(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(g(X)) → mark(h(X))
active(c) → mark(d)
active(h(d)) → mark(g(c))
proper(g(X)) → g(proper(X))
proper(h(X)) → h(proper(X))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(X)) → ok(g(X))
h(ok(X)) → ok(h(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(g(z0)) → c1(H(z0))
ACTIVE(c) → c2
ACTIVE(h(d)) → c3(G(c))
PROPER(g(z0)) → c4(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c5(H(proper(z0)), PROPER(z0))
PROPER(c) → c6
PROPER(d) → c7
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(g(z0)) → c1(H(z0))
ACTIVE(c) → c2
ACTIVE(h(d)) → c3(G(c))
PROPER(g(z0)) → c4(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c5(H(proper(z0)), PROPER(z0))
PROPER(c) → c6
PROPER(d) → c7
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, proper, g, h, top
Defined Pair Symbols:
ACTIVE, PROPER, G, H, TOP
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing nodes:
ACTIVE(c) → c2
PROPER(c) → c6
ACTIVE(h(d)) → c3(G(c))
PROPER(d) → c7
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(g(z0)) → c1(H(z0))
PROPER(g(z0)) → c4(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c5(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(g(z0)) → c1(H(z0))
PROPER(g(z0)) → c4(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c5(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, proper, g, h, top
Defined Pair Symbols:
ACTIVE, PROPER, G, H, TOP
Compound Symbols:
c1, c4, c5, c8, c9, c10, c11
(5) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
Tuples:
ACTIVE(g(z0)) → c1(H(z0))
PROPER(g(z0)) → c4(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c5(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(g(z0)) → c1(H(z0))
PROPER(g(z0)) → c4(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c5(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
proper, g, h, active
Defined Pair Symbols:
ACTIVE, PROPER, G, H, TOP
Compound Symbols:
c1, c4, c5, c8, c9, c10, c11
(7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
g(
z0)) →
c4(
G(
proper(
z0)),
PROPER(
z0)) by
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)), PROPER(c))
PROPER(g(d)) → c4(G(ok(d)), PROPER(d))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
Tuples:
ACTIVE(g(z0)) → c1(H(z0))
PROPER(h(z0)) → c5(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)), PROPER(c))
PROPER(g(d)) → c4(G(ok(d)), PROPER(d))
S tuples:
ACTIVE(g(z0)) → c1(H(z0))
PROPER(h(z0)) → c5(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)), PROPER(c))
PROPER(g(d)) → c4(G(ok(d)), PROPER(d))
K tuples:none
Defined Rule Symbols:
proper, g, h, active
Defined Pair Symbols:
ACTIVE, PROPER, G, H, TOP
Compound Symbols:
c1, c5, c8, c9, c10, c11, c4
(9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
Tuples:
ACTIVE(g(z0)) → c1(H(z0))
PROPER(h(z0)) → c5(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
S tuples:
ACTIVE(g(z0)) → c1(H(z0))
PROPER(h(z0)) → c5(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
K tuples:none
Defined Rule Symbols:
proper, g, h, active
Defined Pair Symbols:
ACTIVE, PROPER, G, H, TOP
Compound Symbols:
c1, c5, c8, c9, c10, c11, c4, c4
(11) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
h(
z0)) →
c5(
H(
proper(
z0)),
PROPER(
z0)) by
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)), PROPER(c))
PROPER(h(d)) → c5(H(ok(d)), PROPER(d))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
Tuples:
ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)), PROPER(c))
PROPER(h(d)) → c5(H(ok(d)), PROPER(d))
S tuples:
ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)), PROPER(c))
PROPER(h(d)) → c5(H(ok(d)), PROPER(d))
K tuples:none
Defined Rule Symbols:
proper, g, h, active
Defined Pair Symbols:
ACTIVE, G, H, TOP, PROPER
Compound Symbols:
c1, c8, c9, c10, c11, c4, c4, c5
(13) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
Tuples:
ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
S tuples:
ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
K tuples:none
Defined Rule Symbols:
proper, g, h, active
Defined Pair Symbols:
ACTIVE, G, H, TOP, PROPER
Compound Symbols:
c1, c8, c9, c10, c11, c4, c4, c5, c5
(15) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
mark(
z0)) →
c10(
TOP(
proper(
z0)),
PROPER(
z0)) by
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(c)) → c10(TOP(ok(c)), PROPER(c))
TOP(mark(d)) → c10(TOP(ok(d)), PROPER(d))
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
Tuples:
ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(c)) → c10(TOP(ok(c)), PROPER(c))
TOP(mark(d)) → c10(TOP(ok(d)), PROPER(d))
S tuples:
ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(c)) → c10(TOP(ok(c)), PROPER(c))
TOP(mark(d)) → c10(TOP(ok(d)), PROPER(d))
K tuples:none
Defined Rule Symbols:
proper, g, h, active
Defined Pair Symbols:
ACTIVE, G, H, TOP, PROPER
Compound Symbols:
c1, c8, c9, c11, c4, c4, c5, c5, c10
(17) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
Tuples:
ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(c)) → c10(TOP(ok(c)))
TOP(mark(d)) → c10(TOP(ok(d)))
S tuples:
ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(c)) → c10(TOP(ok(c)))
TOP(mark(d)) → c10(TOP(ok(d)))
K tuples:none
Defined Rule Symbols:
proper, g, h, active
Defined Pair Symbols:
ACTIVE, G, H, TOP, PROPER
Compound Symbols:
c1, c8, c9, c11, c4, c4, c5, c5, c10, c10
