### (0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

active(f(f(a))) → mark(f(g(f(a))))
active(g(X)) → g(active(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: INNERMOST

### (1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted Cpx (relative) TRS to CDT

### (2) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

ACTIVE(f(f(a))) → c(F(g(f(a))), G(f(a)), F(a))
ACTIVE(g(z0)) → c1(G(active(z0)), ACTIVE(z0))
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(a) → c5
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
S tuples:

ACTIVE(f(f(a))) → c(F(g(f(a))), G(f(a)), F(a))
ACTIVE(g(z0)) → c1(G(active(z0)), ACTIVE(z0))
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(a) → c5
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:

active, g, proper, f, top

Defined Pair Symbols:

ACTIVE, G, PROPER, F, TOP

Compound Symbols:

c, c1, c2, c3, c4, c5, c6, c7, c8, c9

### (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing nodes:

ACTIVE(f(f(a))) → c(F(g(f(a))), G(f(a)), F(a))
PROPER(a) → c5

### (4) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

ACTIVE(g(z0)) → c1(G(active(z0)), ACTIVE(z0))
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
S tuples:

ACTIVE(g(z0)) → c1(G(active(z0)), ACTIVE(z0))
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:

active, g, proper, f, top

Defined Pair Symbols:

ACTIVE, G, PROPER, F, TOP

Compound Symbols:

c1, c2, c3, c4, c6, c7, c8, c9

### (5) CdtUsableRulesProof (EQUIVALENT transformation)

The following rules are not usable and were removed:

top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))

### (6) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
Tuples:

ACTIVE(g(z0)) → c1(G(active(z0)), ACTIVE(z0))
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
S tuples:

ACTIVE(g(z0)) → c1(G(active(z0)), ACTIVE(z0))
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:

active, g, proper, f

Defined Pair Symbols:

ACTIVE, G, PROPER, F, TOP

Compound Symbols:

c1, c2, c3, c4, c6, c7, c8, c9

### (7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace ACTIVE(g(z0)) → c1(G(active(z0)), ACTIVE(z0)) by

ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))

### (8) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
Tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
S tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
K tuples:none
Defined Rule Symbols:

active, g, proper, f

Defined Pair Symbols:

G, PROPER, F, TOP, ACTIVE

Compound Symbols:

c2, c3, c4, c6, c7, c8, c9, c1

### (9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

### (10) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
Tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))))
S tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))))
K tuples:none
Defined Rule Symbols:

active, g, proper, f

Defined Pair Symbols:

G, PROPER, F, TOP, ACTIVE

Compound Symbols:

c2, c3, c4, c6, c7, c8, c9, c1, c1

### (11) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0)) by

PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))

### (12) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
Tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
S tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
K tuples:none
Defined Rule Symbols:

active, g, proper, f

Defined Pair Symbols:

G, PROPER, F, TOP, ACTIVE

Compound Symbols:

c2, c3, c6, c7, c8, c9, c1, c1, c4

### (13) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

### (14) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
Tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
S tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
K tuples:none
Defined Rule Symbols:

active, g, proper, f

Defined Pair Symbols:

G, PROPER, F, TOP, ACTIVE

Compound Symbols:

c2, c3, c6, c7, c8, c9, c1, c1, c4, c4

### (15) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0)) by

PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))

### (16) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
Tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
S tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
K tuples:none
Defined Rule Symbols:

active, g, proper, f

Defined Pair Symbols:

G, F, TOP, ACTIVE, PROPER

Compound Symbols:

c2, c3, c7, c8, c9, c1, c1, c4, c4, c6

### (17) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

### (18) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
Tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c6(G(ok(a)))
S tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c6(G(ok(a)))
K tuples:none
Defined Rule Symbols:

active, g, proper, f

Defined Pair Symbols:

G, F, TOP, ACTIVE, PROPER

Compound Symbols:

c2, c3, c7, c8, c9, c1, c1, c4, c4, c6, c6

### (19) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0)) by

TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(a)) → c8(TOP(ok(a)), PROPER(a))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))

### (20) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
Tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c6(G(ok(a)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(a)) → c8(TOP(ok(a)), PROPER(a))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
S tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c6(G(ok(a)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(a)) → c8(TOP(ok(a)), PROPER(a))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
K tuples:none
Defined Rule Symbols:

active, g, proper, f

Defined Pair Symbols:

