(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(f(X)) → c(n__f(n__g(n__f(X))))
c(X) → d(activate(X))
h(X) → c(n__d(X))
f(X) → n__f(X)
g(X) → n__g(X)
d(X) → n__d(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(X)
activate(n__d(X)) → d(X)
activate(X) → X
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → c(n__f(n__g(n__f(z0))))
f(z0) → n__f(z0)
c(z0) → d(activate(z0))
h(z0) → c(n__d(z0))
g(z0) → n__g(z0)
d(z0) → n__d(z0)
activate(n__f(z0)) → f(activate(z0))
activate(n__g(z0)) → g(z0)
activate(n__d(z0)) → d(z0)
activate(z0) → z0
Tuples:
F(f(z0)) → c1(C(n__f(n__g(n__f(z0)))))
F(z0) → c2
C(z0) → c3(D(activate(z0)), ACTIVATE(z0))
H(z0) → c4(C(n__d(z0)))
G(z0) → c5
D(z0) → c6
ACTIVATE(n__f(z0)) → c7(F(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__g(z0)) → c8(G(z0))
ACTIVATE(n__d(z0)) → c9(D(z0))
ACTIVATE(z0) → c10
S tuples:
F(f(z0)) → c1(C(n__f(n__g(n__f(z0)))))
F(z0) → c2
C(z0) → c3(D(activate(z0)), ACTIVATE(z0))
H(z0) → c4(C(n__d(z0)))
G(z0) → c5
D(z0) → c6
ACTIVATE(n__f(z0)) → c7(F(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__g(z0)) → c8(G(z0))
ACTIVATE(n__d(z0)) → c9(D(z0))
ACTIVATE(z0) → c10
K tuples:none
Defined Rule Symbols:
f, c, h, g, d, activate
Defined Pair Symbols:
F, C, H, G, D, ACTIVATE
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10
(3) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 2 leading nodes:
F(f(z0)) → c1(C(n__f(n__g(n__f(z0)))))
H(z0) → c4(C(n__d(z0)))
Removed 6 trailing nodes:
ACTIVATE(z0) → c10
G(z0) → c5
F(z0) → c2
ACTIVATE(n__d(z0)) → c9(D(z0))
D(z0) → c6
ACTIVATE(n__g(z0)) → c8(G(z0))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → c(n__f(n__g(n__f(z0))))
f(z0) → n__f(z0)
c(z0) → d(activate(z0))
h(z0) → c(n__d(z0))
g(z0) → n__g(z0)
d(z0) → n__d(z0)
activate(n__f(z0)) → f(activate(z0))
activate(n__g(z0)) → g(z0)
activate(n__d(z0)) → d(z0)
activate(z0) → z0
Tuples:
C(z0) → c3(D(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__f(z0)) → c7(F(activate(z0)), ACTIVATE(z0))
S tuples:
C(z0) → c3(D(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__f(z0)) → c7(F(activate(z0)), ACTIVATE(z0))
K tuples:none
Defined Rule Symbols:
f, c, h, g, d, activate
Defined Pair Symbols:
C, ACTIVATE
Compound Symbols:
c3, c7
(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → c(n__f(n__g(n__f(z0))))
f(z0) → n__f(z0)
c(z0) → d(activate(z0))
h(z0) → c(n__d(z0))
g(z0) → n__g(z0)
d(z0) → n__d(z0)
activate(n__f(z0)) → f(activate(z0))
activate(n__g(z0)) → g(z0)
activate(n__d(z0)) → d(z0)
activate(z0) → z0
Tuples:
C(z0) → c3(ACTIVATE(z0))
ACTIVATE(n__f(z0)) → c7(ACTIVATE(z0))
S tuples:
C(z0) → c3(ACTIVATE(z0))
ACTIVATE(n__f(z0)) → c7(ACTIVATE(z0))
K tuples:none
Defined Rule Symbols:
f, c, h, g, d, activate
Defined Pair Symbols:
C, ACTIVATE
Compound Symbols:
c3, c7
(7) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
C(z0) → c3(ACTIVATE(z0))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → c(n__f(n__g(n__f(z0))))
f(z0) → n__f(z0)
c(z0) → d(activate(z0))
h(z0) → c(n__d(z0))
g(z0) → n__g(z0)
d(z0) → n__d(z0)
activate(n__f(z0)) → f(activate(z0))
activate(n__g(z0)) → g(z0)
activate(n__d(z0)) → d(z0)
activate(z0) → z0
Tuples:
ACTIVATE(n__f(z0)) → c7(ACTIVATE(z0))
S tuples:
ACTIVATE(n__f(z0)) → c7(ACTIVATE(z0))
K tuples:none
Defined Rule Symbols:
f, c, h, g, d, activate
Defined Pair Symbols:
ACTIVATE
Compound Symbols:
c7
(9) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
f(f(z0)) → c(n__f(n__g(n__f(z0))))
f(z0) → n__f(z0)
c(z0) → d(activate(z0))
h(z0) → c(n__d(z0))
g(z0) → n__g(z0)
d(z0) → n__d(z0)
activate(n__f(z0)) → f(activate(z0))
activate(n__g(z0)) → g(z0)
activate(n__d(z0)) → d(z0)
activate(z0) → z0
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
ACTIVATE(n__f(z0)) → c7(ACTIVATE(z0))
S tuples:
ACTIVATE(n__f(z0)) → c7(ACTIVATE(z0))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
ACTIVATE
Compound Symbols:
c7
(11) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVATE(n__f(z0)) → c7(ACTIVATE(z0))
We considered the (Usable) Rules:none
And the Tuples:
ACTIVATE(n__f(z0)) → c7(ACTIVATE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVATE(x1)) = [5]x1
POL(c7(x1)) = x1
POL(n__f(x1)) = [1] + x1
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
ACTIVATE(n__f(z0)) → c7(ACTIVATE(z0))
S tuples:none
K tuples:
ACTIVATE(n__f(z0)) → c7(ACTIVATE(z0))
Defined Rule Symbols:none
Defined Pair Symbols:
ACTIVATE
Compound Symbols:
c7
(13) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(14) BOUNDS(O(1), O(1))