Runtime Complexity TRS:
The TRS R consists of the following rules:

active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
active(h(X)) → h(active(X))
active(g(X1, X2)) → g(active(X1), X2)
active(f(X1, X2)) → f(active(X1), X2)
h(mark(X)) → mark(h(X))
g(mark(X1), X2) → mark(g(X1, X2))
f(mark(X1), X2) → mark(f(X1, X2))
proper(h(X)) → h(proper(X))
proper(g(X1, X2)) → g(proper(X1), proper(X2))
proper(a) → ok(a)
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(b) → ok(b)
h(ok(X)) → ok(h(X))
g(ok(X1), ok(X2)) → ok(g(X1, X2))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: INNERMOST

Renamed function symbols to avoid clashes with predefined symbol.

Runtime Complexity TRS:
The TRS R consists of the following rules:

active'(h'(X)) → mark'(g'(X, X))
active'(g'(a', X)) → mark'(f'(b', X))
active'(f'(X, X)) → mark'(h'(a'))
active'(a') → mark'(b')
active'(h'(X)) → h'(active'(X))
active'(g'(X1, X2)) → g'(active'(X1), X2)
active'(f'(X1, X2)) → f'(active'(X1), X2)
h'(mark'(X)) → mark'(h'(X))
g'(mark'(X1), X2) → mark'(g'(X1, X2))
f'(mark'(X1), X2) → mark'(f'(X1, X2))
proper'(h'(X)) → h'(proper'(X))
proper'(g'(X1, X2)) → g'(proper'(X1), proper'(X2))
proper'(a') → ok'(a')
proper'(f'(X1, X2)) → f'(proper'(X1), proper'(X2))
proper'(b') → ok'(b')
h'(ok'(X)) → ok'(h'(X))
g'(ok'(X1), ok'(X2)) → ok'(g'(X1, X2))
f'(ok'(X1), ok'(X2)) → ok'(f'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Rewrite Strategy: INNERMOST

Infered types.

Rules:
active'(h'(X)) → mark'(g'(X, X))
active'(g'(a', X)) → mark'(f'(b', X))
active'(f'(X, X)) → mark'(h'(a'))
active'(a') → mark'(b')
active'(h'(X)) → h'(active'(X))
active'(g'(X1, X2)) → g'(active'(X1), X2)
active'(f'(X1, X2)) → f'(active'(X1), X2)
h'(mark'(X)) → mark'(h'(X))
g'(mark'(X1), X2) → mark'(g'(X1, X2))
f'(mark'(X1), X2) → mark'(f'(X1, X2))
proper'(h'(X)) → h'(proper'(X))
proper'(g'(X1, X2)) → g'(proper'(X1), proper'(X2))
proper'(a') → ok'(a')
proper'(f'(X1, X2)) → f'(proper'(X1), proper'(X2))
proper'(b') → ok'(b')
h'(ok'(X)) → ok'(h'(X))
g'(ok'(X1), ok'(X2)) → ok'(g'(X1, X2))
f'(ok'(X1), ok'(X2)) → ok'(f'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':a':b':ok' → mark':a':b':ok'
h' :: mark':a':b':ok' → mark':a':b':ok'
mark' :: mark':a':b':ok' → mark':a':b':ok'
g' :: mark':a':b':ok' → mark':a':b':ok' → mark':a':b':ok'
a' :: mark':a':b':ok'
f' :: mark':a':b':ok' → mark':a':b':ok' → mark':a':b':ok'
b' :: mark':a':b':ok'
proper' :: mark':a':b':ok' → mark':a':b':ok'
ok' :: mark':a':b':ok' → mark':a':b':ok'
top' :: mark':a':b':ok' → top'
_hole_mark':a':b':ok'1 :: mark':a':b':ok'
_hole_top'2 :: top'
_gen_mark':a':b':ok'3 :: Nat → mark':a':b':ok'

Heuristically decided to analyse the following defined symbols:
active', g', f', h', proper', top'

They will be analysed ascendingly in the following order:
g' < active'
f' < active'
h' < active'
active' < top'
g' < proper'
f' < proper'
h' < proper'
proper' < top'

