Runtime Complexity TRS:
The TRS R consists of the following rules:
f(f(x)) → f(x)
f(s(x)) → f(x)
g(s(0)) → g(f(s(0)))
Renamed function symbols to avoid clashes with predefined symbol.
Runtime Complexity TRS:
The TRS R consists of the following rules:
f'(f'(x)) → f'(x)
f'(s'(x)) → f'(x)
g'(s'(0')) → g'(f'(s'(0')))
Infered types.
Rules:
f'(f'(x)) → f'(x)
f'(s'(x)) → f'(x)
g'(s'(0')) → g'(f'(s'(0')))
Types:
f' :: s':0' → s':0'
s' :: s':0' → s':0'
g' :: s':0' → g'
0' :: s':0'
_hole_s':0'1 :: s':0'
_hole_g'2 :: g'
_gen_s':0'3 :: Nat → s':0'
Heuristically decided to analyse the following defined symbols:
f', g'
They will be analysed ascendingly in the following order:
f' < g'
Rules:
f'(f'(x)) → f'(x)
f'(s'(x)) → f'(x)
g'(s'(0')) → g'(f'(s'(0')))
Types:
f' :: s':0' → s':0'
s' :: s':0' → s':0'
g' :: s':0' → g'
0' :: s':0'
_hole_s':0'1 :: s':0'
_hole_g'2 :: g'
_gen_s':0'3 :: Nat → s':0'
Generator Equations:
_gen_s':0'3(0) ⇔ 0'
_gen_s':0'3(+(x, 1)) ⇔ s'(_gen_s':0'3(x))
The following defined symbols remain to be analysed:
f', g'
They will be analysed ascendingly in the following order:
f' < g'
Proved the following rewrite lemma:
f'(_gen_s':0'3(+(1, _n5))) → _*4, rt ∈ Ω(n5)
Induction Base:
f'(_gen_s':0'3(+(1, 0)))
Induction Step:
f'(_gen_s':0'3(+(1, +(_$n6, 1)))) →RΩ(1)
f'(_gen_s':0'3(+(1, _$n6))) →IH
_*4
We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Rules:
f'(f'(x)) → f'(x)
f'(s'(x)) → f'(x)
g'(s'(0')) → g'(f'(s'(0')))
Types:
f' :: s':0' → s':0'
s' :: s':0' → s':0'
g' :: s':0' → g'
0' :: s':0'
_hole_s':0'1 :: s':0'
_hole_g'2 :: g'
_gen_s':0'3 :: Nat → s':0'
Lemmas:
f'(_gen_s':0'3(+(1, _n5))) → _*4, rt ∈ Ω(n5)
Generator Equations:
_gen_s':0'3(0) ⇔ 0'
_gen_s':0'3(+(x, 1)) ⇔ s'(_gen_s':0'3(x))
The following defined symbols remain to be analysed:
g'
Could not prove a rewrite lemma for the defined symbol g'.
Rules:
f'(f'(x)) → f'(x)
f'(s'(x)) → f'(x)
g'(s'(0')) → g'(f'(s'(0')))
Types:
f' :: s':0' → s':0'
s' :: s':0' → s':0'
g' :: s':0' → g'
0' :: s':0'
_hole_s':0'1 :: s':0'
_hole_g'2 :: g'
_gen_s':0'3 :: Nat → s':0'
Lemmas:
f'(_gen_s':0'3(+(1, _n5))) → _*4, rt ∈ Ω(n5)
Generator Equations:
_gen_s':0'3(0) ⇔ 0'
_gen_s':0'3(+(x, 1)) ⇔ s'(_gen_s':0'3(x))
No more defined symbols left to analyse.
The lowerbound Ω(n) was proven with the following lemma:
f'(_gen_s':0'3(+(1, _n5))) → _*4, rt ∈ Ω(n5)