(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(f(X, g(X), Y)) → mark(f(Y, Y, Y))
active(g(b)) → mark(c)
active(b) → mark(c)
active(g(X)) → g(active(X))
g(mark(X)) → mark(g(X))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(g(X)) → g(proper(X))
proper(b) → ok(b)
proper(c) → ok(c)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0, g(z0), z1)) → mark(f(z1, z1, z1))
active(g(b)) → mark(c)
active(b) → mark(c)
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(g(z0)) → g(proper(z0))
proper(b) → ok(b)
proper(c) → ok(c)
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
ACTIVE(g(b)) → c2
ACTIVE(b) → c3
ACTIVE(g(z0)) → c4(G(active(z0)), ACTIVE(z0))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1, z2)) → c7(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(b) → c9
PROPER(c) → c10
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
ACTIVE(g(b)) → c2
ACTIVE(b) → c3
ACTIVE(g(z0)) → c4(G(active(z0)), ACTIVE(z0))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1, z2)) → c7(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(b) → c9
PROPER(c) → c10
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, g, proper, f, top
Defined Pair Symbols:
ACTIVE, G, PROPER, F, TOP
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing nodes:
ACTIVE(g(b)) → c2
ACTIVE(b) → c3
PROPER(c) → c10
PROPER(b) → c9
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0, g(z0), z1)) → mark(f(z1, z1, z1))
active(g(b)) → mark(c)
active(b) → mark(c)
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(g(z0)) → g(proper(z0))
proper(b) → ok(b)
proper(c) → ok(c)
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
ACTIVE(g(z0)) → c4(G(active(z0)), ACTIVE(z0))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1, z2)) → c7(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
ACTIVE(g(z0)) → c4(G(active(z0)), ACTIVE(z0))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1, z2)) → c7(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, g, proper, f, top
Defined Pair Symbols:
ACTIVE, G, PROPER, F, TOP
Compound Symbols:
c1, c4, c5, c6, c7, c8, c11, c12, c13
(5) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0, g(z0), z1)) → mark(f(z1, z1, z1))
active(g(b)) → mark(c)
active(b) → mark(c)
active(g(z0)) → g(active(z0))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(g(z0)) → g(proper(z0))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
ACTIVE(g(z0)) → c4(G(active(z0)), ACTIVE(z0))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1, z2)) → c7(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
ACTIVE(g(z0)) → c4(G(active(z0)), ACTIVE(z0))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1, z2)) → c7(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, f, g, proper
Defined Pair Symbols:
ACTIVE, G, PROPER, F, TOP
Compound Symbols:
c1, c4, c5, c6, c7, c8, c11, c12, c13
(7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
g(
z0)) →
c4(
G(
active(
z0)),
ACTIVE(
z0)) by
ACTIVE(g(f(z0, g(z0), z1))) → c4(G(mark(f(z1, z1, z1))), ACTIVE(f(z0, g(z0), z1)))
ACTIVE(g(g(b))) → c4(G(mark(c)), ACTIVE(g(b)))
ACTIVE(g(b)) → c4(G(mark(c)), ACTIVE(b))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0, g(z0), z1)) → mark(f(z1, z1, z1))
active(g(b)) → mark(c)
active(b) → mark(c)
active(g(z0)) → g(active(z0))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(g(z0)) → g(proper(z0))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1, z2)) → c7(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(f(z0, g(z0), z1))) → c4(G(mark(f(z1, z1, z1))), ACTIVE(f(z0, g(z0), z1)))
ACTIVE(g(g(b))) → c4(G(mark(c)), ACTIVE(g(b)))
ACTIVE(g(b)) → c4(G(mark(c)), ACTIVE(b))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
S tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1, z2)) → c7(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(f(z0, g(z0), z1))) → c4(G(mark(f(z1, z1, z1))), ACTIVE(f(z0, g(z0), z1)))
ACTIVE(g(g(b))) → c4(G(mark(c)), ACTIVE(g(b)))
ACTIVE(g(b)) → c4(G(mark(c)), ACTIVE(b))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
K tuples:none
Defined Rule Symbols:
active, f, g, proper
Defined Pair Symbols:
ACTIVE, G, PROPER, F, TOP
Compound Symbols:
c1, c5, c6, c7, c8, c11, c12, c13, c4
(9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0, g(z0), z1)) → mark(f(z1, z1, z1))
active(g(b)) → mark(c)
active(b) → mark(c)
active(g(z0)) → g(active(z0))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(g(z0)) → g(proper(z0))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1, z2)) → c7(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(f(z0, g(z0), z1))) → c4(G(mark(f(z1, z1, z1))), ACTIVE(f(z0, g(z0), z1)))
ACTIVE(g(g(b))) → c4(G(mark(c)), ACTIVE(g(b)))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(b)) → c4(G(mark(c)))
S tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1, z2)) → c7(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(f(z0, g(z0), z1))) → c4(G(mark(f(z1, z1, z1))), ACTIVE(f(z0, g(z0), z1)))
ACTIVE(g(g(b))) → c4(G(mark(c)), ACTIVE(g(b)))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(b)) → c4(G(mark(c)))
K tuples:none
Defined Rule Symbols:
active, f, g, proper
Defined Pair Symbols:
ACTIVE, G, PROPER, F, TOP
Compound Symbols:
c1, c5, c6, c7, c8, c11, c12, c13, c4, c4
(11) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0, g(z0), z1)) → mark(f(z1, z1, z1))
active(g(b)) → mark(c)
active(b) → mark(c)
active(g(z0)) → g(active(z0))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(g(z0)) → g(proper(z0))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1, z2)) → c7(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
S tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1, z2)) → c7(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
K tuples:none
Defined Rule Symbols:
active, f, g, proper
Defined Pair Symbols:
ACTIVE, G, PROPER, F, TOP
Compound Symbols:
c1, c5, c6, c7, c8, c11, c12, c13, c4, c4, c2
(13) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
We considered the (Usable) Rules:
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
active(g(z0)) → g(active(z0))
g(ok(z0)) → ok(g(z0))
g(mark(z0)) → mark(g(z0))
active(g(b)) → mark(c)
proper(b) → ok(b)
proper(g(z0)) → g(proper(z0))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(c) → ok(c)
active(f(z0, g(z0), z1)) → mark(f(z1, z1, z1))
active(b) → mark(c)
