(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(f(f(a))) → mark(f(g(f(a))))
active(f(X)) → f(active(X))
f(mark(X)) → mark(f(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(f(a))) → c(F(g(f(a))), G(f(a)), F(a))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(a) → c5
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(f(a))) → c(F(g(f(a))), G(f(a)), F(a))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(a) → c5
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, f, proper, g, top
Defined Pair Symbols:
ACTIVE, F, PROPER, G, TOP
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
ACTIVE(f(f(a))) → c(F(g(f(a))), G(f(a)), F(a))
PROPER(a) → c5
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, f, proper, g, top
Defined Pair Symbols:
ACTIVE, F, PROPER, G, TOP
Compound Symbols:
c1, c2, c3, c4, c6, c7, c8, c9
(5) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
Tuples:
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, f, proper, g
Defined Pair Symbols:
ACTIVE, F, PROPER, G, TOP
Compound Symbols:
c1, c2, c3, c4, c6, c7, c8, c9
(7) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
We considered the (Usable) Rules:
g(ok(z0)) → ok(g(z0))
active(f(f(a))) → mark(f(g(f(a))))
proper(g(z0)) → g(proper(z0))
active(f(z0)) → f(active(z0))
f(ok(z0)) → ok(f(z0))
f(mark(z0)) → mark(f(z0))
proper(a) → ok(a)
proper(f(z0)) → f(proper(z0))
And the Tuples:
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(PROPER(x1)) = [1]
POL(TOP(x1)) = [2]x1
POL(a) = [2]
POL(active(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(f(x1)) = x1
POL(g(x1)) = [1]
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
POL(proper(x1)) = x1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
Tuples:
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
K tuples:
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, f, proper, g
Defined Pair Symbols:
ACTIVE, F, PROPER, G, TOP
Compound Symbols:
c1, c2, c3, c4, c6, c7, c8, c9
(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
f(
z0)) →
c1(
F(
active(
z0)),
ACTIVE(
z0)) by
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
S tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
K tuples:
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, f, proper, g
Defined Pair Symbols:
F, PROPER, G, TOP, ACTIVE
Compound Symbols:
c2, c3, c4, c6, c7, c8, c9, c1
(11) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
We considered the (Usable) Rules:
g(ok(z0)) → ok(g(z0))
active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
f(mark(z0)) → mark(f(z0))
proper(a) → ok(a)
proper(f(z0)) → f(proper(z0))
And the Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = x1
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [4]x1
POL(a) = [2]
POL(active(x1)) = 0
POL(c1(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(f(x1)) = [4]x1
POL(g(x1)) = 0
POL(mark(x1)) = x1
POL(ok(x1)) = x1
POL(proper(x1)) = x1
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
S tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
K tuples:
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
Defined Rule Symbols:
active, f, proper, g
Defined Pair Symbols:
F, PROPER, G, TOP, ACTIVE
Compound Symbols:
c2, c3, c4, c6, c7, c8, c9, c1
(13) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
f(
z0)) →
c4(
F(
proper(
z0)),
PROPER(
z0)) by
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
S tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
K tuples:
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
Defined Rule Symbols:
active, f, proper, g
Defined Pair Symbols:
F, PROPER, G, TOP, ACTIVE
Compound Symbols:
c2, c3, c6, c7, c8, c9, c1, c4
(15) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
S tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
K tuples:
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
Defined Rule Symbols:
active, f, proper, g
Defined Pair Symbols:
F, PROPER, G, TOP, ACTIVE
Compound Symbols:
c2, c3, c6, c7, c8, c9, c1, c4, c4
(17) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PROPER(f(a)) → c4(F(ok(a)))
We considered the (Usable) Rules:
g(ok(z0)) → ok(g(z0))
active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
f(mark(z0)) → mark(f(z0))
proper(a) → ok(a)
proper(f(z0)) → f(proper(z0))
And the Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(PROPER(x1)) = [1]
POL(TOP(x1)) = x1
POL(a) = [2]
POL(active(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(f(x1)) = [4]x1
POL(g(x1)) = [1]
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
POL(proper(x1)) = x1
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
S tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
K tuples:
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c4(F(ok(a)))
Defined Rule Symbols:
active, f, proper, g
Defined Pair Symbols:
F, PROPER, G, TOP, ACTIVE
Compound Symbols:
c2, c3, c6, c7, c8, c9, c1, c4, c4
(19) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
g(
z0)) →
c6(
G(
proper(
z0)),
PROPER(
z0)) by
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
S tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
K tuples:
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c4(F(ok(a)))
