Runtime Complexity TRS:
The TRS R consists of the following rules:

active(f(f(a))) → mark(f(g(f(a))))
active(g(X)) → g(active(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: INNERMOST


Renamed function symbols to avoid clashes with predefined symbol.


Runtime Complexity TRS:
The TRS R consists of the following rules:


active'(f'(f'(a'))) → mark'(f'(g'(f'(a'))))
active'(g'(X)) → g'(active'(X))
g'(mark'(X)) → mark'(g'(X))
proper'(f'(X)) → f'(proper'(X))
proper'(a') → ok'(a')
proper'(g'(X)) → g'(proper'(X))
f'(ok'(X)) → ok'(f'(X))
g'(ok'(X)) → ok'(g'(X))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Rewrite Strategy: INNERMOST


Infered types.


Rules:
active'(f'(f'(a'))) → mark'(f'(g'(f'(a'))))
active'(g'(X)) → g'(active'(X))
g'(mark'(X)) → mark'(g'(X))
proper'(f'(X)) → f'(proper'(X))
proper'(a') → ok'(a')
proper'(g'(X)) → g'(proper'(X))
f'(ok'(X)) → ok'(f'(X))
g'(ok'(X)) → ok'(g'(X))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: a':mark':ok' → a':mark':ok'
f' :: a':mark':ok' → a':mark':ok'
a' :: a':mark':ok'
mark' :: a':mark':ok' → a':mark':ok'
g' :: a':mark':ok' → a':mark':ok'
proper' :: a':mark':ok' → a':mark':ok'
ok' :: a':mark':ok' → a':mark':ok'
top' :: a':mark':ok' → top'
_hole_a':mark':ok'1 :: a':mark':ok'
_hole_top'2 :: top'
_gen_a':mark':ok'3 :: Nat → a':mark':ok'


Heuristically decided to analyse the following defined symbols:
active', f', g', proper', top'

They will be analysed ascendingly in the following order:
f' < active'
g' < active'
active' < top'
f' < proper'
g' < proper'
proper' < top'


Rules:
active'(f'(f'(a'))) → mark'(f'(g'(f'(a'))))
active'(g'(X)) → g'(active'(X))
g'(mark'(X)) → mark'(g'(X))
proper'(f'(X)) → f'(proper'(X))
proper'(a') → ok'(a')
proper'(g'(X)) → g'(proper'(X))
f'(ok'(X)) → ok'(f'(X))
g'(ok'(X)) → ok'(g'(X))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: a':mark':ok' → a':mark':ok'
f' :: a':mark':ok' → a':mark':ok'
a' :: a':mark':ok'
mark' :: a':mark':ok' → a':mark':ok'
g' :: a':mark':ok' → a':mark':ok'
proper' :: a':mark':ok' → a':mark':ok'
ok' :: a':mark':ok' → a':mark':ok'
top' :: a':mark':ok' → top'
_hole_a':mark':ok'1 :: a':mark':ok'
_hole_top'2 :: top'
_gen_a':mark':ok'3 :: Nat → a':mark':ok'

Generator Equations:
_gen_a':mark':ok'3(0) ⇔ a'
_gen_a':mark':ok'3(+(x, 1)) ⇔ mark'(_gen_a':mark':ok'3(x))

The following defined symbols remain to be analysed:
f', active', g', proper', top'

They will be analysed ascendingly in the following order:
f' < active'
g' < active'
active' < top'
f' < proper'
g' < proper'
proper' < top'


Could not prove a rewrite lemma for the defined symbol f'.


Rules:
active'(f'(f'(a'))) → mark'(f'(g'(f'(a'))))
active'(g'(X)) → g'(active'(X))
g'(mark'(X)) → mark'(g'(X))
proper'(f'(X)) → f'(proper'(X))
proper'(a') → ok'(a')
proper'(g'(X)) → g'(proper'(X))
f'(ok'(X)) → ok'(f'(X))
g'(ok'(X)) → ok'(g'(X))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: a':mark':ok' → a':mark':ok'
f' :: a':mark':ok' → a':mark':ok'
a' :: a':mark':ok'
mark' :: a':mark':ok' → a':mark':ok'
g' :: a':mark':ok' → a':mark':ok'
proper' :: a':mark':ok' → a':mark':ok'
ok' :: a':mark':ok' → a':mark':ok'
top' :: a':mark':ok' → top'
_hole_a':mark':ok'1 :: a':mark':ok'
_hole_top'2 :: top'
_gen_a':mark':ok'3 :: Nat → a':mark':ok'

Generator Equations:
_gen_a':mark':ok'3(0) ⇔ a'
_gen_a':mark':ok'3(+(x, 1)) ⇔ mark'(_gen_a':mark':ok'3(x))

The following defined symbols remain to be analysed:
g', active', proper', top'

They will be analysed ascendingly in the following order:
g' < active'
active' < top'
g' < proper'
proper' < top'


Proved the following rewrite lemma:
g'(_gen_a':mark':ok'3(+(1, _n11))) → _*4, rt ∈ Ω(n11)

Induction Base:
g'(_gen_a':mark':ok'3(+(1, 0)))

Induction Step:
g'(_gen_a':mark':ok'3(+(1, +(_$n12, 1)))) →RΩ(1)
mark'(g'(_gen_a':mark':ok'3(+(1, _$n12)))) →IH
mark'(_*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).