And the Tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1, z2)) → c7(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [2]x1
POL(F(x1, x2, x3)) = 0
POL(G(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [4]x1
POL(active(x1)) = 0
POL(b) = [2]
POL(c) = 0
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(c13(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c8(x1, x2)) = x1 + x2
POL(f(x1, x2, x3)) = 0
POL(g(x1)) = x1
POL(mark(x1)) = x1
POL(ok(x1)) = x1
POL(proper(x1)) = x1
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0, g(z0), z1)) → mark(f(z1, z1, z1))
active(g(b)) → mark(c)
active(b) → mark(c)
active(g(z0)) → g(active(z0))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(g(z0)) → g(proper(z0))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1, z2)) → c7(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
S tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1, z2)) → c7(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
K tuples:
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
Defined Rule Symbols:
active, f, g, proper
Defined Pair Symbols:
ACTIVE, G, PROPER, F, TOP
Compound Symbols:
c1, c5, c6, c7, c8, c11, c12, c13, c4, c4, c2
(15) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
We considered the (Usable) Rules:
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
active(g(z0)) → g(active(z0))
g(ok(z0)) → ok(g(z0))
g(mark(z0)) → mark(g(z0))
active(g(b)) → mark(c)
proper(b) → ok(b)
proper(g(z0)) → g(proper(z0))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(c) → ok(c)
active(f(z0, g(z0), z1)) → mark(f(z1, z1, z1))
active(b) → mark(c)
And the Tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1, z2)) → c7(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [2]x1
POL(F(x1, x2, x3)) = 0
POL(G(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [2]x1
POL(active(x1)) = 0
POL(b) = [1]
POL(c) = 0
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(c13(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c8(x1, x2)) = x1 + x2
POL(f(x1, x2, x3)) = 0
POL(g(x1)) = [4]x1
POL(mark(x1)) = x1
POL(ok(x1)) = x1
POL(proper(x1)) = x1
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0, g(z0), z1)) → mark(f(z1, z1, z1))
active(g(b)) → mark(c)
active(b) → mark(c)
active(g(z0)) → g(active(z0))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(g(z0)) → g(proper(z0))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1, z2)) → c7(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
S tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1, z2)) → c7(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
K tuples:
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
Defined Rule Symbols:
active, f, g, proper
Defined Pair Symbols:
ACTIVE, G, PROPER, F, TOP
Compound Symbols:
c1, c5, c6, c7, c8, c11, c12, c13, c4, c4, c2
(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
f(
z0,
z1,
z2)) →
c7(
F(
proper(
z0),
proper(
z1),
proper(
z2)),
PROPER(
z0),
PROPER(
z1),
PROPER(
z2)) by
PROPER(f(x0, x1, f(z0, z1, z2))) → c7(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, g(z0))) → c7(F(proper(x0), proper(x1), g(proper(z0))), PROPER(x0), PROPER(x1), PROPER(g(z0)))
PROPER(f(x0, x1, b)) → c7(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1), PROPER(b))
PROPER(f(x0, x1, c)) → c7(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1), PROPER(c))
PROPER(f(x0, f(z0, z1, z2), x2)) → c7(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, g(z0), x2)) → c7(F(proper(x0), g(proper(z0)), proper(x2)), PROPER(x0), PROPER(g(z0)), PROPER(x2))
PROPER(f(x0, b, x2)) → c7(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(b), PROPER(x2))
PROPER(f(x0, c, x2)) → c7(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(c), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c7(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(g(z0), x1, x2)) → c7(F(g(proper(z0)), proper(x1), proper(x2)), PROPER(g(z0)), PROPER(x1), PROPER(x2))
PROPER(f(b, x1, x2)) → c7(F(ok(b), proper(x1), proper(x2)), PROPER(b), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c7(F(ok(c), proper(x1), proper(x2)), PROPER(c), PROPER(x1), PROPER(x2))
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0, g(z0), z1)) → mark(f(z1, z1, z1))
active(g(b)) → mark(c)
active(b) → mark(c)
active(g(z0)) → g(active(z0))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(g(z0)) → g(proper(z0))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c7(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, g(z0))) → c7(F(proper(x0), proper(x1), g(proper(z0))), PROPER(x0), PROPER(x1), PROPER(g(z0)))
PROPER(f(x0, x1, b)) → c7(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1), PROPER(b))
PROPER(f(x0, x1, c)) → c7(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1), PROPER(c))
PROPER(f(x0, f(z0, z1, z2), x2)) → c7(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, g(z0), x2)) → c7(F(proper(x0), g(proper(z0)), proper(x2)), PROPER(x0), PROPER(g(z0)), PROPER(x2))
PROPER(f(x0, b, x2)) → c7(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(b), PROPER(x2))
PROPER(f(x0, c, x2)) → c7(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(c), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c7(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(g(z0), x1, x2)) → c7(F(g(proper(z0)), proper(x1), proper(x2)), PROPER(g(z0)), PROPER(x1), PROPER(x2))
PROPER(f(b, x1, x2)) → c7(F(ok(b), proper(x1), proper(x2)), PROPER(b), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c7(F(ok(c), proper(x1), proper(x2)), PROPER(c), PROPER(x1), PROPER(x2))
S tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c7(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, g(z0))) → c7(F(proper(x0), proper(x1), g(proper(z0))), PROPER(x0), PROPER(x1), PROPER(g(z0)))
PROPER(f(x0, x1, b)) → c7(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1), PROPER(b))
PROPER(f(x0, x1, c)) → c7(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1), PROPER(c))
PROPER(f(x0, f(z0, z1, z2), x2)) → c7(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, g(z0), x2)) → c7(F(proper(x0), g(proper(z0)), proper(x2)), PROPER(x0), PROPER(g(z0)), PROPER(x2))
PROPER(f(x0, b, x2)) → c7(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(b), PROPER(x2))