Rules:
active'(h'(X)) → mark'(g'(X, X))
active'(g'(a', X)) → mark'(f'(b', X))
active'(f'(X, X)) → mark'(h'(a'))
active'(a') → mark'(b')
active'(h'(X)) → h'(active'(X))
active'(g'(X1, X2)) → g'(active'(X1), X2)
active'(f'(X1, X2)) → f'(active'(X1), X2)
h'(mark'(X)) → mark'(h'(X))
g'(mark'(X1), X2) → mark'(g'(X1, X2))
f'(mark'(X1), X2) → mark'(f'(X1, X2))
proper'(h'(X)) → h'(proper'(X))
proper'(g'(X1, X2)) → g'(proper'(X1), proper'(X2))
proper'(a') → ok'(a')
proper'(f'(X1, X2)) → f'(proper'(X1), proper'(X2))
proper'(b') → ok'(b')
h'(ok'(X)) → ok'(h'(X))
g'(ok'(X1), ok'(X2)) → ok'(g'(X1, X2))
f'(ok'(X1), ok'(X2)) → ok'(f'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':a':b':ok' → mark':a':b':ok'
h' :: mark':a':b':ok' → mark':a':b':ok'
mark' :: mark':a':b':ok' → mark':a':b':ok'
g' :: mark':a':b':ok' → mark':a':b':ok' → mark':a':b':ok'
a' :: mark':a':b':ok'
f' :: mark':a':b':ok' → mark':a':b':ok' → mark':a':b':ok'
b' :: mark':a':b':ok'
proper' :: mark':a':b':ok' → mark':a':b':ok'
ok' :: mark':a':b':ok' → mark':a':b':ok'
top' :: mark':a':b':ok' → top'
_hole_mark':a':b':ok'1 :: mark':a':b':ok'
_hole_top'2 :: top'
_gen_mark':a':b':ok'3 :: Nat → mark':a':b':ok'

Generator Equations:
_gen_mark':a':b':ok'3(0) ⇔ a'
_gen_mark':a':b':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':a':b':ok'3(x))

The following defined symbols remain to be analysed:
g', active', f', h', proper', top'

They will be analysed ascendingly in the following order:
g' < active'
f' < active'
h' < active'
active' < top'
g' < proper'
f' < proper'
h' < proper'
proper' < top'

Proved the following rewrite lemma:
g'(_gen_mark':a':b':ok'3(+(1, _n5)), _gen_mark':a':b':ok'3(b)) → _*4, rt ∈ Ω(n5)

Induction Base:
g'(_gen_mark':a':b':ok'3(+(1, 0)), _gen_mark':a':b':ok'3(b))

Induction Step:
g'(_gen_mark':a':b':ok'3(+(1, +(_\$n6, 1))), _gen_mark':a':b':ok'3(_b610)) →RΩ(1)
mark'(g'(_gen_mark':a':b':ok'3(+(1, _\$n6)), _gen_mark':a':b':ok'3(_b610))) →IH
mark'(_*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

Rules:
active'(h'(X)) → mark'(g'(X, X))
active'(g'(a', X)) → mark'(f'(b', X))
active'(f'(X, X)) → mark'(h'(a'))
active'(a') → mark'(b')
active'(h'(X)) → h'(active'(X))
active'(g'(X1, X2)) → g'(active'(X1), X2)
active'(f'(X1, X2)) → f'(active'(X1), X2)
h'(mark'(X)) → mark'(h'(X))
g'(mark'(X1), X2) → mark'(g'(X1, X2))
f'(mark'(X1), X2) → mark'(f'(X1, X2))
proper'(h'(X)) → h'(proper'(X))
proper'(g'(X1, X2)) → g'(proper'(X1), proper'(X2))
proper'(a') → ok'(a')
proper'(f'(X1, X2)) → f'(proper'(X1), proper'(X2))
proper'(b') → ok'(b')
h'(ok'(X)) → ok'(h'(X))
g'(ok'(X1), ok'(X2)) → ok'(g'(X1, X2))
f'(ok'(X1), ok'(X2)) → ok'(f'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':a':b':ok' → mark':a':b':ok'
h' :: mark':a':b':ok' → mark':a':b':ok'
mark' :: mark':a':b':ok' → mark':a':b':ok'
g' :: mark':a':b':ok' → mark':a':b':ok' → mark':a':b':ok'
a' :: mark':a':b':ok'
f' :: mark':a':b':ok' → mark':a':b':ok' → mark':a':b':ok'
b' :: mark':a':b':ok'
proper' :: mark':a':b':ok' → mark':a':b':ok'
ok' :: mark':a':b':ok' → mark':a':b':ok'
top' :: mark':a':b':ok' → top'
_hole_mark':a':b':ok'1 :: mark':a':b':ok'
_hole_top'2 :: top'
_gen_mark':a':b':ok'3 :: Nat → mark':a':b':ok'

