We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) , a__terms(X) -> terms(X) , a__sqr(X) -> sqr(X) , a__sqr(s(X)) -> s(add(sqr(X), dbl(X))) , a__sqr(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(recip(X)) -> recip(mark(X)) , mark(terms(X)) -> a__terms(mark(X)) , mark(s(X)) -> s(X) , mark(0()) -> 0() , mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) , mark(sqr(X)) -> a__sqr(mark(X)) , mark(dbl(X)) -> a__dbl(mark(X)) , mark(nil()) -> nil() , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) , a__dbl(X) -> dbl(X) , a__dbl(s(X)) -> s(s(dbl(X))) , a__dbl(0()) -> 0() , a__add(X1, X2) -> add(X1, X2) , a__add(s(X), Y) -> s(add(X, Y)) , a__add(0(), X) -> mark(X) , a__first(X1, X2) -> first(X1, X2) , a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) , a__first(0(), X) -> nil() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(a__terms) = {1}, Uargs(cons) = {1}, Uargs(recip) = {1}, Uargs(a__sqr) = {1}, Uargs(a__dbl) = {1}, Uargs(a__add) = {1, 2}, Uargs(a__first) = {1, 2} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [a__terms](x1) = [1] x1 + [4] [cons](x1, x2) = [1] x1 + [0] [recip](x1) = [1] x1 + [0] [a__sqr](x1) = [1] x1 + [0] [mark](x1) = [0] [terms](x1) = [1] x1 + [0] [s](x1) = [0] [0] = [0] [add](x1, x2) = [0] [sqr](x1) = [1] x1 + [0] [dbl](x1) = [0] [a__dbl](x1) = [1] x1 + [0] [a__add](x1, x2) = [1] x1 + [1] x2 + [0] [a__first](x1, x2) = [1] x1 + [1] x2 + [0] [nil] = [0] [first](x1, x2) = [0] The order satisfies the following ordering constraints: [a__terms(N)] = [1] N + [4] > [0] = [cons(recip(a__sqr(mark(N))), terms(s(N)))] [a__terms(X)] = [1] X + [4] > [1] X + [0] = [terms(X)] [a__sqr(X)] = [1] X + [0] >= [1] X + [0] = [sqr(X)] [a__sqr(s(X))] = [0] >= [0] = [s(add(sqr(X), dbl(X)))] [a__sqr(0())] = [0] >= [0] = [0()] [mark(cons(X1, X2))] = [0] >= [0] = [cons(mark(X1), X2)] [mark(recip(X))] = [0] >= [0] = [recip(mark(X))] [mark(terms(X))] = [0] ? [4] = [a__terms(mark(X))] [mark(s(X))] = [0] >= [0] = [s(X)] [mark(0())] = [0] >= [0] = [0()] [mark(add(X1, X2))] = [0] >= [0] = [a__add(mark(X1), mark(X2))] [mark(sqr(X))] = [0] >= [0] = [a__sqr(mark(X))] [mark(dbl(X))] = [0] >= [0] = [a__dbl(mark(X))] [mark(nil())] = [0] >= [0] = [nil()] [mark(first(X1, X2))] = [0] >= [0] = [a__first(mark(X1), mark(X2))] [a__dbl(X)] = [1] X + [0] >= [0] = [dbl(X)] [a__dbl(s(X))] = [0] >= [0] = [s(s(dbl(X)))] [a__dbl(0())] = [0] >= [0] = [0()] [a__add(X1, X2)] = [1] X1 + [1] X2 + [0] >= [0] = [add(X1, X2)] [a__add(s(X), Y)] = [1] Y + [0] >= [0] = [s(add(X, Y))] [a__add(0(), X)] = [1] X + [0] >= [0] = [mark(X)] [a__first(X1, X2)] = [1] X1 + [1] X2 + [0] >= [0] = [first(X1, X2)] [a__first(s(X), cons(Y, Z))] = [1] Y + [0] >= [0] = [cons(mark(Y), first(X, Z))] [a__first(0(), X)] = [1] X + [0] >= [0] = [nil()] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { a__sqr(X) -> sqr(X) , a__sqr(s(X)) -> s(add(sqr(X), dbl(X))) , a__sqr(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(recip(X)) -> recip(mark(X)) , mark(terms(X)) -> a__terms(mark(X)) , mark(s(X)) -> s(X) , mark(0()) -> 0() , mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) , mark(sqr(X)) -> a__sqr(mark(X)) , mark(dbl(X)) -> a__dbl(mark(X)) , mark(nil()) -> nil() , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) , a__dbl(X) -> dbl(X) , a__dbl(s(X)) -> s(s(dbl(X))) , a__dbl(0()) -> 0() , a__add(X1, X2) -> add(X1, X2) , a__add(s(X), Y) -> s(add(X, Y)) , a__add(0(), X) -> mark(X) , a__first(X1, X2) -> first(X1, X2) , a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) , a__first(0(), X) -> nil() } Weak Trs: { a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) , a__terms(X) -> terms(X) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(a__terms) = {1}, Uargs(cons) = {1}, Uargs(recip) = {1}, Uargs(a__sqr) = {1}, Uargs(a__dbl) = {1}, Uargs(a__add) = {1, 2}, Uargs(a__first) = {1, 2} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [a__terms](x1) = [1] x1 + [4] [cons](x1, x2) = [1] x1 + [0] [recip](x1) = [1] x1 + [0] [a__sqr](x1) = [1] x1 + [1] [mark](x1) = [0] [terms](x1) = [1] x1 + [0] [s](x1) = [0] [0] = [0] [add](x1, x2) = [0] [sqr](x1) = [0] [dbl](x1) = [1] x1 + [0] [a__dbl](x1) = [1] x1 + [0] [a__add](x1, x2) = [1] x1 + [1] x2 + [0] [a__first](x1, x2) = [1] x1 + [1] x2 + [0] [nil] = [0] [first](x1, x2) = [0] The order satisfies the following ordering constraints: [a__terms(N)] = [1] N + [4] > [1] = [cons(recip(a__sqr(mark(N))), terms(s(N)))] [a__terms(X)] = [1] X + [4] > [1] X + [0] = [terms(X)] [a__sqr(X)] = [1] X + [1] > [0] = [sqr(X)] [a__sqr(s(X))] = [1] > [0] = [s(add(sqr(X), dbl(X)))] [a__sqr(0())] = [1] > [0] = [0()] [mark(cons(X1, X2))] = [0] >= [0] = [cons(mark(X1), X2)] [mark(recip(X))] = [0] >= [0] = [recip(mark(X))] [mark(terms(X))] = [0] ? [4] = [a__terms(mark(X))] [mark(s(X))] = [0] >= [0] = [s(X)] [mark(0())] = [0] >= [0] = [0()] [mark(add(X1, X2))] = [0] >= [0] = [a__add(mark(X1), mark(X2))] [mark(sqr(X))] = [0] ? [1] = [a__sqr(mark(X))] [mark(dbl(X))] = [0] >= [0] = [a__dbl(mark(X))] [mark(nil())] = [0] >= [0] = [nil()] [mark(first(X1, X2))] = [0] >= [0] = [a__first(mark(X1), mark(X2))] [a__dbl(X)] = [1] X + [0] >= [1] X + [0] = [dbl(X)] [a__dbl(s(X))] = [0] >= [0] = [s(s(dbl(X)))] [a__dbl(0())] = [0] >= [0] = [0()] [a__add(X1, X2)] = [1] X1 + [1] X2 + [0] >= [0] = [add(X1, X2)] [a__add(s(X), Y)] = [1] Y + [0] >= [0] = [s(add(X, Y))] [a__add(0(), X)] = [1] X + [0] >= [0] = [mark(X)] [a__first(X1, X2)] = [1] X1 + [1] X2 + [0] >= [0] = [first(X1, X2)] [a__first(s(X), cons(Y, Z))] = [1] Y + [0] >= [0] = [cons(mark(Y), first(X, Z))] [a__first(0(), X)] = [1] X + [0] >= [0] = [nil()] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(recip(X)) -> recip(mark(X)) , mark(terms(X)) -> a__terms(mark(X)) , mark(s(X)) -> s(X) , mark(0()) -> 0() , mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) , mark(sqr(X)) -> a__sqr(mark(X)) , mark(dbl(X)) -> a__dbl(mark(X)) , mark(nil()) -> nil() , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) , a__dbl(X) -> dbl(X) , a__dbl(s(X)) -> s(s(dbl(X))) , a__dbl(0()) -> 0() , a__add(X1, X2) -> add(X1, X2) , a__add(s(X), Y) -> s(add(X, Y)) , a__add(0(), X) -> mark(X) , a__first(X1, X2) -> first(X1, X2) , a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) , a__first(0(), X) -> nil() } Weak Trs: { a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) , a__terms(X) -> terms(X) , a__sqr(X) -> sqr(X) , a__sqr(s(X)) -> s(add(sqr(X), dbl(X))) , a__sqr(0()) -> 0() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(a__terms) = {1}, Uargs(cons) = {1}, Uargs(recip) = {1}, Uargs(a__sqr) = {1}, Uargs(a__dbl) = {1}, Uargs(a__add) = {1, 2}, Uargs(a__first) = {1, 2} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [a__terms](x1) = [1] x1 + [4] [cons](x1, x2) = [1] x1 + [0] [recip](x1) = [1] x1 + [0] [a__sqr](x1) = [1] x1 + [1] [mark](x1) = [0] [terms](x1) = [1] x1 + [0] [s](x1) = [1] [0] = [0] [add](x1, x2) = [1] x1 + [1] x2 + [2] [sqr](x1) = [0] [dbl](x1) = [1] x1 + [0] [a__dbl](x1) = [1] x1 + [0] [a__add](x1, x2) = [1] x1 + [1] x2 + [4] [a__first](x1, x2) = [1] x1 + [1] x2 + [0] [nil] = [0] [first](x1, x2) = [1] x2 + [0] The order satisfies the following ordering constraints: [a__terms(N)] = [1] N + [4] > [1] = [cons(recip(a__sqr(mark(N))), terms(s(N)))] [a__terms(X)] = [1] X + [4] > [1] X + [0] = [terms(X)] [a__sqr(X)] = [1] X + [1] > [0] = [sqr(X)] [a__sqr(s(X))] = [2] > [1] = [s(add(sqr(X), dbl(X)))] [a__sqr(0())] = [1] > [0] = [0()] [mark(cons(X1, X2))] = [0] >= [0] = [cons(mark(X1), X2)] [mark(recip(X))] = [0] >= [0] = [recip(mark(X))] [mark(terms(X))] = [0] ? [4] = [a__terms(mark(X))] [mark(s(X))] = [0] ? [1] = [s(X)] [mark(0())] = [0] >= [0] = [0()] [mark(add(X1, X2))] = [0] ? [4] = [a__add(mark(X1), mark(X2))] [mark(sqr(X))] = [0] ? [1] = [a__sqr(mark(X))] [mark(dbl(X))] = [0] >= [0] = [a__dbl(mark(X))] [mark(nil())] = [0] >= [0] = [nil()] [mark(first(X1, X2))] = [0] >= [0] = [a__first(mark(X1), mark(X2))] [a__dbl(X)] = [1] X + [0] >= [1] X + [0] = [dbl(X)] [a__dbl(s(X))] = [1] >= [1] = [s(s(dbl(X)))] [a__dbl(0())] = [0] >= [0] = [0()] [a__add(X1, X2)] = [1] X1 + [1] X2 + [4] > [1] X1 + [1] X2 + [2] = [add(X1, X2)] [a__add(s(X), Y)] = [1] Y + [5] > [1] = [s(add(X, Y))] [a__add(0(), X)] = [1] X + [4] > [0] = [mark(X)] [a__first(X1, X2)] = [1] X1 + [1] X2 + [0] >= [1] X2 + [0] = [first(X1, X2)] [a__first(s(X), cons(Y, Z))] = [1] Y + [1] > [0] = [cons(mark(Y), first(X, Z))] [a__first(0(), X)] = [1] X + [0] >= [0] = [nil()] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(recip(X)) -> recip(mark(X)) , mark(terms(X)) -> a__terms(mark(X)) , mark(s(X)) -> s(X) , mark(0()) -> 0() , mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) , mark(sqr(X)) -> a__sqr(mark(X)) , mark(dbl(X)) -> a__dbl(mark(X)) , mark(nil()) -> nil() , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) , a__dbl(X) -> dbl(X) , a__dbl(s(X)) -> s(s(dbl(X))) , a__dbl(0()) -> 0() , a__first(X1, X2) -> first(X1, X2) , a__first(0(), X) -> nil() } Weak Trs: { a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) , a__terms(X) -> terms(X) , a__sqr(X) -> sqr(X) , a__sqr(s(X)) -> s(add(sqr(X), dbl(X))) , a__sqr(0()) -> 0() , a__add(X1, X2) -> add(X1, X2) , a__add(s(X), Y) -> s(add(X, Y)) , a__add(0(), X) -> mark(X) , a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(a__terms) = {1}, Uargs(cons) = {1}, Uargs(recip) = {1}, Uargs(a__sqr) = {1}, Uargs(a__dbl) = {1}, Uargs(a__add) = {1, 2}, Uargs(a__first) = {1, 2} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [a__terms](x1) = [1] x1 + [1] [cons](x1, x2) = [1] x1 + [0] [recip](x1) = [1] x1 + [0] [a__sqr](x1) = [1] x1 + [0] [mark](x1) = [1] x1 + [0] [terms](x1) = [1] x1 + [1] [s](x1) = [0] [0] = [0] [add](x1, x2) = [1] x1 + [1] x2 + [0] [sqr](x1) = [1] x1 + [0] [dbl](x1) = [1] x1 + [0] [a__dbl](x1) = [1] x1 + [0] [a__add](x1, x2) = [1] x1 + [1] x2 + [0] [a__first](x1, x2) = [1] x1 + [1] x2 + [1] [nil] = [0] [first](x1, x2) = [1] x1 + [1] x2 + [0] The order satisfies the following ordering constraints: [a__terms(N)] = [1] N + [1] > [1] N + [0] = [cons(recip(a__sqr(mark(N))), terms(s(N)))] [a__terms(X)] = [1] X + [1] >= [1] X + [1] = [terms(X)] [a__sqr(X)] = [1] X + [0] >= [1] X + [0] = [sqr(X)] [a__sqr(s(X))] = [0] >= [0] = [s(add(sqr(X), dbl(X)))] [a__sqr(0())] = [0] >= [0] = [0()] [mark(cons(X1, X2))] = [1] X1 + [0] >= [1] X1 + [0] = [cons(mark(X1), X2)] [mark(recip(X))] = [1] X + [0] >= [1] X + [0] = [recip(mark(X))] [mark(terms(X))] = [1] X + [1] >= [1] X + [1] = [a__terms(mark(X))] [mark(s(X))] = [0] >= [0] = [s(X)] [mark(0())] = [0] >= [0] = [0()] [mark(add(X1, X2))] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [a__add(mark(X1), mark(X2))] [mark(sqr(X))] = [1] X + [0] >= [1] X + [0] = [a__sqr(mark(X))] [mark(dbl(X))] = [1] X + [0] >= [1] X + [0] = [a__dbl(mark(X))] [mark(nil())] = [0] >= [0] = [nil()] [mark(first(X1, X2))] = [1] X1 + [1] X2 + [0] ? [1] X1 + [1] X2 + [1] = [a__first(mark(X1), mark(X2))] [a__dbl(X)] = [1] X + [0] >= [1] X + [0] = [dbl(X)] [a__dbl(s(X))] = [0] >= [0] = [s(s(dbl(X)))] [a__dbl(0())] = [0] >= [0] = [0()] [a__add(X1, X2)] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [add(X1, X2)] [a__add(s(X), Y)] = [1] Y + [0] >= [0] = [s(add(X, Y))] [a__add(0(), X)] = [1] X + [0] >= [1] X + [0] = [mark(X)] [a__first(X1, X2)] = [1] X1 + [1] X2 + [1] > [1] X1 + [1] X2 + [0] = [first(X1, X2)] [a__first(s(X), cons(Y, Z))] = [1] Y + [1] > [1] Y + [0] = [cons(mark(Y), first(X, Z))] [a__first(0(), X)] = [1] X + [1] > [0] = [nil()] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(recip(X)) -> recip(mark(X)) , mark(terms(X)) -> a__terms(mark(X)) , mark(s(X)) -> s(X) , mark(0()) -> 0() , mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) , mark(sqr(X)) -> a__sqr(mark(X)) , mark(dbl(X)) -> a__dbl(mark(X)) , mark(nil()) -> nil() , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) , a__dbl(X) -> dbl(X) , a__dbl(s(X)) -> s(s(dbl(X))) , a__dbl(0()) -> 0() } Weak Trs: { a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) , a__terms(X) -> terms(X) , a__sqr(X) -> sqr(X) , a__sqr(s(X)) -> s(add(sqr(X), dbl(X))) , a__sqr(0()) -> 0() , a__add(X1, X2) -> add(X1, X2) , a__add(s(X), Y) -> s(add(X, Y)) , a__add(0(), X) -> mark(X) , a__first(X1, X2) -> first(X1, X2) , a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) , a__first(0(), X) -> nil() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(a__terms) = {1}, Uargs(cons) = {1}, Uargs(recip) = {1}, Uargs(a__sqr) = {1}, Uargs(a__dbl) = {1}, Uargs(a__add) = {1, 