(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(s(X)) → f(X)
g(cons(0, Y)) → g(Y)
g(cons(s(X), Y)) → s(X)
h(cons(X, Y)) → h(g(cons(X, Y)))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(s(z0)) → f(z0)
g(cons(0, z0)) → g(z0)
g(cons(s(z0), z1)) → s(z0)
h(cons(z0, z1)) → h(g(cons(z0, z1)))
Tuples:
F(s(z0)) → c(F(z0))
G(cons(0, z0)) → c1(G(z0))
G(cons(s(z0), z1)) → c2
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
S tuples:
F(s(z0)) → c(F(z0))
G(cons(0, z0)) → c1(G(z0))
G(cons(s(z0), z1)) → c2
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
K tuples:none
Defined Rule Symbols:
f, g, h
Defined Pair Symbols:
F, G, H
Compound Symbols:
c, c1, c2, c3
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
G(cons(s(z0), z1)) → c2
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(s(z0)) → f(z0)
g(cons(0, z0)) → g(z0)
g(cons(s(z0), z1)) → s(z0)
h(cons(z0, z1)) → h(g(cons(z0, z1)))
Tuples:
F(s(z0)) → c(F(z0))
G(cons(0, z0)) → c1(G(z0))
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
S tuples:
F(s(z0)) → c(F(z0))
G(cons(0, z0)) → c1(G(z0))
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
K tuples:none
Defined Rule Symbols:
f, g, h
Defined Pair Symbols:
F, G, H
Compound Symbols:
c, c1, c3
(5) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
f(s(z0)) → f(z0)
h(cons(z0, z1)) → h(g(cons(z0, z1)))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
g(cons(0, z0)) → g(z0)
g(cons(s(z0), z1)) → s(z0)
Tuples:
F(s(z0)) → c(F(z0))
G(cons(0, z0)) → c1(G(z0))
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
S tuples:
F(s(z0)) → c(F(z0))
G(cons(0, z0)) → c1(G(z0))
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
K tuples:none
Defined Rule Symbols:
g
Defined Pair Symbols:
F, G, H
Compound Symbols:
c, c1, c3
(7) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
We considered the (Usable) Rules:
g(cons(s(z0), z1)) → s(z0)
g(cons(0, z0)) → g(z0)
And the Tuples:
F(s(z0)) → c(F(z0))
G(cons(0, z0)) → c1(G(z0))
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [2]
POL(F(x1)) = 0
POL(G(x1)) = [2]
POL(H(x1)) = [4]x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = [5] + x1 + x2
POL(g(x1)) = [4]
POL(s(x1)) = [3]
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
g(cons(0, z0)) → g(z0)
g(cons(s(z0), z1)) → s(z0)
Tuples:
F(s(z0)) → c(F(z0))
G(cons(0, z0)) → c1(G(z0))
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
S tuples:
F(s(z0)) → c(F(z0))
G(cons(0, z0)) → c1(G(z0))
K tuples:
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
Defined Rule Symbols:
g
Defined Pair Symbols:
F, G, H
Compound Symbols:
c, c1, c3
(9) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(cons(0, z0)) → c1(G(z0))
We considered the (Usable) Rules:
g(cons(s(z0), z1)) → s(z0)
g(cons(0, z0)) → g(z0)
And the Tuples:
F(s(z0)) → c(F(z0))
G(cons(0, z0)) → c1(G(z0))
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(F(x1)) = 0
POL(G(x1)) = x1
POL(H(x1)) = [4]x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(g(x1)) = 0
POL(s(x1)) = 0
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
g(cons(0, z0)) → g(z0)
g(cons(s(z0), z1)) → s(z0)
Tuples:
F(s(z0)) → c(F(z0))
G(cons(0, z0)) → c1(G(z0))
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
S tuples:
F(s(z0)) → c(F(z0))
K tuples:
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
G(cons(0, z0)) → c1(G(z0))
Defined Rule Symbols:
g
Defined Pair Symbols:
F, G, H
Compound Symbols:
c, c1, c3
(11) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(s(z0)) → c(F(z0))
We considered the (Usable) Rules:none
And the Tuples:
F(s(z0)) → c(F(z0))
G(cons(0, z0)) → c1(G(z0))
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(F(x1)) = [2]x1
POL(G(x1)) = 0
POL(H(x1)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 0
POL(g(x1)) = [1]
POL(s(x1)) = [3] + x1
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
g(cons(0, z0)) → g(z0)
g(cons(s(z0), z1)) → s(z0)
Tuples:
F(s(z0)) → c(F(z0))
G(cons(0, z0)) → c1(G(z0))
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
S tuples:none
K tuples:
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
G(cons(0, z0)) → c1(G(z0))
F(s(z0)) → c(F(z0))
Defined Rule Symbols:
g
Defined Pair Symbols:
F, G, H
Compound Symbols:
c, c1, c3
(13) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(14) BOUNDS(O(1), O(1))