PROPER(f(x0, c, x2)) → c7(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(c), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c7(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(g(z0), x1, x2)) → c7(F(g(proper(z0)), proper(x1), proper(x2)), PROPER(g(z0)), PROPER(x1), PROPER(x2))
PROPER(f(b, x1, x2)) → c7(F(ok(b), proper(x1), proper(x2)), PROPER(b), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c7(F(ok(c), proper(x1), proper(x2)), PROPER(c), PROPER(x1), PROPER(x2))
K tuples:
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
Defined Rule Symbols:
active, f, g, proper
Defined Pair Symbols:
ACTIVE, G, PROPER, F, TOP
Compound Symbols:
c1, c5, c6, c8, c11, c12, c13, c4, c4, c2, c7
(19) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 6 trailing tuple parts
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0, g(z0), z1)) → mark(f(z1, z1, z1))
active(g(b)) → mark(c)
active(b) → mark(c)
active(g(z0)) → g(active(z0))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(g(z0)) → g(proper(z0))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c7(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, g(z0))) → c7(F(proper(x0), proper(x1), g(proper(z0))), PROPER(x0), PROPER(x1), PROPER(g(z0)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c7(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, g(z0), x2)) → c7(F(proper(x0), g(proper(z0)), proper(x2)), PROPER(x0), PROPER(g(z0)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c7(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(g(z0), x1, x2)) → c7(F(g(proper(z0)), proper(x1), proper(x2)), PROPER(g(z0)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c7(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c7(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c7(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c7(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c7(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c7(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
S tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c7(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, g(z0))) → c7(F(proper(x0), proper(x1), g(proper(z0))), PROPER(x0), PROPER(x1), PROPER(g(z0)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c7(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, g(z0), x2)) → c7(F(proper(x0), g(proper(z0)), proper(x2)), PROPER(x0), PROPER(g(z0)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c7(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(g(z0), x1, x2)) → c7(F(g(proper(z0)), proper(x1), proper(x2)), PROPER(g(z0)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c7(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c7(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c7(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c7(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c7(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c7(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
K tuples:
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
Defined Rule Symbols:
active, f, g, proper
Defined Pair Symbols:
ACTIVE, G, PROPER, F, TOP
Compound Symbols:
c1, c5, c6, c8, c11, c12, c13, c4, c4, c2, c7, c7
(21) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
g(
z0)) →
c8(
G(
proper(
z0)),
PROPER(
z0)) by
PROPER(g(f(z0, z1, z2))) → c8(G(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(b)) → c8(G(ok(b)), PROPER(b))
PROPER(g(c)) → c8(G(ok(c)), PROPER(c))
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0, g(z0), z1)) → mark(f(z1, z1, z1))
active(g(b)) → mark(c)
active(b) → mark(c)
active(g(z0)) → g(active(z0))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(g(z0)) → g(proper(z0))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c7(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, g(z0))) → c7(F(proper(x0), proper(x1), g(proper(z0))), PROPER(x0), PROPER(x1), PROPER(g(z0)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c7(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, g(z0), x2)) → c7(F(proper(x0), g(proper(z0)), proper(x2)), PROPER(x0), PROPER(g(z0)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c7(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(g(z0), x1, x2)) → c7(F(g(proper(z0)), proper(x1), proper(x2)), PROPER(g(z0)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c7(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c7(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c7(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c7(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c7(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c7(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(g(f(z0, z1, z2))) → c8(G(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(b)) → c8(G(ok(b)), PROPER(b))
PROPER(g(c)) → c8(G(ok(c)), PROPER(c))
S tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c7(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, g(z0))) → c7(F(proper(x0), proper(x1), g(proper(z0))), PROPER(x0), PROPER(x1), PROPER(g(z0)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c7(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, g(z0), x2)) → c7(F(proper(x0), g(proper(z0)), proper(x2)), PROPER(x0), PROPER(g(z0)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c7(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(g(z0), x1, x2)) → c7(F(g(proper(z0)), proper(x1), proper(x2)), PROPER(g(z0)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c7(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c7(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c7(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c7(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c7(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c7(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(g(f(z0, z1, z2))) → c8(G(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(b)) → c8(G(ok(b)), PROPER(b))
PROPER(g(c)) → c8(G(ok(c)), PROPER(c))
K tuples:
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
Defined Rule Symbols:
active, f, g, proper
Defined Pair Symbols:
ACTIVE, G, F, TOP, PROPER
Compound Symbols:
c1, c5, c6, c11, c12, c13, c4, c4, c2, c7, c7, c8
(23) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0, g(z0), z1)) → mark(f(z1, z1, z1))
active(g(b)) → mark(c)
active(b) → mark(c)