(19) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(c)) → c10(TOP(ok(c)))
We considered the (Usable) Rules:
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
active(g(z0)) → mark(h(z0))
active(h(d)) → mark(g(c))
active(c) → mark(d)
And the Tuples:
ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(c)) → c10(TOP(ok(c)))
TOP(mark(d)) → c10(TOP(ok(d)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = 0
POL(c) = [1]
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c4(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c5(x1, x2)) = x1 + x2
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(d) = 0
POL(g(x1)) = 0
POL(h(x1)) = 0
POL(mark(x1)) = x1
POL(ok(x1)) = 0
POL(proper(x1)) = 0
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
Tuples:
ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(c)) → c10(TOP(ok(c)))
TOP(mark(d)) → c10(TOP(ok(d)))
S tuples:
ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(d)) → c10(TOP(ok(d)))
K tuples:
TOP(mark(c)) → c10(TOP(ok(c)))
Defined Rule Symbols:
proper, g, h, active
Defined Pair Symbols:
ACTIVE, G, H, TOP, PROPER
Compound Symbols:
c1, c8, c9, c11, c4, c4, c5, c5, c10, c10
(21) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(d)) → c10(TOP(ok(d)))
We considered the (Usable) Rules:
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
active(g(z0)) → mark(h(z0))
active(h(d)) → mark(g(c))
active(c) → mark(d)
And the Tuples:
ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(c)) → c10(TOP(ok(c)))
TOP(mark(d)) → c10(TOP(ok(d)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [2]x1
POL(active(x1)) = x1
POL(c) = [2]
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c4(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c5(x1, x2)) = x1 + x2
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(d) = 0
POL(g(x1)) = [2]
POL(h(x1)) = [2]
POL(mark(x1)) = [2]
POL(ok(x1)) = x1
POL(proper(x1)) = 0
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
Tuples:
ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(c)) → c10(TOP(ok(c)))
TOP(mark(d)) → c10(TOP(ok(d)))
S tuples:
ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
K tuples:
TOP(mark(c)) → c10(TOP(ok(c)))
TOP(mark(d)) → c10(TOP(ok(d)))
Defined Rule Symbols:
proper, g, h, active
Defined Pair Symbols:
ACTIVE, G, H, TOP, PROPER
Compound Symbols:
c1, c8, c9, c11, c4, c4, c5, c5, c10, c10
(23) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
ok(
z0)) →
c11(
TOP(
active(
z0)),
ACTIVE(
z0)) by
TOP(ok(g(z0))) → c11(TOP(mark(h(z0))), ACTIVE(g(z0)))
TOP(ok(c)) → c11(TOP(mark(d)), ACTIVE(c))
TOP(ok(h(d))) → c11(TOP(mark(g(c))), ACTIVE(h(d)))
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
Tuples:
ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(c)) → c10(TOP(ok(c)))
TOP(mark(d)) → c10(TOP(ok(d)))
TOP(ok(g(z0))) → c11(TOP(mark(h(z0))), ACTIVE(g(z0)))
TOP(ok(c)) → c11(TOP(mark(d)), ACTIVE(c))
TOP(ok(h(d))) → c11(TOP(mark(g(c))), ACTIVE(h(d)))
S tuples:
ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(ok(g(z0))) → c11(TOP(mark(h(z0))), ACTIVE(g(z0)))
TOP(ok(c)) → c11(TOP(mark(d)), ACTIVE(c))
TOP(ok(h(d))) → c11(TOP(mark(g(c))), ACTIVE(h(d)))
K tuples:
TOP(mark(c)) → c10(TOP(ok(c)))
TOP(mark(d)) → c10(TOP(ok(d)))
Defined Rule Symbols:
proper, g, h, active
Defined Pair Symbols:
ACTIVE, G, H, PROPER, TOP
Compound Symbols:
c1, c8, c9, c4, c4, c5, c5, c10, c10, c11
(25) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing nodes:
TOP(ok(c)) → c11(TOP(mark(d)), ACTIVE(c))
TOP(mark(d)) → c10(TOP(ok(d)))
TOP(mark(c)) → c10(TOP(ok(c)))
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
Tuples:
ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(ok(g(z0))) → c11(TOP(mark(h(z0))), ACTIVE(g(z0)))
TOP(ok(h(d))) → c11(TOP(mark(g(c))), ACTIVE(h(d)))
S tuples:
ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(ok(g(z0))) → c11(TOP(mark(h(z0))), ACTIVE(g(z0)))
TOP(ok(h(d))) → c11(TOP(mark(g(c))), ACTIVE(h(d)))
K tuples:none
Defined Rule Symbols:
proper, g, h, active
Defined Pair Symbols:
ACTIVE, G, H, PROPER, TOP
Compound Symbols:
c1, c8, c9, c4, c4, c5, c5, c10, c11
(27) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
ACTIVE(g(z0)) → c1(H(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(ok(g(z0))) → c11(TOP(mark(h(z0))), ACTIVE(g(z0)))
TOP(ok(h(d))) → c11(TOP(mark(g(c))), ACTIVE(h(d)))
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
Tuples:
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
S tuples:
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
K tuples:none
Defined Rule Symbols:
proper, g, h, active
Defined Pair Symbols:
G, H
Compound Symbols:
c8, c9
(29) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
S tuples:
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
G, H
Compound Symbols:
c8, c9
(31) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
We considered the (Usable) Rules:none
And the Tuples:
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(G(x1)) = [4]x1
POL(H(x1)) = [4]x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(ok(x1)) = [4] + x1
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
S tuples:none
K tuples:
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
Defined Rule Symbols:none
Defined Pair Symbols:
G, H
Compound Symbols:
c8, c9
(33) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(34) BOUNDS(O(1), O(1))