1] x1 + [0] [n__s](x1) = [1] x1 + [0] [add](x1, x2) = [1] x1 + [1] x2 + [0] [n__add](x1, x2) = [1] x1 + [1] x2 + [0] [len](x1) = [1] x1 + [0] [n__len](x1) = [1] x1 + [0] The order satisfies the following ordering constraints: [fst(X1, X2)] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [n__fst(X1, X2)] [fst(0(), Z)] = [1] Z + [4] > [0] = [nil()] [s(X)] = [1] X + [0] >= [1] X + [0] = [n__s(X)] [activate(X)] = [1] X + [0] >= [1] X + [0] = [X] [activate(n__fst(X1, X2))] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [fst(activate(X1), activate(X2))] [activate(n__from(X))] = [1] X + [0] >= [1] X + [0] = [from(activate(X))] [activate(n__s(X))] = [1] X + [0] >= [1] X + [0] = [s(X)] [activate(n__add(X1, X2))] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [add(activate(X1), activate(X2))] [activate(n__len(X))] = [1] X + [0] >= [1] X + [0] = [len(activate(X))] [from(X)] = [1] X + [0] >= [1] X + [0] = [cons(X, n__from(n__s(X)))] [from(X)] = [1] X + [0] >= [1] X + [0] = [n__from(X)] [add(X1, X2)] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [n__add(X1, X2)] [add(0(), X)] = [1] X + [4] > [1] X + [0] = [X] [len(X)] = [1] X + [0] >= [1] X + [0] = [n__len(X)] [len(nil())] = [0] ? [4] = [0()] [len(cons(X, Z))] = [1] Z + [0] >= [1] Z + [0] = [s(n__len(activate(Z)))] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { fst(X1, X2) -> n__fst(X1, X2) , s(X) -> n__s(X) , activate(X) -> X , activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(X) , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) , activate(n__len(X)) -> len(activate(X)) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , add(X1, X2) -> n__add(X1, X2) , len(X) -> n__len(X) , len(nil()) -> 0() , len(cons(X, Z)) -> s(n__len(activate(Z))) } Weak Trs: { fst(0(), Z) -> nil() , add(0(), X) -> X } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(fst) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1}, Uargs(add) = {1, 2}, Uargs(len) = {1}, Uargs(n__len) = {1} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [fst](x1, x2) = [1] x1 + [1] x2 + [1] [0] = [4] [nil] = [0] [s](x1) = [1] x1 + [0] [cons](x1, x2) = [1] x2 + [0] [n__fst](x1, x2) = [1] x1 + [1] x2 + [0] [activate](x1) = [1] x1 + [0] [from](x1) = [1] x1 + [0] [n__from](x1) = [1] x1 + [0] [n__s](x1) = [1] x1 + [0] [add](x1, x2) = [1] x1 + [1] x2 + [0] [n__add](x1, x2) = [1] x1 + [1] x2 + [0] [len](x1) = [1] x1 + [0] [n__len](x1) = [1] x1 + [0] The order satisfies the following ordering constraints: [fst(X1, X2)] = [1] X1 + [1] X2 + [1] > [1] X1 + [1] X2 + [0] = [n__fst(X1, X2)] [fst(0(), Z)] = [1] Z + [5] > [0] = [nil()] [s(X)] = [1] X + [0] >= [1] X + [0] = [n__s(X)] [activate(X)] = [1] X + [0] >= [1] X + [0] = [X] [activate(n__fst(X1, X2))] = [1] X1 + [1] X2 + [0] ? [1] X1 + [1] X2 + [1] = [fst(activate(X1), activate(X2))] [activate(n__from(X))] = [1] X + [0] >= [1] X + [0] = [from(activate(X))] [activate(n__s(X))] = [1] X + [0] >= [1] X + [0] = [s(X)] [activate(n__add(X1, X2))] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [add(activate(X1), activate(X2))] [activate(n__len(X))] = [1] X + [0] >= [1] X + [0] = [len(activate(X))] [from(X)] = [1] X + [0] >= [1] X + [0] = [cons(X, n__from(n__s(X)))] [from(X)] = [1] X + [0] >= [1] X + [0] = [n__from(X)] [add(X1, X2)] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [n__add(X1, X2)] [add(0(), X)] = [1] X + [4] > [1] X + [0] = [X] [len(X)] = [1] X + [0] >= [1] X + [0] = [n__len(X)] [len(nil())] = [0] ? [4] = [0()] [len(cons(X, Z))] = [1] Z + [0] >= [1] Z + [0] = [s(n__len(activate(Z)))] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { s(X) -> n__s(X) , activate(X) -> X , activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(X) , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) , activate(n__len(X)) -> len(activate(X)) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , add(X1, X2) -> n__add(X1, X2) , len(X) -> n__len(X) , len(nil()) -> 0() , len(cons(X, Z)) -> s(n__len(activate(Z))) } Weak Trs: { fst(X1, X2) -> n__fst(X1, X2) , fst(0(), Z) -> nil() , add(0(), X) -> X } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(fst) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1}, Uargs(add) = {1, 2}, Uargs(len) = {1}, Uargs(n__len) = {1} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [fst](x1, x2) = [1] x1 + [1] x2 + [0] [0] = [4] [nil] = [0] [s](x1) = [1] x1 + [0] [cons](x1, x2) = [1] x2 + [0] [n__fst](x1, x2) = [1] x1 + [1] x2 + [0] [activate](x1) = [1] x1 + [0] [from](x1) = [1] x1 + [0] [n__from](x1) = [1] x1 + [0] [n__s](x1) = [1] x1 + [0] [add](x1, x2) = [1] x1 + [1] x2 + [0] [n__add](x1, x2) = [1] x1 + [1] x2 + [0] [len](x1) = [1] x1 + [1] [n__len](x1) = [1] x1 + [0] The order satisfies the following ordering constraints: [fst(X1, X2)] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [n__fst(X1, X2)] [fst(0(), Z)] = [1] Z + [4] > [0] = [nil()] [s(X)] = [1] X + [0] >= [1] X + [0] = [n__s(X)] [activate(X)] = [1] X + [0] >= [1] X + [0] = [X] [activate(n__fst(X1, X2))] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [fst(activate(X1), activate(X2))] [activate(n__from(X))] = [1] X + [0] >= [1] X + [0] = [from(activate(X))] [activate(n__s(X))] = [1] X + [0] >= [1] X + [0] = [s(X)] [activate(n__add(X1, X2))] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [add(activate(X1), activate(X2))] [activate(n__len(X))] = [1] X + [0] ? [1] X + [1] = [len(activate(X))] [from(X)] = [1] X + [0] >= [1] X + [0] = [cons(X, n__from(n__s(X)))] [from(X)] = [1] X + [0] >= [1] X + [0] = [n__from(X)] [add(X1, X2)] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [n__add(X1, X2)] [add(0(), X)] = [1] X + [4] > [1] X + [0] = [X] [len(X)] = [1] X + [1] > [1] X + [0] = [n__len(X)] [len(nil())] = [1] ? [4] = [0()] [len(cons(X, Z))] = [1] Z + [1] > [1] Z + [0] = [s(n__len(activate(Z)))] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { s(X) -> n__s(X) , activate(X) -> X , activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(X) , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) , activate(n__len(X)) -> len(activate(X)) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , add(X1, X2) -> n__add(X1, X2) , len(nil()) -> 0() } Weak Trs: { fst(X1, X2) -> n__fst(X1, X2) , fst(0(), Z) -> nil() , add(0(), X) -> X , len(X) -> n__len(X) , len(cons(X, Z)) -> s(n__len(activate(Z))) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(fst) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1}, Uargs(add) = {1, 2}, Uargs(len) = {1}, Uargs(n__len) = {1} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [fst](x1, x2) = [1] x1 + [1] x2 + [4] [0] = [4] [nil] = [4] [s](x1) = [1] x1 + [0] [cons](x1, x2) = [1] x2 + [4] [n__fst](x1, x2) = [1] x1 + [1] x2 + [0] [activate](x1) = [1] x1 + [0] [from](x1) = [1] x1 + [0] [n__from](x1) = [1] x1 + [0] [n__s](x1) = [1] x1 + [0] [add](x1, x2) = [1] x1 + [1] x2 + [0] [n__add](x1, x2) = [1] x1 + [1] x2 + [0] [len](x1) = [1] x1 + [4] [n__len](x1) = [1] x1 + [0] The order satisfies the following ordering constraints: [fst(X1, X2)] = [1] X1 + [1] X2 + [4] > [1] X1 + [1] X2 + [0] = [n__fst(X1, X2)] [fst(0(), Z)] = [1] Z + [8] > [4] = [nil()] [s(X)] = [1] X + [0] >= [1] X + [0] = [n__s(X)] [activate(X)] = [1] X + [0] >= [1] X + [0] = [X] [activate(n__fst(X1, X2))] = [1] X1 + [1] X2 + [0] ? [1] X1 + [1] X2 + [4] = [fst(activate(X1), activate(X2))] [activate(n__from(X))] = [1] X + [0] >= [1] X + [0] = [from(activate(X))] [activate(n__s(X))] = [1] X + [0] >= [1] X + [0] = [s(X)] [activate(n__add(X1, X2))] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [add(activate(X1), activate(X2))] [activate(n__len(X))] = [1] X + [0] ? [1] X + [4] = [len(activate(X))] [from(X)] = [1] X + [0] ? [1] X + [4] = [cons(X, n__from(n__s(X)))] [from(X)] = [1] X + [0] >= [1] X + [0] = [n__from(X)] [add(X1, X2)] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [n__add(X1, X2)] [add(0(), X)] = [1] X + [4] > [1] X + [0] = [X] [len(X)] = [1] X + [4] > [1] X + [0] = [n__len(X)] [len(nil())] = [8] > [4] = [0()] [len(cons(X, Z))] = [1] Z + [8] > [1] Z + [0] = [s(n__len(activate(Z)))] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { s(X) -> n__s(X) , activate(X) -> X , activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(X) , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) , activate(n__len(X)) -> len(activate(X)) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , add(X1, X2) -> n__add(X1, X2) } Weak Trs: { fst(X1, X2) -> n__fst(X1, X2) , fst(0(), Z) -> nil() , add(0(), X) -> X , len(X) -> n__len(X) , len(nil()) -> 0() , len(cons(X, Z)) -> s(n__len(activate(Z))) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(fst) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1}, Uargs(add) = {1, 2}, Uargs(len) = {1}, Uargs(n__len) = {1} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [fst](x1, x2) = [1] x1 + [1] x2 + [6] [0] = [2] [nil] = [0] [s](x1) = [1] x1 + [0] [cons](x1, x2) = [1] x2 + [4] [n__fst](x1, x2) = [1] x1 + [1] x2 + [0] [activate](x1) = [1] x1 + [1] [from](x1) = [1] x1 + [0] [n__from](x1) = [1] x1 + [0] [n__s](x1) = [1] x1 + [0] [add](x1, x2) = [1] x1 + [1] x2 + [2] [n__add](x1, x2) = [1] x1 + [1] x2 + [0] [len](x1) = [1] x1 + [4] [n__len](x1) = [1] x1 + [0] The order satisfies the following ordering constraints: [fst(X1, X2)] = [1] X1 + [1] X2 + [6] > [1] X1 + [1] X2 + [0] = [n__fst(X1, X2)] [fst(0(), Z)] = [1] Z + [8] > [0] = [nil()] [s(X)] = [1] X + [0] >= [1] X + [0] = [n__s(X)] [activate(X)] = [1] X + [1] > [1] X + [0] = [X] [activate(n__fst(X1, X2))] = [1] X1 + [1] X2 + [1] ? [1] X1 + [1] X2 + [8] = [fst(activate(X1), activate(X2))] [activate(n__from(X))] = [1] X + [1] >= [1] X + [1] = [from(activate(X))] [activate(n__s(X))] = [1] X + [1] > [1] X + [0] = [s(X)] [activate(n__add(X1, X2))] = [1] X1 + [1] X2 + [1] ? [1] X1 + [1] X2 + [4] = [add(activate(X1), activate(X2))] [activate(n__len(X))] = [1] X + [1] ? [1] X + [5] = [len(activate(X))] [from(X)] = [1] X + [0] ? [1] X + [4] = [cons(X, n__from(n__s(X)))] [from(X)] = [1] X + [0] >= [1] X + [0] = [n__from(X)] [add(X1, X2)] = [1] X1 + [1] X2 + [2] > [1] X1 + [1] X2 + [0] = [n__add(X1, X2)] [add(0(), X)] = [1] X + [4] > [1] X + [0] = [X] [len(X)] = [1] X + [4] > [1] X + [0] = [n__len(X)] [len(nil())] = [4] > [2] = [0()] [len(cons(X, Z))] = [1] Z + [8] > [1] Z + [1] = [s(n__len(activate(Z)))] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { s(X) -> n__s(X) , activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) , activate(n__from(X)) -> from(activate(X)) , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) , activate(n__len(X)) -> len(activate(X)) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) } Weak Trs: { fst(X1, X2) -> n__fst(X1, X2) , fst(0(), Z) -> nil() , activate(X) -> X , activate(n__s(X)) -> s(X) , add(X1, X2) -> n__add(X1, X2) , add(0(), X) -> X , len(X) -> n__len(X) , len(nil()) -> 0() , len(cons(X, Z)) -> s(n__len(activate(Z))) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(fst) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1}, Uargs(add) = {1, 2}, Uargs(len) = {1}, Uargs(n__len) = {1} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [fst](x1, x2) = [1] x1 + [1] x2 + [1] [0] = [3] [nil] = [0] [s](x1) = [1] x1 + [0] [cons](x1, x2) = [1] x2 + [4] [n__fst](x1, x2) = [1] x1 + [1] x2 + [0] [activate](x1) = [1] x1 + [0] [from](x1) = [1] x1 + [0] [n__from](x1) = [1] x1 + [4] [n__s](x1) = [1] x1 + [4] [add](x1, x2) = [1] x1 + [1] x2 + [0] [n__add](x1, x2) = [1] x1 + [1] x2 + [0] [len](x1) = [1] x1 + [4] [n__len](x1) = [1] x1 + [0] The order satisfies the following ordering constraints: [fst(X1, X2)] = [1] X1 + [1] X2 + [1] > [1] X1 + [1] X2 + [0] = [n__fst(X1, X2)] [fst(0(), Z)] = [1] Z + [4] > [0] = [nil()] [s(X)] = [1] X + [0] ? [1] X + [4] = [n__s(X)] [activate(X)] = [1] X + [0] >= [1] X + [0] = [X] [activate(n__fst(X1, X2))] = [1] X1 + [1] X2 + [0] ? [1] X1 + [1] X2 + [1] = [fst(activate(X1), activate(X2))] [activate(n__from(X))] = [1] X + [4] > [1] X + [0] = [from(activate(X))] [activate(n__s(X))] = [1] X + [4] > [1] X + [0] = [s(X)] [activate(n__add(X1, X2))] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [add(activate(X1), activate(X2))] [activate(n__len(X))] = [1] X + [0] ? [1] X + [4] = [len(activate(X))] [from(X)] = [1] X + [0] ? [1] X + [12] = [cons(X, n__from(n__s(X)))] [from(X)] = [1] X + [0] ? [1] X + [4] = [n__from(X)] [add(X1, X2)] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [n__add(X1, X2)] [add(0(), X)] = [1] X + [3] > [1] X + [0] = [X] [len(X)] = [1] X + [4] > [1] X + [0] = [n__len(X)] [len(nil())] = [4] > [3] = [0()] [len(cons(X, Z))] = [1] Z + [8] > [1] Z + [0] = [s(n__len(activate(Z)))] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { s(X) -> n__s(X) , activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) , activate(n__len(X)) -> len(activate(X)) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) } Weak Trs: { fst(X1, X2) -> n__fst(X1, X2) , fst(0(), Z) -> nil() , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(X) , add(X1, X2) -> n__add(X1, X2) , add(0(), X) -> X , len(X) -> n__len(X) , len(nil()) -> 0() , len(cons(X, Z)) -> s(n__len(activate(Z))) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(fst) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1}, Uargs(add) = {1, 2}, Uargs(len) = {1}, Uargs(n__len) = {1} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [fst](x1, x2) = [1] x1 + [1] x2 + [6] [0] = [0] [nil] = [0] [s](x1) = [1] x1 + [1] [cons](x1, x2) = [1] x2 + [0] [n__fst](x1, x2) = [1] x1 + [1] x2 + [0] [activate](x1) = [1] x1 + [1] [from](x1) = [1] x1 + [0] [n__from](x1) = [1] x1 + [0] [n__s](x1) = [1] x1 + [0] [add](x1, x2) = [1] x1 + [1] x2 + [0] [n__add](x1, x2) = [1] x1 + [1] x2 + [0] [len](x1) = [1] x1 + [4] [n__len](x1) = [1] x1 + [0] The order satisfies the following ordering constraints: [fst(X1, X2)] = [1] X1 + [1] X2 + [6] > [1] X1 + [1] X2 + [0] = [n__fst(X1, X2)] [fst(0(), Z)] = [1] Z + [6] > [0] = [nil()] [s(X)] = [1] X + [1] > [1] X + [0] = [n__s(X)] [activate(X)] = [1] X + [1] > [1] X + [0] = [X] [activate(n__fst(X1, X2))] = [1] X1 + [1] X2 + [1] ? [1] X1 + [1] X2 + [8] = [fst(activate(X1), activate(X2))] [activate(n__from(X))] = [1] X + [1] >= [1] X + [1] = [from(activate(X))] [activate(n__s(X))] = [1] X + [1] >= [1] X + [1] = [s(X)] [activate(n__add(X1, X2))] = [1] X1 + [1] X2 + [1] ? [1] X1 + [1] X2 + [2] = [add(activate(X1), activate(X2))] [activate(n__len(X))] = [1] X + [1] ? [1] X + [5] = [len(activate(X))] [from(X)] = [1] X + [0] >= [1] X + [0] = [cons(X, n__from(n__s(X)))] [from(X)] = [1] X + [0] >= [1] X + [0] = [n__from(X)] [add(X1, X2)] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [n__add(X1, X2)] [add(0(), X)] = [1] X + [0] >= [1] X + [0] = [X] [len(X)] = [1] X + [4] > [1] X + [0] = [n__len(X)] [len(nil())] = [4] > [0] = [0()] [len(cons(X, Z))] = [1] Z + [4] > [1] Z + [2] = [s(n__len(activate(Z)))] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) , activate(n__len(X)) -> len(activate(X)) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) } Weak Trs: { fst(X1, X2) -> n__fst(X1, X2) , fst(0(), Z) -> nil() , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(X) , add(X1, X2) -> n__add(X1, X2) , add(0(), X) -> X , len(X) -> n__len(X) , len(nil()) -> 0() , len(cons(X, Z)) -> s(n__len(activate(Z))) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. Trs: { activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^1)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- The following argument positions are usable: Uargs(fst) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1}, Uargs(add) = {1, 2}, Uargs(len) = {1}, Uargs(n__len) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA) and not(IDA(1)). [fst](x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [0] [0] = [0] [0] [nil] = [0] [0] [s](x1) = [1 0] x1 + [0] [0 0] [0] [cons](x1, x2) = [0 0] x1 + [1 1] x2 + [0] [0 1] [0 0] [0] [n__fst](x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [0] [activate](x1) = [1 1] x1 + [0] [0 1] [0] [from](x1) = [1 0] x1 + [0] [0 1] [0] [n__from](x1) = [1 0] x1 + [0] [0 1] [0] [n__s](x1) = [1 0] x1 + [0] [0 0] [0] [add](x1, x2) = [1 0] x1 + [1 0] x2 + [4] [0 1] [0 1] [1] [n__add](x1, x2) = [1 0] x1 + [1 0] x2 + [4] [0 1] [0 1] [1] [len](x1) = [1 0] x1 + [1] [0 1] [1] [n__len](x1) = [1 0] x1 + [0] [0 1] [1] The order satisfies the following ordering constraints: [fst(X1, X2)] = [1 0] X1 + [1 0] X2 + [0] [0 1] [0 1] [0] >= [1 0] X1 + [1 0] X2 + [0] [0 1] [0 1] [0] = [n__fst(X1, X2)] [fst(0(), Z)] = [1 0] Z + [0] [0 1] [0] >= [0] [0] = [nil()] [s(X)] = [1 0] X + [0] [0 0] [0] >= [1 0] X + [0] [0 0] [0] = [n__s(X)] [activate(X)] = [1 1] X + [0] [0 1] [0] >= [1 0] X + [0] [0 1] [0] = [X] [activate(n__fst(X1, X2))] = [1 1] X1 + [1 1] X2 + [0] [0 1] [0 1] [0] >= [1 1] X1 + [1 1] X2 + [0] [0 1] [0 1] [0] = [fst(activate(X1), activate(X2))] [activate(n__from(X))] = [1 1] X + [0] [0 1] [0] >= [1 1] X + [0] [0 1] [0] = [from(activate(X))] [activate(n__s(X))] = [1 0] X + [0] [0 0] [0] >= [1 0] X + [0] [0 0] [0] = [s(X)] [activate(n__add(X1, X2))] = [1 1] X1 + [1 1] X2 + [5] [0 1] [0 1] [1] > [1 1] X1 + [1 1] X2 + [4] [0 1] [0 1] [1] = [add(activate(X1), activate(X2))] [activate(n__len(X))] = [1 1] X + [1] [0 1] [1] >= [1 1] X + [1] [0 1] [1] = [len(activate(X))] [from(X)] = [1 0] X + [0] [0 1] [0] >= [1 0] X + [0] [0 1] [0] = [cons(X, n__from(n__s(X)))] [from(X)] = [1 0] X + [0] [0 1] [0] >= [1 0] X + [0] [0 1] [0] = [n__from(X)] [add(X1, X2)] = [1 0] X1 + [1 0] X2 + [4] [0 1] [0 1] [1] >= [1 0] X1 + [1 0] X2 + [4] [0 1] [0 1] [1] = [n__add(X1, X2)] [add(0(), X)] = [1 0] X + [4] [0 1] [1] > [1 0] X + [0] [0 1] [0] = [X] [len(X)] = [1 0] X + [1] [0 1] [1] > [1 0] X + [0] [0 1] [1] = [n__len(X)] [len(nil())] = [1] [1] > [0] [0] = [0()] [len(cons(X, Z))] = [1 1] Z + [0 0] X + [1] [0 0] [0 1] [1] > [1 1] Z + [0] [0 