active(g(z0)) → g(active(z0))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(g(z0)) → g(proper(z0))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c7(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, g(z0))) → c7(F(proper(x0), proper(x1), g(proper(z0))), PROPER(x0), PROPER(x1), PROPER(g(z0)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c7(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, g(z0), x2)) → c7(F(proper(x0), g(proper(z0)), proper(x2)), PROPER(x0), PROPER(g(z0)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c7(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(g(z0), x1, x2)) → c7(F(g(proper(z0)), proper(x1), proper(x2)), PROPER(g(z0)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c7(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c7(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c7(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c7(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c7(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c7(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(g(f(z0, z1, z2))) → c8(G(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(b)) → c8(G(ok(b)))
PROPER(g(c)) → c8(G(ok(c)))
S tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(mark(z0)) → c12(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c7(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, g(z0))) → c7(F(proper(x0), proper(x1), g(proper(z0))), PROPER(x0), PROPER(x1), PROPER(g(z0)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c7(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, g(z0), x2)) → c7(F(proper(x0), g(proper(z0)), proper(x2)), PROPER(x0), PROPER(g(z0)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c7(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(g(z0), x1, x2)) → c7(F(g(proper(z0)), proper(x1), proper(x2)), PROPER(g(z0)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c7(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c7(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c7(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c7(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c7(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c7(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(g(f(z0, z1, z2))) → c8(G(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(b)) → c8(G(ok(b)))
PROPER(g(c)) → c8(G(ok(c)))
K tuples:
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
Defined Rule Symbols:
active, f, g, proper
Defined Pair Symbols:
ACTIVE, G, F, TOP, PROPER
Compound Symbols:
c1, c5, c6, c11, c12, c13, c4, c4, c2, c7, c7, c8, c8
(25) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
mark(
z0)) →
c12(
TOP(
proper(
z0)),
PROPER(
z0)) by
TOP(mark(f(z0, z1, z2))) → c12(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(g(z0))) → c12(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(b)) → c12(TOP(ok(b)), PROPER(b))
TOP(mark(c)) → c12(TOP(ok(c)), PROPER(c))
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0, g(z0), z1)) → mark(f(z1, z1, z1))
active(g(b)) → mark(c)
active(b) → mark(c)
active(g(z0)) → g(active(z0))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(g(z0)) → g(proper(z0))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c7(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, g(z0))) → c7(F(proper(x0), proper(x1), g(proper(z0))), PROPER(x0), PROPER(x1), PROPER(g(z0)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c7(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, g(z0), x2)) → c7(F(proper(x0), g(proper(z0)), proper(x2)), PROPER(x0), PROPER(g(z0)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c7(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(g(z0), x1, x2)) → c7(F(g(proper(z0)), proper(x1), proper(x2)), PROPER(g(z0)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c7(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c7(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c7(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c7(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c7(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c7(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(g(f(z0, z1, z2))) → c8(G(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(b)) → c8(G(ok(b)))
PROPER(g(c)) → c8(G(ok(c)))
TOP(mark(f(z0, z1, z2))) → c12(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(g(z0))) → c12(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(b)) → c12(TOP(ok(b)), PROPER(b))
TOP(mark(c)) → c12(TOP(ok(c)), PROPER(c))
S tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c7(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, g(z0))) → c7(F(proper(x0), proper(x1), g(proper(z0))), PROPER(x0), PROPER(x1), PROPER(g(z0)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c7(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, g(z0), x2)) → c7(F(proper(x0), g(proper(z0)), proper(x2)), PROPER(x0), PROPER(g(z0)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c7(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(g(z0), x1, x2)) → c7(F(g(proper(z0)), proper(x1), proper(x2)), PROPER(g(z0)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c7(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c7(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c7(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c7(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c7(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c7(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(g(f(z0, z1, z2))) → c8(G(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(b)) → c8(G(ok(b)))
PROPER(g(c)) → c8(G(ok(c)))
TOP(mark(f(z0, z1, z2))) → c12(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(g(z0))) → c12(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(b)) → c12(TOP(ok(b)), PROPER(b))
TOP(mark(c)) → c12(TOP(ok(c)), PROPER(c))
K tuples:
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
Defined Rule Symbols:
active, f, g, proper
Defined Pair Symbols:
ACTIVE, G, F, TOP, PROPER
Compound Symbols:
c1, c5, c6, c11, c13, c4, c4, c2, c7, c7, c8, c8, c12
(27) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0, g(z0), z1)) → mark(f(z1, z1, z1))
active(g(b)) → mark(c)
active(b) → mark(c)