G, F, TOP, ACTIVE, PROPER

Compound Symbols:

c2, c3, c7, c9, c1, c1, c4, c4, c6, c6, c8

### (21) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

### (22) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
Tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c6(G(ok(a)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(a)) → c8(TOP(ok(a)))
S tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c6(G(ok(a)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(a)) → c8(TOP(ok(a)))
K tuples:none
Defined Rule Symbols:

active, g, proper, f

Defined Pair Symbols:

G, F, TOP, ACTIVE, PROPER

Compound Symbols:

c2, c3, c7, c9, c1, c1, c4, c4, c6, c6, c8, c8

### (23) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

TOP(mark(a)) → c8(TOP(ok(a)))
We considered the (Usable) Rules:

active(g(z0)) → g(active(z0))
g(ok(z0)) → ok(g(z0))
active(f(f(a))) → mark(f(g(f(a))))
g(mark(z0)) → mark(g(z0))
f(ok(z0)) → ok(f(z0))
And the Tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c6(G(ok(a)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(a)) → c8(TOP(ok(a)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(ACTIVE(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [4]x1
POL(a) = [1]
POL(active(x1)) = 0
POL(c1(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(f(x1)) = 0
POL(g(x1)) = 0
POL(mark(x1)) = x1
POL(ok(x1)) = 0
POL(proper(x1)) = 0

### (24) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
Tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c6(G(ok(a)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(a)) → c8(TOP(ok(a)))
S tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c6(G(ok(a)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
K tuples:

TOP(mark(a)) → c8(TOP(ok(a)))
Defined Rule Symbols:

active, g, proper, f

Defined Pair Symbols:

G, F, TOP, ACTIVE, PROPER

Compound Symbols:

c2, c3, c7, c9, c1, c1, c4, c4, c6, c6, c8, c8

### (25) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0)) by

TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
TOP(ok(g(z0))) → c9(TOP(g(active(z0))), ACTIVE(g(z0)))

### (26) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
Tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c6(G(ok(a)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(a)) → c8(TOP(ok(a)))
TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
TOP(ok(g(z0))) → c9(TOP(g(active(z0))), ACTIVE(g(z0)))
S tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c6(G(ok(a)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
TOP(ok(g(z0))) → c9(TOP(g(active(z0))), ACTIVE(g(z0)))
K tuples:

TOP(mark(a)) → c8(TOP(ok(a)))
Defined Rule Symbols:

active, g, proper, f

Defined Pair Symbols:

G, F, ACTIVE, PROPER, TOP

Compound Symbols:

c2, c3, c7, c1, c1, c4, c4, c6, c6, c8, c8, c9

### (27) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

TOP(mark(a)) → c8(TOP(ok(a)))

### (28) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
Tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c6(G(ok(a)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
TOP(ok(g(z0))) → c9(TOP(g(active(z0))), ACTIVE(g(z0)))
S tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c6(G(ok(a)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
TOP(ok(g(z0))) → c9(TOP(g(active(z0))), ACTIVE(g(z0)))
K tuples:none
Defined Rule Symbols:

active, g, proper, f

Defined Pair Symbols:

G, F, ACTIVE, PROPER, TOP

Compound Symbols:

c2, c3, c7, c1, c1, c4, c4, c6, c6, c8, c9

### (29) CdtUnreachableProof (EQUIVALENT transformation)

The following tuples could be removed as they are not reachable from basic start terms:

ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c4(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c6(G(ok(a)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
TOP(ok(g(z0))) → c9(TOP(g(active(z0))), ACTIVE(g(z0)))

### (30) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
Tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
S tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
K tuples:none
Defined Rule Symbols:

active, g, proper, f

Defined Pair Symbols:

G, F

Compound Symbols:

c2, c3, c7

### (31) CdtUsableRulesProof (EQUIVALENT transformation)

The following rules are not usable and were removed:

active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))

### (32) Obligation:

Complexity Dependency Tuples Problem
Rules:none
Tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
S tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
K tuples:none
Defined Rule Symbols:none

Defined Pair Symbols:

G, F

Compound Symbols:

c2, c3, c7

### (33) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
We considered the (Usable) Rules:none
And the Tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F(x1)) = [4]x1
POL(G(x1)) = [4]x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c7(x1)) = x1
POL(mark(x1)) = [2] + x1
POL(ok(x1)) = [1] + x1

### (34) Obligation:

Complexity Dependency Tuples Problem
Rules:none
Tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
S tuples:none
K tuples:

G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
Defined Rule Symbols:none

Defined Pair Symbols:

G, F

Compound Symbols:

c2, c3, c7

### (35) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)

The set S is empty