Lemmas:
g'(_gen_mark':a':b':ok'3(+(1, _n5)), _gen_mark':a':b':ok'3(b)) → _*4, rt ∈ Ω(n5)

Generator Equations:
_gen_mark':a':b':ok'3(0) ⇔ a'
_gen_mark':a':b':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':a':b':ok'3(x))

The following defined symbols remain to be analysed:
f', active', h', proper', top'

They will be analysed ascendingly in the following order:
f' < active'
h' < active'
active' < top'
f' < proper'
h' < proper'
proper' < top'

Proved the following rewrite lemma:
f'(_gen_mark':a':b':ok'3(+(1, _n1382)), _gen_mark':a':b':ok'3(b)) → _*4, rt ∈ Ω(n1382)

Induction Base:
f'(_gen_mark':a':b':ok'3(+(1, 0)), _gen_mark':a':b':ok'3(b))

Induction Step:
f'(_gen_mark':a':b':ok'3(+(1, +(_\$n1383, 1))), _gen_mark':a':b':ok'3(_b2311)) →RΩ(1)
mark'(f'(_gen_mark':a':b':ok'3(+(1, _\$n1383)), _gen_mark':a':b':ok'3(_b2311))) →IH
mark'(_*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

Rules:
active'(h'(X)) → mark'(g'(X, X))
active'(g'(a', X)) → mark'(f'(b', X))
active'(f'(X, X)) → mark'(h'(a'))
active'(a') → mark'(b')
active'(h'(X)) → h'(active'(X))
active'(g'(X1, X2)) → g'(active'(X1), X2)
active'(f'(X1, X2)) → f'(active'(X1), X2)
h'(mark'(X)) → mark'(h'(X))
g'(mark'(X1), X2) → mark'(g'(X1, X2))
f'(mark'(X1), X2) → mark'(f'(X1, X2))
proper'(h'(X)) → h'(proper'(X))
proper'(g'(X1, X2)) → g'(proper'(X1), proper'(X2))
proper'(a') → ok'(a')
proper'(f'(X1, X2)) → f'(proper'(X1), proper'(X2))
proper'(b') → ok'(b')
h'(ok'(X)) → ok'(h'(X))
g'(ok'(X1), ok'(X2)) → ok'(g'(X1, X2))
f'(ok'(X1), ok'(X2)) → ok'(f'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':a':b':ok' → mark':a':b':ok'
h' :: mark':a':b':ok' → mark':a':b':ok'
mark' :: mark':a':b':ok' → mark':a':b':ok'
g' :: mark':a':b':ok' → mark':a':b':ok' → mark':a':b':ok'
a' :: mark':a':b':ok'
f' :: mark':a':b':ok' → mark':a':b':ok' → mark':a':b':ok'
b' :: mark':a':b':ok'
proper' :: mark':a':b':ok' → mark':a':b':ok'
ok' :: mark':a':b':ok' → mark':a':b':ok'
top' :: mark':a':b':ok' → top'
_hole_mark':a':b':ok'1 :: mark':a':b':ok'
_hole_top'2 :: top'
_gen_mark':a':b':ok'3 :: Nat → mark':a':b':ok'