active(g(z0)) → g(active(z0))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(g(z0)) → g(proper(z0))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c7(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, g(z0))) → c7(F(proper(x0), proper(x1), g(proper(z0))), PROPER(x0), PROPER(x1), PROPER(g(z0)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c7(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, g(z0), x2)) → c7(F(proper(x0), g(proper(z0)), proper(x2)), PROPER(x0), PROPER(g(z0)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c7(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(g(z0), x1, x2)) → c7(F(g(proper(z0)), proper(x1), proper(x2)), PROPER(g(z0)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c7(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c7(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c7(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c7(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c7(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c7(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(g(f(z0, z1, z2))) → c8(G(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(b)) → c8(G(ok(b)))
PROPER(g(c)) → c8(G(ok(c)))
TOP(mark(f(z0, z1, z2))) → c12(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(g(z0))) → c12(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(b)) → c12(TOP(ok(b)))
TOP(mark(c)) → c12(TOP(ok(c)))
S tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c7(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, g(z0))) → c7(F(proper(x0), proper(x1), g(proper(z0))), PROPER(x0), PROPER(x1), PROPER(g(z0)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c7(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, g(z0), x2)) → c7(F(proper(x0), g(proper(z0)), proper(x2)), PROPER(x0), PROPER(g(z0)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c7(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(g(z0), x1, x2)) → c7(F(g(proper(z0)), proper(x1), proper(x2)), PROPER(g(z0)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c7(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c7(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c7(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c7(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c7(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c7(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(g(f(z0, z1, z2))) → c8(G(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(b)) → c8(G(ok(b)))
PROPER(g(c)) → c8(G(ok(c)))
TOP(mark(f(z0, z1, z2))) → c12(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(g(z0))) → c12(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(b)) → c12(TOP(ok(b)))
TOP(mark(c)) → c12(TOP(ok(c)))
K tuples:
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
Defined Rule Symbols:
active, f, g, proper
Defined Pair Symbols:
ACTIVE, G, F, TOP, PROPER
Compound Symbols:
c1, c5, c6, c11, c13, c4, c4, c2, c7, c7, c8, c8, c12, c12
(29) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(b)) → c12(TOP(ok(b)))
We considered the (Usable) Rules:
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
active(g(z0)) → g(active(z0))
g(ok(z0)) → ok(g(z0))
g(mark(z0)) → mark(g(z0))
active(g(b)) → mark(c)
active(f(z0, g(z0), z1)) → mark(f(z1, z1, z1))
active(b) → mark(c)
And the Tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c7(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, g(z0))) → c7(F(proper(x0), proper(x1), g(proper(z0))), PROPER(x0), PROPER(x1), PROPER(g(z0)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c7(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, g(z0), x2)) → c7(F(proper(x0), g(proper(z0)), proper(x2)), PROPER(x0), PROPER(g(z0)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c7(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(g(z0), x1, x2)) → c7(F(g(proper(z0)), proper(x1), proper(x2)), PROPER(g(z0)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c7(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c7(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c7(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c7(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c7(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c7(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(g(f(z0, z1, z2))) → c8(G(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(b)) → c8(G(ok(b)))
PROPER(g(c)) → c8(G(ok(c)))
TOP(mark(f(z0, z1, z2))) → c12(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(g(z0))) → c12(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(b)) → c12(TOP(ok(b)))
TOP(mark(c)) → c12(TOP(ok(c)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(F(x1, x2, x3)) = 0
POL(G(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [4]x1
POL(active(x1)) = 0
POL(b) = [4]
POL(c) = 0
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(c13(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(c7(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c8(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(f(x1, x2, x3)) = 0
POL(g(x1)) = 0
POL(mark(x1)) = x1
POL(ok(x1)) = 0
POL(proper(x1)) = 0
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0, g(z0), z1)) → mark(f(z1, z1, z1))
active(g(b)) → mark(c)
active(b) → mark(c)
active(g(z0)) → g(active(z0))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(g(z0)) → g(proper(z0))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c7(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, g(z0))) → c7(F(proper(x0), proper(x1), g(proper(z0))), PROPER(x0), PROPER(x1), PROPER(g(z0)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c7(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, g(z0), x2)) → c7(F(proper(x0), g(proper(z0)), proper(x2)), PROPER(x0), PROPER(g(z0)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c7(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(g(z0), x1, x2)) → c7(F(g(proper(z0)), proper(x1), proper(x2)), PROPER(g(z0)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c7(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c7(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c7(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c7(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c7(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c7(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(g(f(z0, z1, z2))) → c8(G(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(b)) → c8(G(ok(b)))
PROPER(g(c)) → c8(G(ok(c)))
