We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^5)).

Strict Trs:
  { sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
  , sum(cons(0(), x), y) -> sum(x, y)
  , sum(nil(), y) -> y
  , weight(cons(n, cons(m, x))) ->
    weight(sum(cons(n, cons(m, x)), cons(0(), x)))
  , weight(cons(n, nil())) -> n }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^5))

We add the following dependency tuples:

Strict DPs:
  { sum^#(cons(s(n), x), cons(m, y)) ->
    c_1(sum^#(cons(n, x), cons(s(m), y)))
  , sum^#(cons(0(), x), y) -> c_2(sum^#(x, y))
  , sum^#(nil(), y) -> c_3()
  , weight^#(cons(n, cons(m, x))) ->
    c_4(weight^#(sum(cons(n, cons(m, x)), cons(0(), x))),
        sum^#(cons(n, cons(m, x)), cons(0(), x)))
  , weight^#(cons(n, nil())) -> c_5() }

and mark the set of starting terms.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^5)).

Strict DPs:
  { sum^#(cons(s(n), x), cons(m, y)) ->
    c_1(sum^#(cons(n, x), cons(s(m), y)))
  , sum^#(cons(0(), x), y) -> c_2(sum^#(x, y))
  , sum^#(nil(), y) -> c_3()
  , weight^#(cons(n, cons(m, x))) ->
    c_4(weight^#(sum(cons(n, cons(m, x)), cons(0(), x))),
        sum^#(cons(n, cons(m, x)), cons(0(), x)))
  , weight^#(cons(n, nil())) -> c_5() }
Weak Trs:
  { sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
  , sum(cons(0(), x), y) -> sum(x, y)
  , sum(nil(), y) -> y
  , weight(cons(n, cons(m, x))) ->
    weight(sum(cons(n, cons(m, x)), cons(0(), x)))
  , weight(cons(n, nil())) -> n }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^5))

We estimate the number of application of {3,5} by applications of
Pre({3,5}) = {2,4}. Here rules are labeled as follows:

  DPs:
    { 1: sum^#(cons(s(n), x), cons(m, y)) ->
         c_1(sum^#(cons(n, x), cons(s(m), y)))
    , 2: sum^#(cons(0(), x), y) -> c_2(sum^#(x, y))
    , 3: sum^#(nil(), y) -> c_3()
    , 4: weight^#(cons(n, cons(m, x))) ->
         c_4(weight^#(sum(cons(n, cons(m, x)), cons(0(), x))),
             sum^#(cons(n, cons(m, x)), cons(0(), x)))
    , 5: weight^#(cons(n, nil())) -> c_5() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^5)).

Strict DPs:
  { sum^#(cons(s(n), x), cons(m, y)) ->
    c_1(sum^#(cons(n, x), cons(s(m), y)))
  , sum^#(cons(0(), x), y) -> c_2(sum^#(x, y))
  , weight^#(cons(n, cons(m, x))) ->
    c_4(weight^#(sum(cons(n, cons(m, x)), cons(0(), x))),
        sum^#(cons(n, cons(m, x)), cons(0(), x))) }
Weak DPs:
  { sum^#(nil(), y) -> c_3()
  , weight^#(cons(n, nil())) -> c_5() }
Weak Trs:
  { sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
  , sum(cons(0(), x), y) -> sum(x, y)
  , sum(nil(), y) -> y
  , weight(cons(n, cons(m, x))) ->
    weight(sum(cons(n, cons(m, x)), cons(0(), x)))
  , weight(cons(n, nil())) -> n }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^5))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ sum^#(nil(), y) -> c_3()
, weight^#(cons(n, nil())) -> c_5() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^5)).