2}, Uargs(a__first) = {1, 2} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [a__terms](x1) = [1] x1 + [3] [cons](x1, x2) = [1] x1 + [0] [recip](x1) = [1] x1 + [0] [a__sqr](x1) = [1] x1 + [0] [mark](x1) = [1] [terms](x1) = [1] x1 + [0] [s](x1) = [1] [0] = [1] [add](x1, x2) = [0] [sqr](x1) = [0] [dbl](x1) = [1] x1 + [0] [a__dbl](x1) = [1] x1 + [4] [a__add](x1, x2) = [1] x1 + [1] x2 + [7] [a__first](x1, x2) = [1] x1 + [1] x2 + [7] [nil] = [0] [first](x1, x2) = [1] x2 + [0] The order satisfies the following ordering constraints: [a__terms(N)] = [1] N + [3] > [1] = [cons(recip(a__sqr(mark(N))), terms(s(N)))] [a__terms(X)] = [1] X + [3] > [1] X + [0] = [terms(X)] [a__sqr(X)] = [1] X + [0] >= [0] = [sqr(X)] [a__sqr(s(X))] = [1] >= [1] = [s(add(sqr(X), dbl(X)))] [a__sqr(0())] = [1] >= [1] = [0()] [mark(cons(X1, X2))] = [1] >= [1] = [cons(mark(X1), X2)] [mark(recip(X))] = [1] >= [1] = [recip(mark(X))] [mark(terms(X))] = [1] ? [4] = [a__terms(mark(X))] [mark(s(X))] = [1] >= [1] = [s(X)] [mark(0())] = [1] >= [1] = [0()] [mark(add(X1, X2))] = [1] ? [9] = [a__add(mark(X1), mark(X2))] [mark(sqr(X))] = [1] >= [1] = [a__sqr(mark(X))] [mark(dbl(X))] = [1] ? [5] = [a__dbl(mark(X))] [mark(nil())] = [1] > [0] = [nil()] [mark(first(X1, X2))] = [1] ? [9] = [a__first(mark(X1), mark(X2))] [a__dbl(X)] = [1] X + [4] > [1] X + [0] = [dbl(X)] [a__dbl(s(X))] = [5] > [1] = [s(s(dbl(X)))] [a__dbl(0())] = [5] > [1] = [0()] [a__add(X1, X2)] = [1] X1 + [1] X2 + [7] > [0] = [add(X1, X2)] [a__add(s(X), Y)] = [1] Y + [8] > [1] = [s(add(X, Y))] [a__add(0(), X)] = [1] X + [8] > [1] = [mark(X)] [a__first(X1, X2)] = [1] X1 + [1] X2 + [7] > [1] X2 + [0] = [first(X1, X2)] [a__first(s(X), cons(Y, Z))] = [1] Y + [8] > [1] = [cons(mark(Y), first(X, Z))] [a__first(0(), X)] = [1] X + [8] > [0] = [nil()] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(recip(X)) -> recip(mark(X)) , mark(terms(X)) -> a__terms(mark(X)) , mark(s(X)) -> s(X) , mark(0()) -> 0() , mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) , mark(sqr(X)) -> a__sqr(mark(X)) , mark(dbl(X)) -> a__dbl(mark(X)) , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) } Weak Trs: { a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) , a__terms(X) -> terms(X) , a__sqr(X) -> sqr(X) , a__sqr(s(X)) -> s(add(sqr(X), dbl(X))) , a__sqr(0()) -> 0() , mark(nil()) -> nil() , a__dbl(X) -> dbl(X) , a__dbl(s(X)) -> s(s(dbl(X))) , a__dbl(0()) -> 0() , a__add(X1, X2) -> add(X1, X2) , a__add(s(X), Y) -> s(add(X, Y)) , a__add(0(), X) -> mark(X) , a__first(X1, X2) -> first(X1, X2) , a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) , a__first(0(), X) -> nil() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(a__terms) = {1}, Uargs(cons) = {1}, Uargs(recip) = {1}, Uargs(a__sqr) = {1}, Uargs(a__dbl) = {1}, Uargs(a__add) = {1, 2}, Uargs(a__first) = {1, 2} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [a__terms](x1) = [1] x1 + [7] [cons](x1, x2) = [1] x1 + [0] [recip](x1) = [1] x1 + [0] [a__sqr](x1) = [1] x1 + [0] [mark](x1) = [1] [terms](x1) = [1] x1 + [0] [s](x1) = [1] [0] = [0] [add](x1, x2) = [0] [sqr](x1) = [1] x1 + [0] [dbl](x1) = [0] [a__dbl](x1) = [1] x1 + [0] [a__add](x1, x2) = [1] x1 + [1] x2 + [6] [a__first](x1, x2) = [1] x1 + [1] x2 + [7] [nil] = [0] [first](x1, x2) = [1] x2 + [0] The order satisfies the following ordering constraints: [a__terms(N)] = [1] N + [7] > [1] = [cons(recip(a__sqr(mark(N))), terms(s(N)))] [a__terms(X)] = [1] X + [7] > [1] X + [0] = [terms(X)] [a__sqr(X)] = [1] X + [0] >= [1] X + [0] = [sqr(X)] [a__sqr(s(X))] = [1] >= [1] = [s(add(sqr(X), dbl(X)))] [a__sqr(0())] = [0] >= [0] = [0()] [mark(cons(X1, X2))] = [1] >= [1] = [cons(mark(X1), X2)] [mark(recip(X))] = [1] >= [1] = [recip(mark(X))] [mark(terms(X))] = [1] ? [8] = [a__terms(mark(X))] [mark(s(X))] = [1] >= [1] = [s(X)] [mark(0())] = [1] > [0] = [0()] [mark(add(X1, X2))] = [1] ? [8] = [a__add(mark(X1), mark(X2))] [mark(sqr(X))] = [1] >= [1] = [a__sqr(mark(X))] [mark(dbl(X))] = [1] >= [1] = [a__dbl(mark(X))] [mark(nil())] = [1] > [0] = [nil()] [mark(first(X1, X2))] = [1] ? [9] = [a__first(mark(X1), mark(X2))] [a__dbl(X)] = [1] X + [0] >= [0] = [dbl(X)] [a__dbl(s(X))] = [1] >= [1] = [s(s(dbl(X)))] [a__dbl(0())] = [0] >= [0] = [0()] [a__add(X1, X2)] = [1] X1 + [1] X2 + [6] > [0] = [add(X1, X2)] [a__add(s(X), Y)] = [1] Y + [7] > [1] = [s(add(X, Y))] [a__add(0(), X)] = [1] X + [6] > [1] = [mark(X)] [a__first(X1, X2)] = [1] X1 + [1] X2 + [7] > [1] X2 + [0] = [first(X1, X2)] [a__first(s(X), cons(Y, Z))] = [1] Y + [8] > [1] = [cons(mark(Y), first(X, Z))] [a__first(0(), X)] = [1] X + [7] > [0] = [nil()] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(recip(X)) -> recip(mark(X)) , mark(terms(X)) -> a__terms(mark(X)) , mark(s(X)) -> s(X) , mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) , mark(sqr(X)) -> a__sqr(mark(X)) , mark(dbl(X)) -> a__dbl(mark(X)) , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) } Weak Trs: { a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) , a__terms(X) -> terms(X) , a__sqr(X) -> sqr(X) , a__sqr(s(X)) -> s(add(sqr(X), dbl(X))) , a__sqr(0()) -> 0() , mark(0()) -> 0() , mark(nil()) -> nil() , a__dbl(X) -> dbl(X) , a__dbl(s(X)) -> s(s(dbl(X))) , a__dbl(0()) -> 0() , a__add(X1, X2) -> add(X1, X2) , a__add(s(X), Y) -> s(add(X, Y)) , a__add(0(), X) -> mark(X) , a__first(X1, X2) -> first(X1, X2) , a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) , a__first(0(), X) -> nil() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(a__terms) = {1}, Uargs(cons) = {1}, Uargs(recip) = {1}, Uargs(a__sqr) = {1}, Uargs(a__dbl) = {1}, Uargs(a__add) = {1, 2}, Uargs(a__first) = {1, 2} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [a__terms](x1) = [1] x1 + [7] [cons](x1, x2) = [1] x1 + [0] [recip](x1) = [1] x1 + [0] [a__sqr](x1) = [1] x1 + [4] [mark](x1) = [1] x1 + [1] [terms](x1) = [1] x1 + [0] [s](x1) = [3] [0] = [7] [add](x1, x2) = [1] x1 + [1] x2 + [0] [sqr](x1) = [1] x1 + [0] [dbl](x1) = [1] x1 + [0] [a__dbl](x1) = [1] x1 + [4] [a__add](x1, x2) = [1] x1 + [1] x2 + [6] [a__first](x1, x2) = [1] x1 + [1] x2 + [6] [nil] = [0] [first](x1, x2) = [1] x1 + [1] x2 + [0] The order satisfies the following ordering constraints: [a__terms(N)] = [1] N + [7] > [1] N + [5] = [cons(recip(a__sqr(mark(N))), terms(s(N)))] [a__terms(X)] = [1] X + [7] > [1] X + [0] = [terms(X)] [a__sqr(X)] = [1] X + [4] > [1] X + [0] = [sqr(X)] [a__sqr(s(X))] = [7] > [3] = [s(add(sqr(X), dbl(X)))] [a__sqr(0())] = [11] > [7] = [0()] [mark(cons(X1, X2))] = [1] X1 + [1] >= [1] X1 + [1] = [cons(mark(X1), X2)] [mark(recip(X))] = [1] X + [1] >= [1] X + [1] = [recip(mark(X))] [mark(terms(X))] = [1] X + [1] ? [1] X + [8] = [a__terms(mark(X))] [mark(s(X))] = [4] > [3] = [s(X)] [mark(0())] = [8] > [7] = [0()] [mark(add(X1, X2))] = [1] X1 + [1] X2 + [1] ? [1] X1 + [1] X2 + [8] = [a__add(mark(X1), mark(X2))] [mark(sqr(X))] = [1] X + [1] ? [1] X + [5] = [a__sqr(mark(X))] [mark(dbl(X))] = [1] X + [1] ? [1] X + [5] = [a__dbl(mark(X))] [mark(nil())] = [1] > [0] = [nil()] [mark(first(X1, X2))] = [1] X1 + [1] X2 + [1] ? [1] X1 + [1] X2 + [8] = [a__first(mark(X1), mark(X2))] [a__dbl(X)] = [1] X + [4] > [1] X + [0] = [dbl(X)] [a__dbl(s(X))] = [7] > [3] = [s(s(dbl(X)))] [a__dbl(0())] = [11] > [7] = [0()] [a__add(X1, X2)] = [1] X1 + [1] X2 + [6] > [1] X1 + [1] X2 + [0] = [add(X1, X2)] [a__add(s(X), Y)] = [1] Y + [9] > [3] = [s(add(X, Y))] [a__add(0(), X)] = [1] X + [13] > [1] X + [1] = [mark(X)] [a__first(X1, X2)] = [1] X1 + [1] X2 + [6] > [1] X1 + [1] X2 + [0] = [first(X1, X2)] [a__first(s(X), cons(Y, Z))] = [1] Y + [9] > [1] Y + [1] = [cons(mark(Y), first(X, Z))] [a__first(0(), X)] = [1] X + [13] > [0] = [nil()] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(recip(X)) -> recip(mark(X)) , mark(terms(X)) -> a__terms(mark(X)) , mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) , mark(sqr(X)) -> a__sqr(mark(X)) , mark(dbl(X)) -> a__dbl(mark(X)) , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) } Weak Trs: { a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) , a__terms(X) -> terms(X) , a__sqr(X) -> sqr(X) , a__sqr(s(X)) -> s(add(sqr(X), dbl(X))) , a__sqr(0()) -> 0() , mark(s(X)) -> s(X) , mark(0()) -> 