0] [0] = [s(n__len(activate(Z)))] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) , activate(n__len(X)) -> len(activate(X)) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) } Weak Trs: { fst(X1, X2) -> n__fst(X1, X2) , fst(0(), Z) -> nil() , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(X) , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) , add(X1, X2) -> n__add(X1, X2) , add(0(), X) -> X , len(X) -> n__len(X) , len(nil()) -> 0() , len(cons(X, Z)) -> s(n__len(activate(Z))) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. Trs: { activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) , activate(n__len(X)) -> len(activate(X)) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^1)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- The following argument positions are usable: Uargs(fst) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1}, Uargs(add) = {1, 2}, Uargs(len) = {1}, Uargs(n__len) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA) and not(IDA(1)). [fst](x1, x2) = [1 0] x1 + [1 0] x2 + [5] [0 1] [0 1] [2] [0] = [4] [0] [nil] = [6] [0] [s](x1) = [1 0] x1 + [1] [0 0] [0] [cons](x1, x2) = [1 6] x2 + [0] [0 0] [0] [n__fst](x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [2] [activate](x1) = [1 5] x1 + [1] [1 1] [0] [from](x1) = [1 0] x1 + [1] [0 1] [1] [n__from](x1) = [1 0] x1 + [1] [0 1] [0] [n__s](x1) = [1 0] x1 + [0] [0 0] [0] [add](x1, x2) = [1 0] x1 + [1 0] x2 + [7] [0 1] [0 1] [1] [n__add](x1, x2) = [1 0] x1 + [1 0] x2 + [7] [0 1] [0 1] [1] [len](x1) = [1 0] x1 + [2] [0 1] [1] [n__len](x1) = [1 0] x1 + [0] [0 1] [1] The order satisfies the following ordering constraints: [fst(X1, X2)] = [1 0] X1 + [1 0] X2 + [5] [0 1] [0 1] [2] > [1 0] X1 + [1 0] X2 + [0] [0 1] [0 1] [2] = [n__fst(X1, X2)] [fst(0(), Z)] = [1 0] Z + [9] [0 1] [2] > [6] [0] = [nil()] [s(X)] = [1 0] X + [1] [0 0] [0] > [1 0] X + [0] [0 0] [0] = [n__s(X)] [activate(X)] = [1 5] X + [1] [1 1] [0] > [1 0] X + [0] [0 1] [0] = [X] [activate(n__fst(X1, X2))] = [1 5] X1 + [1 5] X2 + [11] [1 1] [1 1] [2] > [1 5] X1 + [1 5] X2 + [7] [1 1] [1 1] [2] = [fst(activate(X1), activate(X2))] [activate(n__from(X))] = [1 5] X + [2] [1 1] [1] >= [1 5] X + [2] [1 1] [1] = [from(activate(X))] [activate(n__s(X))] = [1 0] X + [1] [1 0] [0] >= [1 0] X + [1] [0 0] [0] = [s(X)] [activate(n__add(X1, X2))] = [1 5] X1 + [1 5] X2 + [13] [1 1] [1 1] [8] > [1 5] X1 + [1 5] X2 + [9] [1 1] [1 1] [1] = [add(activate(X1), activate(X2))] [activate(n__len(X))] = [1 5] X + [6] [1 1] [1] > [1 5] X + [3] [1 1] [1] = [len(activate(X))] [from(X)] = [1 0] X + [1] [0 1] [1] >= [1 0] X + [1] [0 0] [0] = [cons(X, n__from(n__s(X)))] [from(X)] = [1 0] X + [1] [0 1] [1] >= [1 0] X + [1] [0 1] [0] = [n__from(X)] [add(X1, X2)] = [1 0] X1 + [1 0] X2 + [7] [0 1] [0 1] [1] >= [1 0] X1 + [1 0] X2 + [7] [0 1] [0 1] [1] = [n__add(X1, X2)] [add(0(), X)] = [1 0] X + [11] [0 1] [1] > [1 0] X + [0] [0 1] [0] = [X] [len(X)] = [1 0] X + [2] [0 1] [1] > [1 0] X + [0] [0 1] [1] = [n__len(X)] [len(nil())] = [8] [1] > [4] [0] = [0()] [len(cons(X, Z))] = [1 6] Z + [2] [0 0] [1] >= [1 5] Z + [2] [0 0] [0] = [s(n__len(activate(Z)))] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) } Weak Trs: { fst(X1, X2) -> n__fst(X1, X2) , fst(0(), Z) -> nil() , s(X) -> n__s(X) , activate(X) -> X , activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(X) , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) , activate(n__len(X)) -> len(activate(X)) , add(X1, X2) -> n__add(X1, X2) , add(0(), X) -> X , len(X) -> n__len(X) , len(nil()) -> 0() , len(cons(X, Z)) -> s(n__len(activate(Z))) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. Trs: { from(X) -> n__from(X) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^1)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- The following argument positions are usable: Uargs(fst) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1}, Uargs(add) = {1, 2}, Uargs(len) = {1}, Uargs(n__len) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA) and not(IDA(1)). [fst](x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [0] [0] = [0] [4] [nil] = [0] [4] [s](x1) = [1 0] x1 + [0] [0 0] [0] [cons](x1, x2) = [1 1] x2 + [0] [0 0] [0] [n__fst](x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [0] [activate](x1) = [1 1] x1 + [0] [0 1] [0] [from](x1) = [1 0] x1 + [1] [0 1] [1] [n__from](x1) = [1 0] x1 + [0] [0 1] [1] [n__s](x1) = [1 0] x1 + [0] [0 0] [0] [add](x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [1] [n__add](x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [1] [len](x1) = [1 0] x1 + [0] [0 1] [0] [n__len](x1) = [1 0] x1 + [0] [0 1] [0] The order satisfies the following ordering constraints: [fst(X1, X2)] = [1 0] X1 + [1 0] X2 + [0] [0 1] [0 1] [0] >= [1 0] X1 + [1 0] X2 + [0] [0 1] [0 1] [0] = [n__fst(X1, X2)] [fst(0(), Z)] = [1 0] Z + [0] [0 1] [4] >= [0] [4] = [nil()] [s(X)] = [1 0] X + [0] [0 0] [0] >= [1 0] X + [0] [0 0] [0] = [n__s(X)] [activate(X)] = [1 1] X + [0] [0 1] [0] >= [1 0] X + [0] [0 1] [0] = [X] [activate(n__fst(X1, X2))] = [1 1] X1 + [1 1] X2 + [0] [0 1] [0 1] [0] >= [1 1] X1 + [1 1] X2 + [0] [0 1] [0 1] [0] = [fst(activate(X1), activate(X2))] [activate(n__from(X))] = [1 1] X + [1] [0 1] [1] >= [1 1] X + [1] [0 1] [1] = [from(activate(X))] [activate(n__s(X))] = [1 0] X + [0] [0 0] [0] >= [1 0] X + [0] [0 0] [0] = [s(X)] [activate(n__add(X1, X2))] = [1 1] X1 + [1 1] X2 + [1] [0 1] [0 1] [1] > [1 1] X1 + [1 1] X2 + [0] [0 1] [0 1] [1] = [add(activate(X1), activate(X2))] [activate(n__len(X))] = [1 1] X + [0] [0 1] [0] >= [1 1] X + [0] [0 1] [0] = [len(activate(X))] [from(X)] = [1 0] X + [1] [0 1] [1] >= [1 0] X + [1] [0 0] [0] = [cons(X, n__from(n__s(X)))] [from(X)] = [1 0] X + [1] [0 1] [1] > [1 0] X + [0] [0 1] [1] = [n__from(X)] [add(X1, X2)] = [1 0] X1 + [1 0] X2 + [0] [0 1] [0 1] [1] >= [1 0] X1 + [1 0] X2 + [0] [0 1] [0 1] [1] = [n__add(X1, X2)] [add(0(), X)] = [1 0] X + [0] [0 1] [5] >= [1 0] X + [0] [0 1] [0] = [X] [len(X)] = [1 0] X + [0] [0 1] [0] >= [1 0] X + [0] [0 1] [0] = [n__len(X)] [len(nil())] = [0] [4] >= [0] [4] = [0()] [len(cons(X, Z))] = [1 1] Z + [0] [0 0] [0] >= [1 1] Z + [0] [0 0] [0] = [s(n__len(activate(Z)))] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { from(X) -> cons(X, n__from(n__s(X))) } Weak Trs: { fst(X1, X2) -> n__fst(X1, X2) , fst(0(), Z) -> nil() , s(X) -> n__s(X) , activate(X) -> X , activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(X) , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) , activate(n__len(X)) -> len(activate(X)) , from(X) -> n__from(X) , add(X1, X2) -> n__add(X1, X2) , add(0(), X) -> X , len(X) -> n__len(X) , len(nil()) -> 0() , len(cons(X, Z)) -> s(n__len(activate(Z))) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 3' to orient following rules strictly. Trs: { from(X) -> cons(X, n__from(n__s(X))) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^1)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- The following argument positions are usable: Uargs(fst) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1}, Uargs(add) = {1, 2}, Uargs(len) = {1}, Uargs(n__len) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA) and not(IDA(1)). [1 0 0] [1 0 0] [6] [fst](x1, x2) = [0 