Rules:
active'(f'(f'(a'))) → mark'(f'(g'(f'(a'))))
active'(g'(X)) → g'(active'(X))
g'(mark'(X)) → mark'(g'(X))
proper'(f'(X)) → f'(proper'(X))
proper'(a') → ok'(a')
proper'(g'(X)) → g'(proper'(X))
f'(ok'(X)) → ok'(f'(X))
g'(ok'(X)) → ok'(g'(X))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: a':mark':ok' → a':mark':ok'
f' :: a':mark':ok' → a':mark':ok'
a' :: a':mark':ok'
mark' :: a':mark':ok' → a':mark':ok'
g' :: a':mark':ok' → a':mark':ok'
proper' :: a':mark':ok' → a':mark':ok'
ok' :: a':mark':ok' → a':mark':ok'
top' :: a':mark':ok' → top'
_hole_a':mark':ok'1 :: a':mark':ok'
_hole_top'2 :: top'
_gen_a':mark':ok'3 :: Nat → a':mark':ok'

Lemmas:
g'(_gen_a':mark':ok'3(+(1, _n11))) → _*4, rt ∈ Ω(n11)

Generator Equations:
_gen_a':mark':ok'3(0) ⇔ a'
_gen_a':mark':ok'3(+(x, 1)) ⇔ mark'(_gen_a':mark':ok'3(x))

The following defined symbols remain to be analysed:
active', proper', top'

They will be analysed ascendingly in the following order:
active' < top'
proper' < top'


Could not prove a rewrite lemma for the defined symbol active'.


Rules:
active'(f'(f'(a'))) → mark'(f'(g'(f'(a'))))
active'(g'(X)) → g'(active'(X))
g'(mark'(X)) → mark'(g'(X))
proper'(f'(X)) → f'(proper'(X))
proper'(a') → ok'(a')
proper'(g'(X)) → g'(proper'(X))
f'(ok'(X)) → ok'(f'(X))
g'(ok'(X)) → ok'(g'(X))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: a':mark':ok' → a':mark':ok'
f' :: a':mark':ok' → a':mark':ok'
a' :: a':mark':ok'
mark' :: a':mark':ok' → a':mark':ok'
g' :: a':mark':ok' → a':mark':ok'
proper' :: a':mark':ok' → a':mark':ok'
ok' :: a':mark':ok' → a':mark':ok'
top' :: a':mark':ok' → top'
_hole_a':mark':ok'1 :: a':mark':ok'
_hole_top'2 :: top'
_gen_a':mark':ok'3 :: Nat → a':mark':ok'

Lemmas:
g'(_gen_a':mark':ok'3(+(1, _n11))) → _*4, rt ∈ Ω(n11)

Generator Equations:
_gen_a':mark':ok'3(0) ⇔ a'
_gen_a':mark':ok'3(+(x, 1)) ⇔ mark'(_gen_a':mark':ok'3(x))

The following defined symbols remain to be analysed:
proper', top'

They will be analysed ascendingly in the following order:
proper' < top'


Could not prove a rewrite lemma for the defined symbol proper'.


Rules:
active'(f'(f'(a'))) → mark'(f'(g'(f'(a'))))
active'(g'(X)) → g'(active'(X))
g'(mark'(X)) → mark'(g'(X))
proper'(f'(X)) → f'(proper'(X))
proper'(a') → ok'(a')
proper'(g'(X)) → g'(proper'(X))
f'(ok'(X)) → ok'(f'(X))
g'(ok'(X)) → ok'(g'(X))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: a':mark':ok' → a':mark':ok'
f' :: a':mark':ok' → a':mark':ok'
a' :: a':mark':ok'
mark' :: a':mark':ok' → a':mark':ok'
g' :: a':mark':ok' → a':mark':ok'
proper' :: a':mark':ok' → a':mark':ok'
ok' :: a':mark':ok' → a':mark':ok'
top' :: a':mark':ok' → top'
_hole_a':mark':ok'1 :: a':mark':ok'
_hole_top'2 :: top'
_gen_a':mark':ok'3 :: Nat → a':mark':ok'

Lemmas:
g'(_gen_a':mark':ok'3(+(1, _n11))) → _*4, rt ∈ Ω(n11)

Generator Equations:
_gen_a':mark':ok'3(0) ⇔ a'
_gen_a':mark':ok'3(+(x, 1)) ⇔ mark'(_gen_a':mark':ok'3(x))

The following defined symbols remain to be analysed:
top'


Could not prove a rewrite lemma for the defined symbol top'.


Rules:
active'(f'(f'(a'))) → mark'(f'(g'(f'(a'))))
active'(g'(X)) → g'(active'(X))
g'(mark'(X)) → mark'(g'(X))
proper'(f'(X)) → f'(proper'(X))
proper'(a') → ok'(a')
proper'(g'(X)) → g'(proper'(X))
f'(ok'(X)) → ok'(f'(X))
g'(ok'(X)) → ok'(g'(X))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: a':mark':ok' → a':mark':ok'
f' :: a':mark':ok' → a':mark':ok'
a' :: a':mark':ok'
mark' :: a':mark':ok' → a':mark':ok'
g' :: a':mark':ok' → a':mark':ok'
proper' :: a':mark':ok' → a':mark':ok'
ok' :: a':mark':ok' → a':mark':ok'
top' :: a':mark':ok' → top'
_hole_a':mark':ok'1 :: a':mark':ok'
_hole_top'2 :: top'
_gen_a':mark':ok'3 :: Nat → a':mark':ok'

Lemmas:
g'(_gen_a':mark':ok'3(+(1, _n11))) → _*4, rt ∈ Ω(n11)

Generator Equations:
_gen_a':mark':ok'3(0) ⇔ a'
_gen_a':mark':ok'3(+(x, 1)) ⇔ mark'(_gen_a':mark':ok'3(x))

No more defined symbols left to analyse.


The lowerbound Ω(n) was proven with the following lemma:
g'(_gen_a':mark':ok'3(+(1, _n11))) → _*4, rt ∈ Ω(n11)