TOP(mark(f(z0, z1, z2))) → c12(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(g(z0))) → c12(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(b)) → c12(TOP(ok(b)))
TOP(mark(c)) → c12(TOP(ok(c)))
S tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c7(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, g(z0))) → c7(F(proper(x0), proper(x1), g(proper(z0))), PROPER(x0), PROPER(x1), PROPER(g(z0)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c7(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, g(z0), x2)) → c7(F(proper(x0), g(proper(z0)), proper(x2)), PROPER(x0), PROPER(g(z0)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c7(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(g(z0), x1, x2)) → c7(F(g(proper(z0)), proper(x1), proper(x2)), PROPER(g(z0)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c7(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c7(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c7(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c7(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c7(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c7(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(g(f(z0, z1, z2))) → c8(G(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(b)) → c8(G(ok(b)))
PROPER(g(c)) → c8(G(ok(c)))
TOP(mark(f(z0, z1, z2))) → c12(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(g(z0))) → c12(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(c)) → c12(TOP(ok(c)))
K tuples:
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
TOP(mark(b)) → c12(TOP(ok(b)))
Defined Rule Symbols:
active, f, g, proper
Defined Pair Symbols:
ACTIVE, G, F, TOP, PROPER
Compound Symbols:
c1, c5, c6, c11, c13, c4, c4, c2, c7, c7, c8, c8, c12, c12
(31) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(c)) → c12(TOP(ok(c)))
We considered the (Usable) Rules:
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
active(g(z0)) → g(active(z0))
g(ok(z0)) → ok(g(z0))
g(mark(z0)) → mark(g(z0))
active(g(b)) → mark(c)
active(f(z0, g(z0), z1)) → mark(f(z1, z1, z1))
active(b) → mark(c)
And the Tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c7(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, g(z0))) → c7(F(proper(x0), proper(x1), g(proper(z0))), PROPER(x0), PROPER(x1), PROPER(g(z0)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c7(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, g(z0), x2)) → c7(F(proper(x0), g(proper(z0)), proper(x2)), PROPER(x0), PROPER(g(z0)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c7(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(g(z0), x1, x2)) → c7(F(g(proper(z0)), proper(x1), proper(x2)), PROPER(g(z0)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c7(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c7(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c7(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c7(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c7(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c7(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(g(f(z0, z1, z2))) → c8(G(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(b)) → c8(G(ok(b)))
PROPER(g(c)) → c8(G(ok(c)))
TOP(mark(f(z0, z1, z2))) → c12(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(g(z0))) → c12(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(b)) → c12(TOP(ok(b)))
TOP(mark(c)) → c12(TOP(ok(c)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(F(x1, x2, x3)) = 0
POL(G(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [2]x1
POL(active(x1)) = x1
POL(b) = [4]
POL(c) = 0
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(c13(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(c7(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c8(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(f(x1, x2, x3)) = [4]
POL(g(x1)) = [4]
POL(mark(x1)) = [4]
POL(ok(x1)) = x1
POL(proper(x1)) = 0
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0, g(z0), z1)) → mark(f(z1, z1, z1))
active(g(b)) → mark(c)
active(b) → mark(c)
active(g(z0)) → g(active(z0))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(g(z0)) → g(proper(z0))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c7(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, g(z0))) → c7(F(proper(x0), proper(x1), g(proper(z0))), PROPER(x0), PROPER(x1), PROPER(g(z0)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c7(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, g(z0), x2)) → c7(F(proper(x0), g(proper(z0)), proper(x2)), PROPER(x0), PROPER(g(z0)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c7(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(g(z0), x1, x2)) → c7(F(g(proper(z0)), proper(x1), proper(x2)), PROPER(g(z0)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c7(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c7(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c7(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c7(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c7(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c7(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(g(f(z0, z1, z2))) → c8(G(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(b)) → c8(G(ok(b)))
PROPER(g(c)) → c8(G(ok(c)))
TOP(mark(f(z0, z1, z2))) → c12(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(g(z0))) → c12(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(b)) → c12(TOP(ok(b)))
TOP(mark(c)) → c12(TOP(ok(c)))
S tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
TOP(ok(z0)) → c13(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c7(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, g(z0))) → c7(F(proper(x0), proper(x1), g(proper(z0))), PROPER(x0), PROPER(x1), PROPER(g(z0)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c7(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, g(z0), x2)) → c7(F(proper(x0), g(proper(z0)), proper(x2)), PROPER(x0), PROPER(g(z0)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c7(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(g(z0), x1, x2)) → c7(F(g(proper(z0)), proper(x1), proper(x2)), PROPER(g(z0)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c7(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c7(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c7(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c7(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c7(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c7(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(g(f(z0, z1, z2))) → c8(G(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(b)) → c8(G(ok(b)))