0() , mark(nil()) -> nil() , a__dbl(X) -> dbl(X) , a__dbl(s(X)) -> s(s(dbl(X))) , a__dbl(0()) -> 0() , a__add(X1, X2) -> add(X1, X2) , a__add(s(X), Y) -> s(add(X, Y)) , a__add(0(), X) -> mark(X) , a__first(X1, X2) -> first(X1, X2) , a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) , a__first(0(), X) -> nil() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. Trs: { mark(terms(X)) -> a__terms(mark(X)) , mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^2)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- The following argument positions are usable: Uargs(a__terms) = {1}, Uargs(cons) = {1}, Uargs(recip) = {1}, Uargs(a__sqr) = {1}, Uargs(a__dbl) = {1}, Uargs(a__add) = {1, 2}, Uargs(a__first) = {1, 2} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [a__terms](x1) = [1 7] x1 + [1] [0 1] [2] [cons](x1, x2) = [1 0] x1 + [0] [0 1] [0] [recip](x1) = [1 0] x1 + [0] [0 1] [0] [a__sqr](x1) = [1 0] x1 + [0] [0 1] [0] [mark](x1) = [1 7] x1 + [1] [0 1] [0] [terms](x1) = [1 7] x1 + [0] [0 1] [2] [s](x1) = [0] [0] [0] = [0] [0] [add](x1, x2) = [1 5] x1 + [1 7] x2 + [0] [0 1] [0 1] [1] [sqr](x1) = [1 0] x1 + [0] [0 1] [0] [dbl](x1) = [1 0] x1 + [0] [0 1] [0] [a__dbl](x1) = [1 0] x1 + [0] [0 1] [0] [a__add](x1, x2) = [1 5] x1 + [1 7] x2 + [1] [0 1] [0 1] [1] [a__first](x1, x2) = [1 2] x1 + [1 7] x2 + [5] [0 1] [0 1] [1] [nil] = [0] [0] [first](x1, x2) = [1 2] x1 + [1 7] x2 + [0] [0 1] [0 1] [1] The order satisfies the following ordering constraints: [a__terms(N)] = [1 7] N + [1] [0 1] [2] >= [1 7] N + [1] [0 1] [0] = [cons(recip(a__sqr(mark(N))), terms(s(N)))] [a__terms(X)] = [1 7] X + [1] [0 1] [2] > [1 7] X + [0] [0 1] [2] = [terms(X)] [a__sqr(X)] = [1 0] X + [0] [0 1] [0] >= [1 0] X + [0] [0 1] [0] = [sqr(X)] [a__sqr(s(X))] = [0] [0] >= [0] [0] = [s(add(sqr(X), dbl(X)))] [a__sqr(0())] = [0] [0] >= [0] [0] = [0()] [mark(cons(X1, X2))] = [1 7] X1 + [1] [0 1] [0] >= [1 7] X1 + [1] [0 1] [0] = [cons(mark(X1), X2)] [mark(recip(X))] = [1 7] X + [1] [0 1] [0] >= [1 7] X + [1] [0 1] [0] = [recip(mark(X))] [mark(terms(X))] = [1 14] X + [15] [0 1] [2] > [1 14] X + [2] [0 1] [2] = [a__terms(mark(X))] [mark(s(X))] = [1] [0] > [0] [0] = [s(X)] [mark(0())] = [1] [0] > [0] [0] = [0()] [mark(add(X1, X2))] = [1 12] X1 + [1 14] X2 + [8] [0 1] [0 1] [1] > [1 12] X1 + [1 14] X2 + [3] [0 1] [0 1] [1] = [a__add(mark(X1), mark(X2))] [mark(sqr(X))] = [1 7] X + [1] [0 1] [0] >= [1 7] X + [1] [0 1] [0] = [a__sqr(mark(X))] [mark(dbl(X))] = [1 7] X + [1] [0 1] [0] >= [1 7] X + [1] [0 1] [0] = [a__dbl(mark(X))] [mark(nil())] = [1] [0] > [0] [0] = [nil()] [mark(first(X1, X2))] = [1 9] X1 + [1 14] X2 + [8] [0 1] [0 1] [1] > [1 9] X1 + [1 14] X2 + [7] [0 1] [0 1] [1] = [a__first(mark(X1), mark(X2))] [a__dbl(X)] = [1 0] X + [0] [0 1] [0] >= [1 0] X + [0] [0 1] [0] = [dbl(X)] [a__dbl(s(X))] = [0] [0] >= [0] [0] = [s(s(dbl(X)))] [a__dbl(0())] = [0] [0] >= [0] [0] = [0()] [a__add(X1, X2)] = [1 5] X1 + [1 7] X2 + [1] [0 1] [0 1] [1] > [1 5] X1 + [1 7] X2 + [0] [0 1] [0 1] [1] = [add(X1, X2)] [a__add(s(X), Y)] = [1 7] Y + [1] [0 1] [1] > [0] [0] = [s(add(X, Y))] [a__add(0(), X)] = [1 7] X + [1] [0 1] [1] >= [1 7] X + [1] [0 1] [0] = [mark(X)] [a__first(X1, X2)] = [1 2] X1 + [1 7] X2 + [5] [0 1] [0 1] [1] > [1 2] X1 + [1 7] X2 + [0] [0 1] [0 1] [1] = [first(X1, X2)] [a__first(s(X), cons(Y, Z))] = [1 7] Y + [5] [0 1] [1] > [1 7] Y + [1] [0 1] [0] = [cons(mark(Y), first(X, Z))] [a__first(0(), X)] = [1 7] X + [5] [0 1] [1] > [0] [0] = [nil()] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(recip(X)) -> recip(mark(X)) , mark(sqr(X)) -> a__sqr(mark(X)) , mark(dbl(X)) -> a__dbl(mark(X)) } Weak Trs: { a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) , a__terms(X) -> terms(X) , a__sqr(X) -> sqr(X) , a__sqr(s(X)) -> s(add(sqr(X), dbl(X))) , a__sqr(0()) -> 0() , mark(terms(X)) -> a__terms(mark(X)) , mark(s(X)) -> s(X) , mark(0()) -> 0() , mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) , mark(nil()) -> nil() , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) , a__dbl(X) -> dbl(X) , a__dbl(s(X)) -> s(s(dbl(X))) , a__dbl(0()) -> 