Defined Rule Symbols:
active, f, proper, g
Defined Pair Symbols:
F, G, TOP, ACTIVE, PROPER
Compound Symbols:
c2, c3, c7, c8, c9, c1, c4, c4, c6
(21) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c6(G(ok(a)))
S tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c6(G(ok(a)))
K tuples:
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c4(F(ok(a)))
Defined Rule Symbols:
active, f, proper, g
Defined Pair Symbols:
F, G, TOP, ACTIVE, PROPER
Compound Symbols:
c2, c3, c7, c8, c9, c1, c4, c4, c6, c6
(23) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PROPER(g(a)) → c6(G(ok(a)))
We considered the (Usable) Rules:
g(ok(z0)) → ok(g(z0))
active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
f(mark(z0)) → mark(f(z0))
proper(a) → ok(a)
proper(f(z0)) → f(proper(z0))
And the Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c6(G(ok(a)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(PROPER(x1)) = [2]
POL(TOP(x1)) = [2]x1
POL(a) = [2]
POL(active(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(f(x1)) = [4]x1
POL(g(x1)) = 0
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
POL(proper(x1)) = x1
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c6(G(ok(a)))
S tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
K tuples:
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(a)) → c6(G(ok(a)))
Defined Rule Symbols:
active, f, proper, g
Defined Pair Symbols:
F, G, TOP, ACTIVE, PROPER
Compound Symbols:
c2, c3, c7, c8, c9, c1, c4, c4, c6, c6
(25) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
mark(
z0)) →
c8(
TOP(
proper(
z0)),
PROPER(
z0)) by
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(a)) → c8(TOP(ok(a)), PROPER(a))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c6(G(ok(a)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(a)) → c8(TOP(ok(a)), PROPER(a))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
S tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
K tuples:
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(a)) → c6(G(ok(a)))
Defined Rule Symbols:
active, f, proper, g
Defined Pair Symbols:
F, G, TOP, ACTIVE, PROPER
Compound Symbols:
c2, c3, c7, c9, c1, c4, c4, c6, c6, c8
(27) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c6(G(ok(a)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(a)) → c8(TOP(ok(a)))
S tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
K tuples:
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(a)) → c6(G(ok(a)))
Defined Rule Symbols:
active, f, proper, g
Defined Pair Symbols:
F, G, TOP, ACTIVE, PROPER
Compound Symbols:
c2, c3, c7, c9, c1, c4, c4, c6, c6, c8, c8
(29) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
ok(
z0)) →
c9(
TOP(
active(
z0)),
ACTIVE(
z0)) by
TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
TOP(ok(f(z0))) → c9(TOP(f(active(z0))), ACTIVE(f(z0)))
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c6(G(ok(a)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(a)) → c8(TOP(ok(a)))
TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
TOP(ok(f(z0))) → c9(TOP(f(active(z0))), ACTIVE(f(z0)))
S tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
TOP(ok(f(z0))) → c9(TOP(f(active(z0))), ACTIVE(f(z0)))
K tuples:
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(a)) → c6(G(ok(a)))
Defined Rule Symbols:
active, f, proper, g
Defined Pair Symbols:
F, G, ACTIVE, PROPER, TOP
Compound Symbols:
c2, c3, c7, c1, c4, c4, c6, c6, c8, c8, c9
(31) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
TOP(mark(a)) → c8(TOP(ok(a)))
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c6(G(ok(a)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
TOP(ok(f(z0))) → c9(TOP(f(active(z0))), ACTIVE(f(z0)))
S tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
TOP(ok(f(z0))) → c9(TOP(f(active(z0))), ACTIVE(f(z0)))
K tuples:
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(a)) → c6(G(ok(a)))
Defined Rule Symbols:
active, f, proper, g
Defined Pair Symbols:
F, G, ACTIVE, PROPER, TOP
Compound Symbols:
c2, c3, c7, c1, c4, c4, c6, c6, c8, c9
(33) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c6(G(ok(a)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
TOP(ok(f(z0))) → c9(TOP(f(active(z0))), ACTIVE(f(z0)))
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
S tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
K tuples:none
Defined Rule Symbols:
active, f, proper, g
Defined Pair Symbols:
F, G
Compound Symbols:
c2, c3, c7
(35) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
S tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
F, G
Compound Symbols:
c2, c3, c7
(37) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
We considered the (Usable) Rules:none
And the Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1)) = [4]x1
POL(G(x1)) = [4]x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c7(x1)) = x1
POL(mark(x1)) = [2] + x1
POL(ok(x1)) = [1] + x1
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
S tuples:none
K tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
Defined Rule Symbols:none
Defined Pair Symbols:
F, G
Compound Symbols:
c2, c3, c7
(39) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(40) BOUNDS(O(1), O(1))