PROPER(g(c)) → c8(G(ok(c)))
TOP(mark(f(z0, z1, z2))) → c12(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(g(z0))) → c12(TOP(g(proper(z0))), PROPER(g(z0)))
K tuples:
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
TOP(mark(b)) → c12(TOP(ok(b)))
TOP(mark(c)) → c12(TOP(ok(c)))
Defined Rule Symbols:
active, f, g, proper
Defined Pair Symbols:
ACTIVE, G, F, TOP, PROPER
Compound Symbols:
c1, c5, c6, c11, c13, c4, c4, c2, c7, c7, c8, c8, c12, c12
(33) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
ok(
z0)) →
c13(
TOP(
active(
z0)),
ACTIVE(
z0)) by
TOP(ok(f(z0, g(z0), z1))) → c13(TOP(mark(f(z1, z1, z1))), ACTIVE(f(z0, g(z0), z1)))
TOP(ok(g(b))) → c13(TOP(mark(c)), ACTIVE(g(b)))
TOP(ok(b)) → c13(TOP(mark(c)), ACTIVE(b))
TOP(ok(g(z0))) → c13(TOP(g(active(z0))), ACTIVE(g(z0)))
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0, g(z0), z1)) → mark(f(z1, z1, z1))
active(g(b)) → mark(c)
active(b) → mark(c)
active(g(z0)) → g(active(z0))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(g(z0)) → g(proper(z0))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c7(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, g(z0))) → c7(F(proper(x0), proper(x1), g(proper(z0))), PROPER(x0), PROPER(x1), PROPER(g(z0)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c7(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, g(z0), x2)) → c7(F(proper(x0), g(proper(z0)), proper(x2)), PROPER(x0), PROPER(g(z0)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c7(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(g(z0), x1, x2)) → c7(F(g(proper(z0)), proper(x1), proper(x2)), PROPER(g(z0)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c7(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c7(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c7(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c7(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c7(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c7(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(g(f(z0, z1, z2))) → c8(G(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(b)) → c8(G(ok(b)))
PROPER(g(c)) → c8(G(ok(c)))
TOP(mark(f(z0, z1, z2))) → c12(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(g(z0))) → c12(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(b)) → c12(TOP(ok(b)))
TOP(mark(c)) → c12(TOP(ok(c)))
TOP(ok(f(z0, g(z0), z1))) → c13(TOP(mark(f(z1, z1, z1))), ACTIVE(f(z0, g(z0), z1)))
TOP(ok(g(b))) → c13(TOP(mark(c)), ACTIVE(g(b)))
TOP(ok(b)) → c13(TOP(mark(c)), ACTIVE(b))
TOP(ok(g(z0))) → c13(TOP(g(active(z0))), ACTIVE(g(z0)))
S tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c7(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, g(z0))) → c7(F(proper(x0), proper(x1), g(proper(z0))), PROPER(x0), PROPER(x1), PROPER(g(z0)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c7(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, g(z0), x2)) → c7(F(proper(x0), g(proper(z0)), proper(x2)), PROPER(x0), PROPER(g(z0)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c7(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(g(z0), x1, x2)) → c7(F(g(proper(z0)), proper(x1), proper(x2)), PROPER(g(z0)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c7(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c7(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c7(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c7(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c7(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c7(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(g(f(z0, z1, z2))) → c8(G(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(b)) → c8(G(ok(b)))
PROPER(g(c)) → c8(G(ok(c)))
TOP(mark(f(z0, z1, z2))) → c12(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(g(z0))) → c12(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(ok(f(z0, g(z0), z1))) → c13(TOP(mark(f(z1, z1, z1))), ACTIVE(f(z0, g(z0), z1)))
TOP(ok(g(b))) → c13(TOP(mark(c)), ACTIVE(g(b)))
TOP(ok(b)) → c13(TOP(mark(c)), ACTIVE(b))
TOP(ok(g(z0))) → c13(TOP(g(active(z0))), ACTIVE(g(z0)))
K tuples:
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
TOP(mark(b)) → c12(TOP(ok(b)))
TOP(mark(c)) → c12(TOP(ok(c)))
Defined Rule Symbols:
active, f, g, proper
Defined Pair Symbols:
ACTIVE, G, F, PROPER, TOP
Compound Symbols:
c1, c5, c6, c11, c4, c4, c2, c7, c7, c8, c8, c12, c12, c13
(35) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing nodes:
TOP(mark(b)) → c12(TOP(ok(b)))
TOP(ok(b)) → c13(TOP(mark(c)), ACTIVE(b))
TOP(mark(c)) → c12(TOP(ok(c)))
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0, g(z0), z1)) → mark(f(z1, z1, z1))
active(g(b)) → mark(c)
active(b) → mark(c)
active(g(z0)) → g(active(z0))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(g(z0)) → g(proper(z0))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c7(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, g(z0))) → c7(F(proper(x0), proper(x1), g(proper(z0))), PROPER(x0), PROPER(x1), PROPER(g(z0)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c7(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, g(z0), x2)) → c7(F(proper(x0), g(proper(z0)), proper(x2)), PROPER(x0), PROPER(g(z0)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c7(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(g(z0), x1, x2)) → c7(F(g(proper(z0)), proper(x1), proper(x2)), PROPER(g(z0)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c7(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c7(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c7(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c7(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c7(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c7(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(g(f(z0, z1, z2))) → c8(G(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(b)) → c8(G(ok(b)))
PROPER(g(c)) → c8(G(ok(c)))
TOP(mark(f(z0, z1, z2))) → c12(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(g(z0))) → c12(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(ok(f(z0, g(z0), z1))) → c13(TOP(mark(f(z1, z1, z1))), ACTIVE(f(z0, g(z0), z1)))