Strict DPs:
  { sum^#(cons(s(n), x), cons(m, y)) ->
    c_1(sum^#(cons(n, x), cons(s(m), y)))
  , sum^#(cons(0(), x), y) -> c_2(sum^#(x, y))
  , weight^#(cons(n, cons(m, x))) ->
    c_4(weight^#(sum(cons(n, cons(m, x)), cons(0(), x))),
        sum^#(cons(n, cons(m, x)), cons(0(), x))) }
Weak Trs:
  { sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
  , sum(cons(0(), x), y) -> sum(x, y)
  , sum(nil(), y) -> y
  , weight(cons(n, cons(m, x))) ->
    weight(sum(cons(n, cons(m, x)), cons(0(), x)))
  , weight(cons(n, nil())) -> n }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^5))

We replace rewrite rules by usable rules:

  Weak Usable Rules:
    { sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
    , sum(cons(0(), x), y) -> sum(x, y)
    , sum(nil(), y) -> y }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^5)).

Strict DPs:
  { sum^#(cons(s(n), x), cons(m, y)) ->
    c_1(sum^#(cons(n, x), cons(s(m), y)))
  , sum^#(cons(0(), x), y) -> c_2(sum^#(x, y))
  , weight^#(cons(n, cons(m, x))) ->
    c_4(weight^#(sum(cons(n, cons(m, x)), cons(0(), x))),
        sum^#(cons(n, cons(m, x)), cons(0(), x))) }
Weak Trs:
  { sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
  , sum(cons(0(), x), y) -> sum(x, y)
  , sum(nil(), y) -> y }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^5))

We decompose the input problem according to the dependency graph
into the upper component

  { weight^#(cons(n, cons(m, x))) ->
    c_4(weight^#(sum(cons(n, cons(m, x)), cons(0(), x))),
        sum^#(cons(n, cons(m, x)), cons(0(), x))) }

and lower component

  { sum^#(cons(s(n), x), cons(m, y)) ->
    c_1(sum^#(cons(n, x), cons(s(m), y)))
  , sum^#(cons(0(), x), y) -> c_2(sum^#(x, y)) }

Further, following extension rules are added to the lower
component.

{ weight^#(cons(n, cons(m, x))) ->
  sum^#(cons(n, cons(m, x)), cons(0(), x))
, weight^#(cons(n, cons(m, x))) ->
  weight^#(sum(cons(n, cons(m, x)), cons(0(), x))) }

TcT solves the upper component with certificate YES(O(1),O(n^1)).

Sub-proof:
----------
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(n^1)).
  
  Strict DPs:
    { weight^#(cons(n, cons(m, x))) ->
      c_4(weight^#(sum(cons(n, cons(m, x)), cons(0(), x))),
          sum^#(cons(n, cons(m, x)), cons(0(), x))) }
  Weak Trs:
    { sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
    , sum(cons(0(), x), y) -> sum(x, y)
    , sum(nil(), y) -> y }
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(n^1))
  
  We use the processor 'Small Polynomial Path Order (PS,1-bounded)'
  to orient following rules strictly.
  
  DPs:
    { 1: weight^#(cons(n, cons(m, x))) ->
         c_4(weight^#(sum(cons(n, cons(m, x)), cons(0(), x))),
             sum^#(cons(n, cons(m, x)), cons(0(), x))) }
  
  Sub-proof:
  ----------
    The input was oriented with the instance of 'Small Polynomial Path
    Order (PS,1-bounded)' as induced by the safe mapping
    
     safe(sum) = {}, safe(cons) = {1, 2}, safe(s) = {1}, safe(0) = {},
     safe(nil) = {}, safe(sum^#) = {}, safe(weight^#) = {},
     safe(c_4) = {}
    
    and precedence
    
     empty .
    
    Following symbols are considered recursive:
    
     {weight^#}
    
    The recursion depth is 1.
    