0() , a__add(X1, X2) -> add(X1, X2) , a__add(s(X), Y) -> s(add(X, Y)) , a__add(0(), X) -> mark(X) , a__first(X1, X2) -> first(X1, X2) , a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) , a__first(0(), X) -> nil() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. Trs: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(recip(X)) -> recip(mark(X)) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^2)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- The following argument positions are usable: Uargs(a__terms) = {1}, Uargs(cons) = {1}, Uargs(recip) = {1}, Uargs(a__sqr) = {1}, Uargs(a__dbl) = {1}, Uargs(a__add) = {1, 2}, Uargs(a__first) = {1, 2} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [a__terms](x1) = [1 3] x1 + [6] [0 1] [7] [cons](x1, x2) = [1 2] x1 + [2] [0 1] [5] [recip](x1) = [1 0] x1 + [0] [0 1] [2] [a__sqr](x1) = [1 0] x1 + [0] [0 1] [0] [mark](x1) = [1 1] x1 + [0] [0 1] [0] [terms](x1) = [1 3] x1 + [4] [0 1] [7] [s](x1) = [0] [0] [0] = [0] [0] [add](x1, x2) = [1 0] x1 + [1 1] x2 + [0] [0 1] [0 1] [0] [sqr](x1) = [1 0] x1 + [0] [0 1] [0] [dbl](x1) = [1 0] x1 + [0] [0 1] [0] [a__dbl](x1) = [1 0] x1 + [0] [0 1] [0] [a__add](x1, x2) = [1 0] x1 + [1 1] x2 + [0] [0 1] [0 1] [0] [a__first](x1, x2) = [1 0] x1 + [1 1] x2 + [0] [0 1] [0 1] [0] [nil] = [0] [0] [first](x1, x2) = [1 0] x1 + [1 1] x2 + [0] [0 1] [0 1] [0] The order satisfies the following ordering constraints: [a__terms(N)] = [1 3] N + [6] [0 1] [7] >= [1 3] N + [6] [0 1] [7] = [cons(recip(a__sqr(mark(N))), terms(s(N)))] [a__terms(X)] = [1 3] X + [6] [0 1] [7] > [1 3] X + [4] [0 1] [7] = [terms(X)] [a__sqr(X)] = [1 0] X + [0] [0 1] [0] >= [1 0] X + [0] [0 1] [0] = [sqr(X)] [a__sqr(s(X))] = [0] [0] >= [0] [0] = [s(add(sqr(X), dbl(X)))] [a__sqr(0())] = [0] [0] >= [0] [0] = [0()] [mark(cons(X1, X2))] = [1 3] X1 + [7] [0 1] [5] > [1 3] X1 + [2] [0 1] [5] = [cons(mark(X1), X2)] [mark(recip(X))] = [1 1] X + [2] [0 1] [2] > [1 1] X + [0] [0 1] [2] = [recip(mark(X))] [mark(terms(X))] = [1 4] X + [11] [0 1] [7] > [1 4] X + [6] [0 1] [7] = [a__terms(mark(X))] [mark(s(X))] = [0] [0] >= [0] [0] = [s(X)] [mark(0())] = [0] [0] >= [0] [0] = [0()] [mark(add(X1, X2))] = [1 1] X1 + [1 2] X2 + [0] [0 1] [0 1] [0] >= [1 1] X1 + [1 2] X2 + [0] [0 1] [0 1] [0] = [a__add(mark(X1), mark(X2))] [mark(sqr(X))] = [1 1] X + [0] [0 1] [0] >= [1 1] X + [0] [0 1] [0] = [a__sqr(mark(X))] [mark(dbl(X))] = [1 1] X + [0] [0 1] [0] >= [1 1] X + [0] [0 1] [0] = [a__dbl(mark(X))] [mark(nil())] = [0] [0] >= [0] [0] = [nil()] [mark(first(X1, X2))] = [1 1] X1 + [1 2] X2 + [0] [0 1] [0 1] [0] >= [1 1] X1 + [1 2] X2 + [0] [0 1] [0 1] [0] = [a__first(mark(X1), mark(X2))] [a__dbl(X)] = [1 0] X + [0] [0 1] [0] >= [1 0] X + [0] [0 1] [0] = [dbl(X)] [a__dbl(s(X))] = [0] [0] >= [0] [0] = [s(s(dbl(X)))] [a__dbl(0())] = [0] [0] >= [0] [0] = [0()] [a__add(X1, X2)] = [1 0] X1 + [1 1] X2 + [0] [0 1] [0 1] [0] >= [1 0] X1 + [1 1] X2 + [0] [0 1] [0 1] [0] = [add(X1, X2)] [a__add(s(X), Y)] = [1 1] Y + [0] [0 1] [0] >= [0] [0] = [s(add(X, Y))] [a__add(0(), X)] = [1 1] X + [0] [0 1] [0] >= [1 1] X + [0] [0 1] [0] = [mark(X)] [a__first(X1, X2)] = [1 0] X1 + [1 1] X2 + [0] [0 1] [0 1] [0] >= [1 0] X1 + [1 1] X2 + [0] [0 1] [0 1] [0] = [first(X1, X2)] [a__first(s(X), cons(Y, Z))] = [1 3] Y + [7] [0 1] [5] > [1 3] Y + [2] [0 1] [5] = [cons(mark(Y), first(X, Z))] [a__first(0(), X)] = [1 1] X + [0] [0 1] [0] >= [0] [0] = [nil()] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { mark(sqr(X)) -> a__sqr(mark(X)) , mark(dbl(X)) -> a__dbl(mark(X)) } Weak Trs: { a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) , a__terms(X) -> terms(X) , a__sqr(X) -> sqr(X) , a__sqr(s(X)) -> s(add(sqr(X), dbl(X))) , a__sqr(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(recip(X)) -> recip(mark(X)) , mark(terms(X)) -> a__terms(mark(X)) , mark(s(X)) -> s(X) , mark(0()) -> 0() , mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) , mark(nil()) -> nil() , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) , a__dbl(X) -> dbl(X) , a__dbl(s(X)) -> s(s(dbl(X))) , a__dbl(0()) -> 