TOP(ok(g(b))) → c13(TOP(mark(c)), ACTIVE(g(b)))
TOP(ok(g(z0))) → c13(TOP(g(active(z0))), ACTIVE(g(z0)))
S tuples:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c7(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, g(z0))) → c7(F(proper(x0), proper(x1), g(proper(z0))), PROPER(x0), PROPER(x1), PROPER(g(z0)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c7(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, g(z0), x2)) → c7(F(proper(x0), g(proper(z0)), proper(x2)), PROPER(x0), PROPER(g(z0)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c7(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(g(z0), x1, x2)) → c7(F(g(proper(z0)), proper(x1), proper(x2)), PROPER(g(z0)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c7(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c7(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c7(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c7(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c7(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c7(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(g(f(z0, z1, z2))) → c8(G(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(b)) → c8(G(ok(b)))
PROPER(g(c)) → c8(G(ok(c)))
TOP(mark(f(z0, z1, z2))) → c12(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(g(z0))) → c12(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(ok(f(z0, g(z0), z1))) → c13(TOP(mark(f(z1, z1, z1))), ACTIVE(f(z0, g(z0), z1)))
TOP(ok(g(b))) → c13(TOP(mark(c)), ACTIVE(g(b)))
TOP(ok(g(z0))) → c13(TOP(g(active(z0))), ACTIVE(g(z0)))
K tuples:
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
Defined Rule Symbols:
active, f, g, proper
Defined Pair Symbols:
ACTIVE, G, F, PROPER, TOP
Compound Symbols:
c1, c5, c6, c11, c4, c4, c2, c7, c7, c8, c8, c12, c13
(37) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
ACTIVE(f(z0, g(z0), z1)) → c1(F(z1, z1, z1))
ACTIVE(g(g(z0))) → c4(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(b)) → c4(G(mark(c)))
ACTIVE(g(f(z0, g(z0), z1))) → c2(G(mark(f(z1, z1, z1))))
ACTIVE(g(f(z0, g(z0), z1))) → c2(ACTIVE(f(z0, g(z0), z1)))
ACTIVE(g(g(b))) → c2(G(mark(c)))
ACTIVE(g(g(b))) → c2(ACTIVE(g(b)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c7(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, g(z0))) → c7(F(proper(x0), proper(x1), g(proper(z0))), PROPER(x0), PROPER(x1), PROPER(g(z0)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c7(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, g(z0), x2)) → c7(F(proper(x0), g(proper(z0)), proper(x2)), PROPER(x0), PROPER(g(z0)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c7(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(g(z0), x1, x2)) → c7(F(g(proper(z0)), proper(x1), proper(x2)), PROPER(g(z0)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c7(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c7(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c7(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c7(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c7(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c7(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(g(f(z0, z1, z2))) → c8(G(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(b)) → c8(G(ok(b)))
PROPER(g(c)) → c8(G(ok(c)))
TOP(mark(f(z0, z1, z2))) → c12(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(g(z0))) → c12(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(ok(f(z0, g(z0), z1))) → c13(TOP(mark(f(z1, z1, z1))), ACTIVE(f(z0, g(z0), z1)))
TOP(ok(g(b))) → c13(TOP(mark(c)), ACTIVE(g(b)))
TOP(ok(g(z0))) → c13(TOP(g(active(z0))), ACTIVE(g(z0)))
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0, g(z0), z1)) → mark(f(z1, z1, z1))
active(g(b)) → mark(c)
active(b) → mark(c)
active(g(z0)) → g(active(z0))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(g(z0)) → g(proper(z0))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
S tuples:
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
K tuples:none
Defined Rule Symbols:
active, f, g, proper
Defined Pair Symbols:
G, F
Compound Symbols:
c5, c6, c11
(39) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
active(f(z0, g(z0), z1)) → mark(f(z1, z1, z1))
active(g(b)) → mark(c)
active(b) → mark(c)
active(g(z0)) → g(active(z0))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(g(z0)) → g(proper(z0))
proper(b) → ok(b)
proper(c) → ok(c)
(40) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
S tuples:
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
G, F
Compound Symbols:
c5, c6, c11
(41) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(mark(z0)) → c5(G(z0))
We considered the (Usable) Rules:none
And the Tuples:
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2, x3)) = 0
POL(G(x1)) = x1
POL(c11(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
(42) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
S tuples:
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
K tuples:
G(mark(z0)) → c5(G(z0))
Defined Rule Symbols:none
Defined Pair Symbols:
G, F
Compound Symbols:
c5, c6, c11
(43) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
We considered the (Usable) Rules:none
And the Tuples:
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2, x3)) = [5]x1 + [3]x2 + [3]x3
POL(G(x1)) = 0
POL(c11(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(mark(x1)) = 0
POL(ok(x1)) = [4] + x1
(44) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
S tuples:
G(ok(z0)) → c6(G(z0))
K tuples:
G(mark(z0)) → c5(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
Defined Rule Symbols:none
Defined Pair Symbols:
G, F
Compound Symbols:
c5, c6, c11
(45) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(ok(z0)) → c6(G(z0))
We considered the (Usable) Rules:none
And the Tuples:
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2, x3)) = [5]x2 + [4]x3
POL(G(x1)) = [4]x1
POL(c11(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(mark(x1)) = x1
POL(ok(x1)) = [1] + x1
(46) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
S tuples:none
K tuples:
G(mark(z0)) → c5(G(z0))
F(ok(z0), ok(z1), ok(z2)) → c11(F(z0, z1, z2))
G(ok(z0)) → c6(G(z0))
Defined Rule Symbols:none
Defined Pair Symbols:
G, F
Compound Symbols:
c5, c6, c11
(47) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(48) BOUNDS(O(1), O(1))