    Further, following argument filtering is employed:
    
     pi(sum) = 2, pi(cons) = [2], pi(s) = [], pi(0) = [], pi(nil) = [],
     pi(sum^#) = [], pi(weight^#) = [1], pi(c_4) = [1, 2]
    
    Usable defined function symbols are a subset of:
    
     {sum, sum^#, weight^#}
    
    For your convenience, here are the satisfied ordering constraints:
    
       pi(weight^#(cons(n, cons(m, x)))) =  weight^#(cons(; cons(; x));)                            
                                         >  c_4(weight^#(cons(; x);),  sum^#();)                    
                                         =  pi(c_4(weight^#(sum(cons(n, cons(m, x)), cons(0(), x))),
                                                   sum^#(cons(n, cons(m, x)), cons(0(), x))))       
                                                                                                    
      pi(sum(cons(s(n), x), cons(m, y))) =  cons(; y)                                               
                                         >= cons(; y)                                               
                                         =  pi(sum(cons(n, x), cons(s(m), y)))                      
                                                                                                    
                pi(sum(cons(0(), x), y)) =  y                                                       
                                         >= y                                                       
                                         =  pi(sum(x, y))                                           
                                                                                                    
                       pi(sum(nil(), y)) =  y                                                       
                                         >= y                                                       
                                         =  pi(y)                                                   
                                                                                                    
  
  The strictly oriented rules are moved into the weak component.
  
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(1)).
  
  Weak DPs:
    { weight^#(cons(n, cons(m, x))) ->
      c_4(weight^#(sum(cons(n, cons(m, x)), cons(0(), x))),
          sum^#(cons(n, cons(m, x)), cons(0(), x))) }
  Weak Trs:
    { sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
    , sum(cons(0(), x), y) -> sum(x, y)
    , sum(nil(), y) -> y }
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(1))
  
  The following weak DPs constitute a sub-graph of the DG that is
  closed under successors. The DPs are removed.
  
  { weight^#(cons(n, cons(m, x))) ->
    c_4(weight^#(sum(cons(n, cons(m, x)), cons(0(), x))),
        sum^#(cons(n, cons(m, x)), cons(0(), x))) }
  
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(1)).
  
  Weak Trs:
    { sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
    , sum(cons(0(), x), y) -> sum(x, y)
    , sum(nil(), y) -> y }
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(1))
  
  No rule is usable, rules are removed from the input problem.
  
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(1)).
  
  Rules: Empty
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(1))
  
  Empty rules are trivially bounded

We return to the main proof.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^4)).

Strict DPs:
  { sum^#(cons(s(n), x), cons(m, y)) ->
    c_1(sum^#(cons(n, x), cons(s(m), y)))
  , sum^#(cons(0(), x), y) -> c_2(sum^#(x, y)) }
Weak DPs:
  { weight^#(cons(n, cons(m, x))) ->
    sum^#(cons(n, cons(m, x)), cons(0(), x))
  , weight^#(cons(n, cons(m, x))) ->
    weight^#(sum(cons(n, cons(m, x)), cons(0(), x))) }
Weak Trs:
  { sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
  , sum(cons(0(), x), y) -> sum(x, y)
  , sum(nil(), y) -> y }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^4))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 2: sum^#(cons(0(), x), y) -> c_2(sum^#(x, y))
  , 4: weight^#(cons(n, cons(m, x))) ->
       weight^#(sum(cons(n, cons(m, x)), cons(0(), x))) }
Trs: { sum(nil(), y) -> y }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_1) = {1}, Uargs(c_2) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
      [sum](x1, x2) = [1] x2 + [1]
                                  
     [cons](x1, x2) = [1] x2 + [2]
                                  
            [s](x1) = [1] x1 + [2]
                                  
                [0] = [0]         
                                  
              [nil] = [0]         
                                  
    [sum^#](x1, x2) = [3] x1 + [3]
                                  
          [c_1](x1) = [1] x1 + [0]
                                  
          [c_2](x1) = [1] x1 + [0]
                                  
     [weight^#](x1) = [3] x1 + [3]
  
  The order satisfies the following ordering constraints:
  
