Runtime Complexity TRS:
The TRS R consists of the following rules:

p(0) → 0
p(s(x)) → x
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(x, s(y)) → if(le(x, s(y)), 0, p(minus(x, p(s(y)))))
if(true, x, y) → x
if(false, x, y) → y

Rewrite Strategy: INNERMOST


Renamed function symbols to avoid clashes with predefined symbol.


Runtime Complexity TRS:
The TRS R consists of the following rules:


p'(0') → 0'
p'(s'(x)) → x
le'(0', y) → true'
le'(s'(x), 0') → false'
le'(s'(x), s'(y)) → le'(x, y)
minus'(x, 0') → x
minus'(x, s'(y)) → if'(le'(x, s'(y)), 0', p'(minus'(x, p'(s'(y)))))
if'(true', x, y) → x
if'(false', x, y) → y

Rewrite Strategy: INNERMOST


Infered types.


Rules:
p'(0') → 0'
p'(s'(x)) → x
le'(0', y) → true'
le'(s'(x), 0') → false'
le'(s'(x), s'(y)) → le'(x, y)
minus'(x, 0') → x
minus'(x, s'(y)) → if'(le'(x, s'(y)), 0', p'(minus'(x, p'(s'(y)))))
if'(true', x, y) → x
if'(false', x, y) → y

Types:
p' :: 0':s' → 0':s'
0' :: 0':s'
s' :: 0':s' → 0':s'
le' :: 0':s' → 0':s' → true':false'
true' :: true':false'
false' :: true':false'
minus' :: 0':s' → 0':s' → 0':s'
if' :: true':false' → 0':s' → 0':s' → 0':s'
_hole_0':s'1 :: 0':s'
_hole_true':false'2 :: true':false'
_gen_0':s'3 :: Nat → 0':s'


Heuristically decided to analyse the following defined symbols:
le', minus'

They will be analysed ascendingly in the following order:
le' < minus'


Rules:
p'(0') → 0'
p'(s'(x)) → x
le'(0', y) → true'
le'(s'(x), 0') → false'
le'(s'(x), s'(y)) → le'(x, y)
minus'(x, 0') → x
minus'(x, s'(y)) → if'(le'(x, s'(y)), 0', p'(minus'(x, p'(s'(y)))))
if'(true', x, y) → x
if'(false', x, y) → y

Types:
p' :: 0':s' → 0':s'
0' :: 0':s'
s' :: 0':s' → 0':s'
le' :: 0':s' → 0':s' → true':false'
true' :: true':false'
false' :: true':false'
minus' :: 0':s' → 0':s' → 0':s'
if' :: true':false' → 0':s' → 0':s' → 0':s'
_hole_0':s'1 :: 0':s'
_hole_true':false'2 :: true':false'
_gen_0':s'3 :: Nat → 0':s'

Generator Equations:
_gen_0':s'3(0) ⇔ 0'
_gen_0':s'3(+(x, 1)) ⇔ s'(_gen_0':s'3(x))

The following defined symbols remain to be analysed:
le', minus'

They will be analysed ascendingly in the following order:
le' < minus'


Proved the following rewrite lemma:
le'(_gen_0':s'3(_n5), _gen_0':s'3(_n5)) → true', rt ∈ Ω(1 + n5)

Induction Base:
le'(_gen_0':s'3(0), _gen_0':s'3(0)) →RΩ(1)
true'

Induction Step:
le'(_gen_0':s'3(+(_$n6, 1)), _gen_0':s'3(+(_$n6, 1))) →RΩ(1)
le'(_gen_0':s'3(_$n6), _gen_0':s'3(_$n6)) →IH
true'

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).


Rules:
p'(0') → 0'
p'(s'(x)) → x
le'(0', y) → true'
le'(s'(x), 0') → false'
le'(s'(x), s'(y)) → le'(x, y)
minus'(x, 0') → x
minus'(x, s'(y)) → if'(le'(x, s'(y)), 0', p'(minus'(x, p'(s'(y)))))
if'(true', x, y) → x
if'(false', x, y) → y

Types:
p' :: 0':s' → 0':s'
0' :: 0':s'
s' :: 0':s' → 0':s'
le' :: 0':s' → 0':s' → true':false'
true' :: true':false'
false' :: true':false'
minus' :: 0':s' → 0':s' → 0':s'
if' :: true':false' → 0':s' → 0':s' → 0':s'
_hole_0':s'1 :: 0':s'
_hole_true':false'2 :: true':false'
_gen_0':s'3 :: Nat → 0':s'

Lemmas:
le'(_gen_0':s'3(_n5), _gen_0':s'3(_n5)) → true', rt ∈ Ω(1 + n5)

Generator Equations:
_gen_0':s'3(0) ⇔ 0'
_gen_0':s'3(+(x, 1)) ⇔ s'(_gen_0':s'3(x))

The following defined symbols remain to be analysed:
minus'


Could not prove a rewrite lemma for the defined symbol minus'.

The following conjecture could not be proven:

minus'(_gen_0':s'3(_n458), _gen_0':s'3(_n458)) →? _gen_0':s'3(0)


Rules:
p'(0') → 0'
p'(s'(x)) → x
le'(0', y) → true'
le'(s'(x), 0') → false'
le'(s'(x), s'(y)) → le'(x, y)
minus'(x, 0') → x
minus'(x, s'(y)) → if'(le'(x, s'(y)), 0', p'(minus'(x, p'(s'(y)))))
if'(true', x, y) → x
if'(false', x, y) → y

Types:
p' :: 0':s' → 0':s'
0' :: 0':s'
s' :: 0':s' → 0':s'
le' :: 0':s' → 0':s' → true':false'
true' :: true':false'
false' :: true':false'
minus' :: 0':s' → 0':s' → 0':s'
if' :: true':false' → 0':s' → 0':s' → 0':s'
_hole_0':s'1 :: 0':s'
_hole_true':false'2 :: true':false'
_gen_0':s'3 :: Nat → 0':s'

Lemmas:
le'(_gen_0':s'3(_n5), _gen_0':s'3(_n5)) → true', rt ∈ Ω(1 + n5)

Generator Equations:
_gen_0':s'3(0) ⇔ 0'
_gen_0':s'3(+(x, 1)) ⇔ s'(_gen_0':s'3(x))

No more defined symbols left to analyse.


The lowerbound Ω(n) was proven with the following lemma:
le'(_gen_0':s'3(_n5), _gen_0':s'3(_n5)) → true', rt ∈ Ω(1 + n5)