Runtime Complexity TRS:
The TRS R consists of the following rules:

a__f(f(a)) → c(f(g(f(a))))
mark(f(X)) → a__f(mark(X))
mark(a) → a
mark(c(X)) → c(X)
mark(g(X)) → g(mark(X))
a__f(X) → f(X)

Rewrite Strategy: INNERMOST


Renamed function symbols to avoid clashes with predefined symbol.


Runtime Complexity TRS:
The TRS R consists of the following rules:


a__f'(f'(a')) → c'(f'(g'(f'(a'))))
mark'(f'(X)) → a__f'(mark'(X))
mark'(a') → a'
mark'(c'(X)) → c'(X)
mark'(g'(X)) → g'(mark'(X))
a__f'(X) → f'(X)

Rewrite Strategy: INNERMOST


Sliced the following arguments:
c'/0


Runtime Complexity TRS:
The TRS R consists of the following rules:


a__f'(f'(a')) → c'
mark'(f'(X)) → a__f'(mark'(X))
mark'(a') → a'
mark'(c') → c'
mark'(g'(X)) → g'(mark'(X))
a__f'(X) → f'(X)

Rewrite Strategy: INNERMOST


Infered types.


Rules:
a__f'(f'(a')) → c'
mark'(f'(X)) → a__f'(mark'(X))
mark'(a') → a'
mark'(c') → c'
mark'(g'(X)) → g'(mark'(X))
a__f'(X) → f'(X)

Types:
a__f' :: a':f':c':g' → a':f':c':g'
f' :: a':f':c':g' → a':f':c':g'
a' :: a':f':c':g'
c' :: a':f':c':g'
mark' :: a':f':c':g' → a':f':c':g'
g' :: a':f':c':g' → a':f':c':g'
_hole_a':f':c':g'1 :: a':f':c':g'
_gen_a':f':c':g'2 :: Nat → a':f':c':g'


Heuristically decided to analyse the following defined symbols:
mark'


Rules:
a__f'(f'(a')) → c'
mark'(f'(X)) → a__f'(mark'(X))
mark'(a') → a'
mark'(c') → c'
mark'(g'(X)) → g'(mark'(X))
a__f'(X) → f'(X)

Types:
a__f' :: a':f':c':g' → a':f':c':g'
f' :: a':f':c':g' → a':f':c':g'
a' :: a':f':c':g'
c' :: a':f':c':g'
mark' :: a':f':c':g' → a':f':c':g'
g' :: a':f':c':g' → a':f':c':g'
_hole_a':f':c':g'1 :: a':f':c':g'
_gen_a':f':c':g'2 :: Nat → a':f':c':g'

Generator Equations:
_gen_a':f':c':g'2(0) ⇔ a'
_gen_a':f':c':g'2(+(x, 1)) ⇔ f'(_gen_a':f':c':g'2(x))

The following defined symbols remain to be analysed:
mark'


Proved the following rewrite lemma:
mark'(_gen_a':f':c':g'2(+(1, _n4))) → _*3, rt ∈ Ω(n4)

Induction Base:
mark'(_gen_a':f':c':g'2(+(1, 0)))

Induction Step:
mark'(_gen_a':f':c':g'2(+(1, +(_$n5, 1)))) →RΩ(1)
a__f'(mark'(_gen_a':f':c':g'2(+(1, _$n5)))) →IH
a__f'(_*3)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).


Rules:
a__f'(f'(a')) → c'
mark'(f'(X)) → a__f'(mark'(X))
mark'(a') → a'
mark'(c') → c'
mark'(g'(X)) → g'(mark'(X))
a__f'(X) → f'(X)

Types:
a__f' :: a':f':c':g' → a':f':c':g'
f' :: a':f':c':g' → a':f':c':g'
a' :: a':f':c':g'
c' :: a':f':c':g'
mark' :: a':f':c':g' → a':f':c':g'
g' :: a':f':c':g' → a':f':c':g'
_hole_a':f':c':g'1 :: a':f':c':g'
_gen_a':f':c':g'2 :: Nat → a':f':c':g'

Lemmas:
mark'(_gen_a':f':c':g'2(+(1, _n4))) → _*3, rt ∈ Ω(n4)

Generator Equations:
_gen_a':f':c':g'2(0) ⇔ a'
_gen_a':f':c':g'2(+(x, 1)) ⇔ f'(_gen_a':f':c':g'2(x))

No more defined symbols left to analyse.


The lowerbound Ω(n) was proven with the following lemma:
mark'(_gen_a':f':c':g'2(+(1, _n4))) → _*3, rt ∈ Ω(n4)