      [sum(cons(s(n), x), cons(m, y))] =  [1] y + [3]                                       
                                       >= [1] y + [3]                                       
                                       =  [sum(cons(n, x), cons(s(m), y))]                  
                                                                                            
                [sum(cons(0(), x), y)] =  [1] y + [1]                                       
                                       >= [1] y + [1]                                       
                                       =  [sum(x, y)]                                       
                                                                                            
                       [sum(nil(), y)] =  [1] y + [1]                                       
                                       >  [1] y + [0]                                       
                                       =  [y]                                               
                                                                                            
    [sum^#(cons(s(n), x), cons(m, y))] =  [3] x + [9]                                       
                                       >= [3] x + [9]                                       
                                       =  [c_1(sum^#(cons(n, x), cons(s(m), y)))]           
                                                                                            
              [sum^#(cons(0(), x), y)] =  [3] x + [9]                                       
                                       >  [3] x + [3]                                       
                                       =  [c_2(sum^#(x, y))]                                
                                                                                            
       [weight^#(cons(n, cons(m, x)))] =  [3] x + [15]                                      
                                       >= [3] x + [15]                                      
                                       =  [sum^#(cons(n, cons(m, x)), cons(0(), x))]        
                                                                                            
       [weight^#(cons(n, cons(m, x)))] =  [3] x + [15]                                      
                                       >  [3] x + [12]                                      
                                       =  [weight^#(sum(cons(n, cons(m, x)), cons(0(), x)))]
                                                                                            

We return to the main proof. Consider the set of all dependency
pairs

:
  { 1: sum^#(cons(s(n), x), cons(m, y)) ->
       c_1(sum^#(cons(n, x), cons(s(m), y)))
  , 2: sum^#(cons(0(), x), y) -> c_2(sum^#(x, y))
  , 3: weight^#(cons(n, cons(m, x))) ->
       sum^#(cons(n, cons(m, x)), cons(0(), x))
  , 4: weight^#(cons(n, cons(m, x))) ->
       weight^#(sum(cons(n, cons(m, x)), cons(0(), x))) }

Processor 'matrix interpretation of dimension 1' induces the
complexity certificate YES(?,O(n^1)) on application of dependency
pairs {2,4}. These cover all (indirect) predecessors of dependency
pairs {2,3,4}, their number of application is equally bounded. The
dependency pairs are shifted into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^4)).

Strict DPs:
  { sum^#(cons(s(n), x), cons(m, y)) ->
    c_1(sum^#(cons(n, x), cons(s(m), y))) }
Weak DPs:
  { sum^#(cons(0(), x), y) -> c_2(sum^#(x, y))
  , weight^#(cons(n, cons(m, x))) ->
    sum^#(cons(n, cons(m, x)), cons(0(), x))
  , weight^#(cons(n, cons(m, x))) ->
    weight^#(sum(cons(n, cons(m, x)), cons(0(), x))) }
Weak Trs:
  { sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
  , sum(cons(0(), x), y) -> sum(x, y)
  , sum(nil(), y) -> y }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^4))

We use the processor 'matrix interpretation of dimension 4' to
orient following rules strictly.

DPs:
  { sum^#(cons(s(n), x), cons(m, y)) ->
    c_1(sum^#(cons(n, x), cons(s(m), y))) }

The induced complexity on above rules (modulo remaining rules) is
YES(?,O(n^4)) . These rules are moved into the corresponding weak
component(s).

