Runtime Complexity TRS:
The TRS R consists of the following rules:
f(g(x), s(0), y) → f(y, y, g(x))
g(s(x)) → s(g(x))
g(0) → 0
Renamed function symbols to avoid clashes with predefined symbol.
Runtime Complexity TRS:
The TRS R consists of the following rules:
f'(g'(x), s'(0'), y) → f'(y, y, g'(x))
g'(s'(x)) → s'(g'(x))
g'(0') → 0'
Infered types.
Rules:
f'(g'(x), s'(0'), y) → f'(y, y, g'(x))
g'(s'(x)) → s'(g'(x))
g'(0') → 0'
Types:
f' :: 0':s' → 0':s' → 0':s' → f'
g' :: 0':s' → 0':s'
s' :: 0':s' → 0':s'
0' :: 0':s'
_hole_f'1 :: f'
_hole_0':s'2 :: 0':s'
_gen_0':s'3 :: Nat → 0':s'
Heuristically decided to analyse the following defined symbols:
f', g'
They will be analysed ascendingly in the following order:
g' < f'
Rules:
f'(g'(x), s'(0'), y) → f'(y, y, g'(x))
g'(s'(x)) → s'(g'(x))
g'(0') → 0'
Types:
f' :: 0':s' → 0':s' → 0':s' → f'
g' :: 0':s' → 0':s'
s' :: 0':s' → 0':s'
0' :: 0':s'
_hole_f'1 :: f'
_hole_0':s'2 :: 0':s'
_gen_0':s'3 :: Nat → 0':s'
Generator Equations:
_gen_0':s'3(0) ⇔ 0'
_gen_0':s'3(+(x, 1)) ⇔ s'(_gen_0':s'3(x))
The following defined symbols remain to be analysed:
g', f'
They will be analysed ascendingly in the following order:
g' < f'
Proved the following rewrite lemma:
g'(_gen_0':s'3(_n5)) → _gen_0':s'3(_n5), rt ∈ Ω(1 + n5)
Induction Base:
g'(_gen_0':s'3(0)) →RΩ(1)
0'
Induction Step:
g'(_gen_0':s'3(+(_$n6, 1))) →RΩ(1)
s'(g'(_gen_0':s'3(_$n6))) →IH
s'(_gen_0':s'3(_$n6))
We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Rules:
f'(g'(x), s'(0'), y) → f'(y, y, g'(x))
g'(s'(x)) → s'(g'(x))
g'(0') → 0'
Types:
f' :: 0':s' → 0':s' → 0':s' → f'
g' :: 0':s' → 0':s'
s' :: 0':s' → 0':s'
0' :: 0':s'
_hole_f'1 :: f'
_hole_0':s'2 :: 0':s'
_gen_0':s'3 :: Nat → 0':s'
Lemmas:
g'(_gen_0':s'3(_n5)) → _gen_0':s'3(_n5), rt ∈ Ω(1 + n5)
Generator Equations:
_gen_0':s'3(0) ⇔ 0'
_gen_0':s'3(+(x, 1)) ⇔ s'(_gen_0':s'3(x))
The following defined symbols remain to be analysed:
f'
Could not prove a rewrite lemma for the defined symbol f'.
Rules:
f'(g'(x), s'(0'), y) → f'(y, y, g'(x))
g'(s'(x)) → s'(g'(x))
g'(0') → 0'
Types:
f' :: 0':s' → 0':s' → 0':s' → f'
g' :: 0':s' → 0':s'
s' :: 0':s' → 0':s'
0' :: 0':s'
_hole_f'1 :: f'
_hole_0':s'2 :: 0':s'
_gen_0':s'3 :: Nat → 0':s'
Lemmas:
g'(_gen_0':s'3(_n5)) → _gen_0':s'3(_n5), rt ∈ Ω(1 + n5)
Generator Equations:
_gen_0':s'3(0) ⇔ 0'
_gen_0':s'3(+(x, 1)) ⇔ s'(_gen_0':s'3(x))
No more defined symbols left to analyse.
The lowerbound Ω(n) was proven with the following lemma:
g'(_gen_0':s'3(_n5)) → _gen_0':s'3(_n5), rt ∈ Ω(1 + n5)