Lemmas:
g'(_gen_mark':a':b':ok'3(+(1, _n5)), _gen_mark':a':b':ok'3(b)) → _*4, rt ∈ Ω(n5)
f'(_gen_mark':a':b':ok'3(+(1, _n1382)), _gen_mark':a':b':ok'3(b)) → _*4, rt ∈ Ω(n1382)

Generator Equations:
_gen_mark':a':b':ok'3(0) ⇔ a'
_gen_mark':a':b':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':a':b':ok'3(x))

The following defined symbols remain to be analysed:
h', active', proper', top'

They will be analysed ascendingly in the following order:
h' < active'
active' < top'
h' < proper'
proper' < top'

Proved the following rewrite lemma:
h'(_gen_mark':a':b':ok'3(+(1, _n3127))) → _*4, rt ∈ Ω(n3127)

Induction Base:
h'(_gen_mark':a':b':ok'3(+(1, 0)))

Induction Step:
h'(_gen_mark':a':b':ok'3(+(1, +(_\$n3128, 1)))) →RΩ(1)
mark'(h'(_gen_mark':a':b':ok'3(+(1, _\$n3128)))) →IH
mark'(_*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

Rules:
active'(h'(X)) → mark'(g'(X, X))
active'(g'(a', X)) → mark'(f'(b', X))
active'(f'(X, X)) → mark'(h'(a'))
active'(a') → mark'(b')
active'(h'(X)) → h'(active'(X))
active'(g'(X1, X2)) → g'(active'(X1), X2)
active'(f'(X1, X2)) → f'(active'(X1), X2)
h'(mark'(X)) → mark'(h'(X))
g'(mark'(X1), X2) → mark'(g'(X1, X2))
f'(mark'(X1), X2) → mark'(f'(X1, X2))
proper'(h'(X)) → h'(proper'(X))
proper'(g'(X1, X2)) → g'(proper'(X1), proper'(X2))
proper'(a') → ok'(a')
proper'(f'(X1, X2)) → f'(proper'(X1), proper'(X2))
proper'(b') → ok'(b')
h'(ok'(X)) → ok'(h'(X))
g'(ok'(X1), ok'(X2)) → ok'(g'(X1, X2))
f'(ok'(X1), ok'(X2)) → ok'(f'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':a':b':ok' → mark':a':b':ok'
h' :: mark':a':b':ok' → mark':a':b':ok'
mark' :: mark':a':b':ok' → mark':a':b':ok'
g' :: mark':a':b':ok' → mark':a':b':ok' → mark':a':b':ok'
a' :: mark':a':b':ok'
f' :: mark':a':b':ok' → mark':a':b':ok' → mark':a':b':ok'
b' :: mark':a':b':ok'
proper' :: mark':a':b':ok' → mark':a':b':ok'
ok' :: mark':a':b':ok' → mark':a':b':ok'
top' :: mark':a':b':ok' → top'
_hole_mark':a':b':ok'1 :: mark':a':b':ok'
_hole_top'2 :: top'
_gen_mark':a':b':ok'3 :: Nat → mark':a':b':ok'

Lemmas:
g'(_gen_mark':a':b':ok'3(+(1, _n5)), _gen_mark':a':b':ok'3(b)) → _*4, rt ∈ Ω(n5)
f'(_gen_mark':a':b':ok'3(+(1, _n1382)), _gen_mark':a':b':ok'3(b)) → _*4, rt ∈ Ω(n1382)
h'(_gen_mark':a':b':ok'3(+(1, _n3127))) → _*4, rt ∈ Ω(n3127)

Generator Equations:
_gen_mark':a':b':ok'3(0) ⇔ a'
_gen_mark':a':b':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':a':b':ok'3(x))

The following defined symbols remain to be analysed:
active', proper', top'

They will be analysed ascendingly in the following order:
active' < top'
proper' < top'

Could not prove a rewrite lemma for the defined symbol active'.