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_1) = {1}, Uargs(c_2) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
                      [1 0 0 0]      [1 0 0 0]      [0]
      [sum](x1, x2) = [0 0 0 0] x1 + [0 1 0 0] x2 + [0]
                      [1 0 0 0]      [0 0 1 0]      [1]
                      [0 0 1 0]      [0 0 0 1]      [1]
                                                       
                      [0 0 0 1]      [1 0 0 1]      [0]
     [cons](x1, x2) = [0 0 0 0] x1 + [1 0 0 1] x2 + [1]
                      [0 0 0 1]      [0 0 1 0]      [0]
                      [0 0 0 1]      [0 0 1 0]      [1]
                                                       
                      [0 0 1 0]      [0]               
            [s](x1) = [0 1 1 0] x1 + [0]               
                      [0 0 0 0]      [0]               
                      [0 0 0 1]      [1]               
                                                       
                      [1]                              
                [0] = [1]                              
                      [1]                              
                      [0]                              
                                                       
                      [0]                              
              [nil] = [0]                              
                      [0]                              
                      [0]                              
                                                       
                      [1 0 0 0]      [0]               
    [sum^#](x1, x2) = [0 0 0 0] x1 + [0]               
                      [0 0 0 0]      [0]               
                      [0 0 0 0]      [0]               
                                                       
                      [1 1 1 0]      [0]               
          [c_1](x1) = [0 0 0 0] x1 + [0]               
                      [0 0 0 0]      [0]               
                      [0 0 0 0]      [0]               
                                                       
                      [1 0 0 0]      [0]               
          [c_2](x1) = [0 0 0 0] x1 + [0]               
                      [0 0 0 0]      [0]               
                      [0 0 0 0]      [0]               
                                                       
                      [0 1 0 1]      [0]               
     [weight^#](x1) = [0 0 0 0] x1 + [0]               
                      [0 0 0 0]      [0]               
                      [0 0 0 0]      [0]               
  
  The order satisfies the following ordering constraints:
  
      [sum(cons(s(n), x), cons(m, y))] =  [0 0 0 1]     [1 0 0 1]     [0 0 0 1]     [1 0 0 1]     [1]
                                          [0 0 0 0] n + [0 0 0 0] x + [0 0 0 0] m + [1 0 0 1] y + [1]
                                          [0 0 0 1]     [1 0 0 1]     [0 0 0 1]     [0 0 1 0]     [2]
                                          [0 0 0 1]     [0 0 1 0]     [0 0 0 1]     [0 0 1 0]     [3]
                                       >= [0 0 0 1]     [1 0 0 1]     [0 0 0 1]     [1 0 0 1]     [1]
                                          [0 0 0 0] n + [0 0 0 0] x + [0 0 0 0] m + [1 0 0 1] y + [1]
                                          [0 0 0 1]     [1 0 0 1]     [0 0 0 1]     [0 0 1 0]     [2]
                                          [0 0 0 1]     [0 0 1 0]     [0 0 0 1]     [0 0 1 0]     [3]
                                       =  [sum(cons(n, x), cons(s(m), y))]                           
                                                                                                     
                [sum(cons(0(), x), y)] =  [1 0 0 1]     [1 0 0 0]     [0]                            
                                          [0 0 0 0] x + [0 1 0 0] y + [0]                            
                                          [1 0 0 1]     [0 0 1 0]     [1]                            
                                          [0 0 1 0]     [0 0 0 1]     [1]                            
                                       >= [1 0 0 0]     [1 0 0 0]     [0]                            
                                          [0 0 0 0] x + [0 1 0 0] y + [0]                            
                                          [1 0 0 0]     [0 0 1 0]     [1]                            
                                          [0 0 1 0]     [0 0 0 1]     [1]                            
                                       =  [sum(x, y)]                                                
                                                                                                     
                       [sum(nil(), y)] =  [1 0 0 0]     [0]                                          
                                          [0 1 0 0] y + [0]                                          
                                          [0 0 1 0]     [1]                                          
                                          [0 0 0 1]     [1]                                          
                                       >= [1 0 0 0]     [0]                                          
                                          [0 1 0 0] y + [0]                                          
                                          [0 0 1 0]     [0]                                          
                                          [0 0 0 1]     [0]                                          
                                       =  [y]                                                        
                                                                                                     