0() , a__add(X1, X2) -> add(X1, X2) , a__add(s(X), Y) -> s(add(X, Y)) , a__add(0(), X) -> mark(X) , a__first(X1, X2) -> first(X1, X2) , a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) , a__first(0(), X) -> nil() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. Trs: { mark(sqr(X)) -> a__sqr(mark(X)) , mark(dbl(X)) -> a__dbl(mark(X)) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^2)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- The following argument positions are usable: Uargs(a__terms) = {1}, Uargs(cons) = {1}, Uargs(recip) = {1}, Uargs(a__sqr) = {1}, Uargs(a__dbl) = {1}, Uargs(a__add) = {1, 2}, Uargs(a__first) = {1, 2} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [a__terms](x1) = [1 7] x1 + [7] [0 1] [4] [cons](x1, x2) = [1 0] x1 + [0] [0 1] [0] [recip](x1) = [1 4] x1 + [0] [0 1] [2] [a__sqr](x1) = [1 0] x1 + [1] [0 1] [1] [mark](x1) = [1 2] x1 + [1] [0 1] [0] [terms](x1) = [1 7] x1 + [4] [0 1] [4] [s](x1) = [0] [0] [0] = [0] [0] [add](x1, x2) = [1 3] x1 + [1 5] x2 + [4] [0 1] [0 1] [1] [sqr](x1) = [1 0] x1 + [1] [0 1] [1] [dbl](x1) = [1 0] x1 + [0] [0 1] [1] [a__dbl](x1) = [1 0] x1 + [0] [0 1] [1] [a__add](x1, x2) = [1 3] x1 + [1 5] x2 + [4] [0 1] [0 1] [1] [a__first](x1, x2) = [1 6] x1 + [1 7] x2 + [4] [0 1] [0 1] [1] [nil] = [0] [0] [first](x1, x2) = [1 6] x1 + [1 7] x2 + [4] [0 1] [0 1] [1] The order satisfies the following ordering constraints: [a__terms(N)] = [1 7] N + [7] [0 1] [4] > [1 6] N + [6] [0 1] [3] = [cons(recip(a__sqr(mark(N))), terms(s(N)))] [a__terms(X)] = [1 7] X + [7] [0 1] [4] > [1 7] X + [4] [0 1] [4] = [terms(X)] [a__sqr(X)] = [1 0] X + [1] [0 1] [1] >= [1 0] X + [1] [0 1] [1] = [sqr(X)] [a__sqr(s(X))] = [1] [1] > [0] [0] = [s(add(sqr(X), dbl(X)))] [a__sqr(0())] = [1] [1] > [0] [0] = [0()] [mark(cons(X1, X2))] = [1 2] X1 + [1] [0 1] [0] >= [1 2] X1 + [1] [0 1] [0] = [cons(mark(X1), X2)] [mark(recip(X))] = [1 6] X + [5] [0 1] [2] > [1 6] X + [1] [0 1] [2] = [recip(mark(X))] [mark(terms(X))] = [1 9] X + [13] [0 1] [4] > [1 9] X + [8] [0 1] [4] = [a__terms(mark(X))] [mark(s(X))] = [1] [0] > [0] [0] = [s(X)] [mark(0())] = [1] [0] > [0] [0] = [0()] [mark(add(X1, X2))] = [1 5] X1 + [1 7] X2 + [7] [0 1] [0 1] [1] > [1 5] X1 + [1 7] X2 + [6] [0 1] [0 1] [1] = [a__add(mark(X1), mark(X2))] [mark(sqr(X))] = [1 2] X + [4] [0 1] [1] > [1 2] X + [2] [0 1] [1] = [a__sqr(mark(X))] [mark(dbl(X))] = [1 2] X + [3] [0 1] [1] > [1 2] X + [1] [0 1] [1] = [a__dbl(mark(X))] [mark(nil())] = [1] [0] > [0] [0] = [nil()] [mark(first(X1, X2))] = [1 8] X1 + [1 9] X2 + [7] [0 1] [0 1] [1] > [1 8] X1 + [1 9] X2 + [6] [0 1] [0 1] [1] = [a__first(mark(X1), mark(X2))] [a__dbl(X)] = [1 0] X + [0] [0 1] [1] >= [1 0] X + [0] [0 1] [1] = [dbl(X)] [a__dbl(s(X))] = [0] [1] >= [0] [0] = [s(s(dbl(X)))] [a__dbl(0())] = [0] [1] >= [0] [0] = [0()] [a__add(X1, X2)] = [1 3] X1 + [1 5] X2 + [4] [0 1] [0 1] [1] >= [1 3] X1 + [1 5] X2 + [4] [0 1] [0 1] [1] = [add(X1, X2)] [a__add(s(X), Y)] = [1 5] Y + [4] [0 1] [1] > [0] [0] = [s(add(X, Y))] [a__add(0(), X)] = [1 5] X + [4] [0 1] [1] > [1 2] X + [1] [0 1] [0] = [mark(X)] [a__first(X1, X2)] = [1 6] X1 + [1 7] X2 + [4] [0 1] [0 1] [1] >= [1 6] X1 + [1 7] X2 + [4] [0 1] [0 1] [1] = [first(X1, X2)] [a__first(s(X), cons(Y, Z))] = [1 7] Y + [4] [0 1] [1] > [1 2] Y + [1] [0 1] [0] = [cons(mark(Y), first(X, Z))] [a__first(0(), X)] = [1 7] X + [4] [0 1] [1] > [0] [0] = [nil()] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) , a__terms(X) -> terms(X) , a__sqr(X) -> sqr(X) , a__sqr(s(X)) -> s(add(sqr(X), dbl(X))) , a__sqr(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(recip(X)) -> recip(mark(X)) , mark(terms(X)) -> a__terms(mark(X)) , mark(s(X)) -> s(X) , mark(0()) -> 0() , mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) , mark(sqr(X)) -> a__sqr(mark(X)) , mark(dbl(X)) -> a__dbl(mark(X)) , mark(nil()) -> nil() , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) , a__dbl(X) -> dbl(X) , a__dbl(s(X)) -> s(s(dbl(X))) , a__dbl(0()) -> 0() , a__add(X1, X2) -> add(X1, X2) , a__add(s(X), Y) -> s(add(X, Y)) , a__add(0(), X) -> mark(X) , a__first(X1, X2) -> first(X1, X2) , a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) , a__first(0(), X) -> nil() } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(n^2))