Rules:
active'(h'(X)) → mark'(g'(X, X))
active'(g'(a', X)) → mark'(f'(b', X))
active'(f'(X, X)) → mark'(h'(a'))
active'(a') → mark'(b')
active'(h'(X)) → h'(active'(X))
active'(g'(X1, X2)) → g'(active'(X1), X2)
active'(f'(X1, X2)) → f'(active'(X1), X2)
h'(mark'(X)) → mark'(h'(X))
g'(mark'(X1), X2) → mark'(g'(X1, X2))
f'(mark'(X1), X2) → mark'(f'(X1, X2))
proper'(h'(X)) → h'(proper'(X))
proper'(g'(X1, X2)) → g'(proper'(X1), proper'(X2))
proper'(a') → ok'(a')
proper'(f'(X1, X2)) → f'(proper'(X1), proper'(X2))
proper'(b') → ok'(b')
h'(ok'(X)) → ok'(h'(X))
g'(ok'(X1), ok'(X2)) → ok'(g'(X1, X2))
f'(ok'(X1), ok'(X2)) → ok'(f'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':a':b':ok' → mark':a':b':ok'
h' :: mark':a':b':ok' → mark':a':b':ok'
mark' :: mark':a':b':ok' → mark':a':b':ok'
g' :: mark':a':b':ok' → mark':a':b':ok' → mark':a':b':ok'
a' :: mark':a':b':ok'
f' :: mark':a':b':ok' → mark':a':b':ok' → mark':a':b':ok'
b' :: mark':a':b':ok'
proper' :: mark':a':b':ok' → mark':a':b':ok'
ok' :: mark':a':b':ok' → mark':a':b':ok'
top' :: mark':a':b':ok' → top'
_hole_mark':a':b':ok'1 :: mark':a':b':ok'
_hole_top'2 :: top'
_gen_mark':a':b':ok'3 :: Nat → mark':a':b':ok'

Lemmas:
g'(_gen_mark':a':b':ok'3(+(1, _n5)), _gen_mark':a':b':ok'3(b)) → _*4, rt ∈ Ω(n5)
f'(_gen_mark':a':b':ok'3(+(1, _n1382)), _gen_mark':a':b':ok'3(b)) → _*4, rt ∈ Ω(n1382)
h'(_gen_mark':a':b':ok'3(+(1, _n3127))) → _*4, rt ∈ Ω(n3127)

Generator Equations:
_gen_mark':a':b':ok'3(0) ⇔ a'
_gen_mark':a':b':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':a':b':ok'3(x))

The following defined symbols remain to be analysed:
proper', top'

They will be analysed ascendingly in the following order:
proper' < top'

Could not prove a rewrite lemma for the defined symbol proper'.

Rules:
active'(h'(X)) → mark'(g'(X, X))
active'(g'(a', X)) → mark'(f'(b', X))
active'(f'(X, X)) → mark'(h'(a'))
active'(a') → mark'(b')
active'(h'(X)) → h'(active'(X))
active'(g'(X1, X2)) → g'(active'(X1), X2)
active'(f'(X1, X2)) → f'(active'(X1), X2)
h'(mark'(X)) → mark'(h'(X))
g'(mark'(X1), X2) → mark'(g'(X1, X2))
f'(mark'(X1), X2) → mark'(f'(X1, X2))
proper'(h'(X)) → h'(proper'(X))
proper'(g'(X1, X2)) → g'(proper'(X1), proper'(X2))
proper'(a') → ok'(a')
proper'(f'(X1, X2)) → f'(proper'(X1), proper'(X2))
proper'(b') → ok'(b')
h'(ok'(X)) → ok'(h'(X))
g'(ok'(X1), ok'(X2)) → ok'(g'(X1, X2))
f'(ok'(X1), ok'(X2)) → ok'(f'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':a':b':ok' → mark':a':b':ok'
h' :: mark':a':b':ok' → mark':a':b':ok'
mark' :: mark':a':b':ok' → mark':a':b':ok'
g' :: mark':a':b':ok' → mark':a':b':ok' → mark':a':b':ok'
a' :: mark':a':b':ok'
f' :: mark':a':b':ok' → mark':a':b':ok' → mark':a':b':ok'
b' :: mark':a':b':ok'
proper' :: mark':a':b':ok' → mark':a':b':ok'
ok' :: mark':a':b':ok' → mark':a':b':ok'
top' :: mark':a':b':ok' → top'
_hole_mark':a':b':ok'1 :: mark':a':b':ok'
_hole_top'2 :: top'
_gen_mark':a':b':ok'3 :: Nat → mark':a':b':ok'