    [sum^#(cons(s(n), x), cons(m, y))] =  [0 0 0 1]     [1 0 0 1]     [1]                            
                                          [0 0 0 0] n + [0 0 0 0] x + [0]                            
                                          [0 0 0 0]     [0 0 0 0]     [0]                            
                                          [0 0 0 0]     [0 0 0 0]     [0]                            
                                       >  [0 0 0 1]     [1 0 0 1]     [0]                            
                                          [0 0 0 0] n + [0 0 0 0] x + [0]                            
                                          [0 0 0 0]     [0 0 0 0]     [0]                            
                                          [0 0 0 0]     [0 0 0 0]     [0]                            
                                       =  [c_1(sum^#(cons(n, x), cons(s(m), y)))]                    
                                                                                                     
              [sum^#(cons(0(), x), y)] =  [1 0 0 1]     [0]                                          
                                          [0 0 0 0] x + [0]                                          
                                          [0 0 0 0]     [0]                                          
                                          [0 0 0 0]     [0]                                          
                                       >= [1 0 0 0]     [0]                                          
                                          [0 0 0 0] x + [0]                                          
                                          [0 0 0 0]     [0]                                          
                                          [0 0 0 0]     [0]                                          
                                       =  [c_2(sum^#(x, y))]                                         
                                                                                                     
       [weight^#(cons(n, cons(m, x)))] =  [0 0 0 1]     [1 0 2 1]     [0 0 0 3]     [3]              
                                          [0 0 0 0] n + [0 0 0 0] x + [0 0 0 0] m + [0]              
                                          [0 0 0 0]     [0 0 0 0]     [0 0 0 0]     [0]              
                                          [0 0 0 0]     [0 0 0 0]     [0 0 0 0]     [0]              
                                       >  [0 0 0 1]     [1 0 1 1]     [0 0 0 2]     [1]              
                                          [0 0 0 0] n + [0 0 0 0] x + [0 0 0 0] m + [0]              
                                          [0 0 0 0]     [0 0 0 0]     [0 0 0 0]     [0]              
                                          [0 0 0 0]     [0 0 0 0]     [0 0 0 0]     [0]              
                                       =  [sum^#(cons(n, cons(m, x)), cons(0(), x))]                 
                                                                                                     
       [weight^#(cons(n, cons(m, x)))] =  [0 0 0 1]     [1 0 2 1]     [0 0 0 3]     [3]              
                                          [0 0 0 0] n + [0 0 0 0] x + [0 0 0 0] m + [0]              
                                          [0 0 0 0]     [0 0 0 0]     [0 0 0 0]     [0]              
                                          [0 0 0 0]     [0 0 0 0]     [0 0 0 0]     [0]              
                                       >= [0 0 0 1]     [1 0 2 1]     [0 0 0 1]     [3]              
                                          [0 0 0 0] n + [0 0 0 0] x + [0 0 0 0] m + [0]              
                                          [0 0 0 0]     [0 0 0 0]     [0 0 0 0]     [0]              
                                          [0 0 0 0]     [0 0 0 0]     [0 0 0 0]     [0]              
                                       =  [weight^#(sum(cons(n, cons(m, x)), cons(0(), x)))]         
                                                                                                     

We return to the main proof.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak DPs:
  { sum^#(cons(s(n), x), cons(m, y)) ->
    c_1(sum^#(cons(n, x), cons(s(m), y)))
  , sum^#(cons(0(), x), y) -> c_2(sum^#(x, y))
  , weight^#(cons(n, cons(m, x))) ->
    sum^#(cons(n, cons(m, x)), cons(0(), x))
  , weight^#(cons(n, cons(m, x))) ->
    weight^#(sum(cons(n, cons(m, x)), cons(0(), x))) }
Weak Trs:
  { sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y))
  , sum(cons(0(), x), y) -> sum(x, y)
  , sum(nil(), y) -> y }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(n^5))