1 0] x1 + [0 1 0] x2 + [1] [0 0 1] [0 0 1] [1] [3] [0] = [0] [0] [4] [nil] = [0] [0] [1 0 0] [4] [s](x1) = [0 0 0] x1 + [0] [0 0 0] [2] [0 0 0] [1 7 0] [0] [cons](x1, x2) = [0 1 0] x1 + [0 0 0] x2 + [4] [0 0 1] [0 0 1] [1] [1 0 0] [1 0 0] [5] [n__fst](x1, x2) = [0 1 0] x1 + [0 1 0] x2 + [0] [0 0 1] [0 0 1] [1] [1 7 2] [1] [activate](x1) = [0 7 2] x1 + [1] [0 0 2] [0] [1 0 0] [6] [from](x1) = [0 1 0] x1 + [4] [0 0 1] [4] [1 0 0] [3] [n__from](x1) = [0 1 0] x1 + [0] [0 0 1] [2] [1 0 0] [2] [n__s](x1) = [0 0 0] x1 + [0] [0 0 0] [1] [1 0 0] [1 0 0] [6] [add](x1, x2) = [0 1 2] x1 + [0 1 0] x2 + [2] [0 0 0] [0 0 1] [6] [1 0 0] [1 0 0] [0] [n__add](x1, x2) = [0 1 2] x1 + [0 1 0] x2 + [0] [0 0 0] [0 0 1] [4] [1 0 3] [7] [len](x1) = [0 1 5] x1 + [0] [0 0 0] [3] [1 0 0] [4] [n__len](x1) = [0 1 2] x1 + [0] [0 0 0] [3] The order satisfies the following ordering constraints: [fst(X1, X2)] = [1 0 0] [1 0 0] [6] [0 1 0] X1 + [0 1 0] X2 + [1] [0 0 1] [0 0 1] [1] > [1 0 0] [1 0 0] [5] [0 1 0] X1 + [0 1 0] X2 + [0] [0 0 1] [0 0 1] [1] = [n__fst(X1, X2)] [fst(0(), Z)] = [1 0 0] [9] [0 1 0] Z + [1] [0 0 1] [1] > [4] [0] [0] = [nil()] [s(X)] = [1 0 0] [4] [0 0 0] X + [0] [0 0 0] [2] > [1 0 0] [2] [0 0 0] X + [0] [0 0 0] [1] = [n__s(X)] [activate(X)] = [1 7 2] [1] [0 7 2] X + [1] [0 0 2] [0] > [1 0 0] [0] [0 1 0] X + [0] [0 0 1] [0] = [X] [activate(n__fst(X1, X2))] = [1 7 2] [1 7 2] [8] [0 7 2] X1 + [0 7 2] X2 + [3] [0 0 2] [0 0 2] [2] >= [1 7 2] [1 7 2] [8] [0 7 2] X1 + [0 7 2] X2 + [3] [0 0 2] [0 0 2] [1] = [fst(activate(X1), activate(X2))] [activate(n__from(X))] = [1 7 2] [8] [0 7 2] X + [5] [0 0 2] [4] > [1 7 2] [7] [0 7 2] X + [5] [0 0 2] [4] = [from(activate(X))] [activate(n__s(X))] = [1 0 0] [5] [0 0 0] X + [3] [0 0 0] [2] > [1 0 0] [4] [0 0 0] X + [0] [0 0 0] [2] = [s(X)] [activate(n__add(X1, X2))] = [1 7 14] [1 7 2] [9] [0 7 14] X1 + [0 7 2] X2 + [9] [0 0 0] [0 0 2] [8] > [1 7 2] [1 7 2] [8] [0 7 6] X1 + [0 7 2] X2 + [4] [0 0 0] [0 0 2] [6] = [add(activate(X1), activate(X2))] [activate(n__len(X))] = [1 7 14] [11] [0 7 14] X + [7] [0 0 0] [6] > [1 7 8] [8] [0 7 12] X + [1] [0 0 0] [3] = [len(activate(X))] [from(X)] = [1 0 0] [6] [0 1 0] X + [4] [0 0 1] [4] > [1 0 0] [5] [0 1 0] X + [4] [0 0 1] [4] = [cons(X, n__from(n__s(X)))] [from(X)] = [1 0 0] [6] [0 1 0] X + [4] [0 0 1] [4] > [1 0 0] [3] [0 1 0] X + [0] [0 0 1] [2] = [n__from(X)] [add(X1, X2)] = [1 0 0] [1 0 0] [6] [0 1 2] X1 + [0 1 0] X2 + [2] [0 0 0] [0 0 1] [6] > [1 0 0] [1 0 0] [0] [0 1 2] X1 + [0 1 0] X2 + [0] [0 0 0] [0 0 1] [4] = [n__add(X1, X2)] [add(0(), X)] = [1 0 0] [9] [0 1 0] X + [2] [0 0 1] [6] > [1 0 0] [0] [0 1 0] X + [0] [0 0 1] [0] = [X] [len(X)] = [1 0 3] [7] [0 1 5] X + [0] [0 0 0] [3] > [1 0 0] [4] [0 1 2] X + [0] [0 0 0] [3] = [n__len(X)] [len(nil())] = [11] [0] [3] > [3] [0] [0] = [0()] [len(cons(X, Z))] = [1 7 3] [0 0 3] [10] [0 0 5] Z + [0 1 5] X + [9] [0 0 0] [0 0 0] [3] > [1 7 2] [9] [0 0 0] Z + [0] [0 0 0] [2] = [s(n__len(activate(Z)))] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { fst(X1, X2) -> n__fst(X1, X2) , fst(0(), Z) -> nil() , s(X) -> n__s(X) , activate(X) -> X , activate(n__fst(X1, X2)) -> fst(activate(X1), activate(X2)) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(X) , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) , activate(n__len(X)) -> len(activate(X)) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , add(X1, X2) -> n__add(X1, X2) , add(0(), X) -> X , len(X) -> n__len(X) , len(nil()) -> 0() , len(cons(X, Z)) -> s(n__len(activate(Z))) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(n^1))