Lemmas:
g'(_gen_mark':a':b':ok'3(+(1, _n5)), _gen_mark':a':b':ok'3(b)) → _*4, rt ∈ Ω(n5)
f'(_gen_mark':a':b':ok'3(+(1, _n1382)), _gen_mark':a':b':ok'3(b)) → _*4, rt ∈ Ω(n1382)
h'(_gen_mark':a':b':ok'3(+(1, _n3127))) → _*4, rt ∈ Ω(n3127)

Generator Equations:
_gen_mark':a':b':ok'3(0) ⇔ a'
_gen_mark':a':b':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':a':b':ok'3(x))

The following defined symbols remain to be analysed:
top'

Could not prove a rewrite lemma for the defined symbol top'.

Rules:
active'(h'(X)) → mark'(g'(X, X))
active'(g'(a', X)) → mark'(f'(b', X))
active'(f'(X, X)) → mark'(h'(a'))
active'(a') → mark'(b')
active'(h'(X)) → h'(active'(X))
active'(g'(X1, X2)) → g'(active'(X1), X2)
active'(f'(X1, X2)) → f'(active'(X1), X2)
h'(mark'(X)) → mark'(h'(X))
g'(mark'(X1), X2) → mark'(g'(X1, X2))
f'(mark'(X1), X2) → mark'(f'(X1, X2))
proper'(h'(X)) → h'(proper'(X))
proper'(g'(X1, X2)) → g'(proper'(X1), proper'(X2))
proper'(a') → ok'(a')
proper'(f'(X1, X2)) → f'(proper'(X1), proper'(X2))
proper'(b') → ok'(b')
h'(ok'(X)) → ok'(h'(X))
g'(ok'(X1), ok'(X2)) → ok'(g'(X1, X2))
f'(ok'(X1), ok'(X2)) → ok'(f'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':a':b':ok' → mark':a':b':ok'
h' :: mark':a':b':ok' → mark':a':b':ok'
mark' :: mark':a':b':ok' → mark':a':b':ok'
g' :: mark':a':b':ok' → mark':a':b':ok' → mark':a':b':ok'
a' :: mark':a':b':ok'
f' :: mark':a':b':ok' → mark':a':b':ok' → mark':a':b':ok'
b' :: mark':a':b':ok'
proper' :: mark':a':b':ok' → mark':a':b':ok'
ok' :: mark':a':b':ok' → mark':a':b':ok'
top' :: mark':a':b':ok' → top'
_hole_mark':a':b':ok'1 :: mark':a':b':ok'
_hole_top'2 :: top'
_gen_mark':a':b':ok'3 :: Nat → mark':a':b':ok'

Lemmas:
g'(_gen_mark':a':b':ok'3(+(1, _n5)), _gen_mark':a':b':ok'3(b)) → _*4, rt ∈ Ω(n5)
f'(_gen_mark':a':b':ok'3(+(1, _n1382)), _gen_mark':a':b':ok'3(b)) → _*4, rt ∈ Ω(n1382)
h'(_gen_mark':a':b':ok'3(+(1, _n3127))) → _*4, rt ∈ Ω(n3127)

Generator Equations:
_gen_mark':a':b':ok'3(0) ⇔ a'
_gen_mark':a':b':ok'3(+(x, 1)) ⇔ mark'(_gen_mark':a':b':ok'3(x))

No more defined symbols left to analyse.

The lowerbound Ω(n) was proven with the following lemma:
g'(_gen_mark':a':b':ok'3(+(1, _n5)), _gen_mark':a':b':ok'3(b)) → _*4, rt ∈ Ω(n5)