(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), y) → f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) → f(p(-(x, s(y))), p(-(s(y), x)))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
-(z0, 0) → z0
-(s(z0), s(z1)) → -(z0, z1)
p(s(z0)) → z0
f(s(z0), z1) → f(p(-(s(z0), z1)), p(-(z1, s(z0))))
f(z0, s(z1)) → f(p(-(z0, s(z1))), p(-(s(z1), z0)))
Tuples:
-'(z0, 0) → c
-'(s(z0), s(z1)) → c1(-'(z0, z1))
P(s(z0)) → c2
F(s(z0), z1) → c3(F(p(-(s(z0), z1)), p(-(z1, s(z0)))), P(-(s(z0), z1)), -'(s(z0), z1), P(-(z1, s(z0))), -'(z1, s(z0)))
F(z0, s(z1)) → c4(F(p(-(z0, s(z1))), p(-(s(z1), z0))), P(-(z0, s(z1))), -'(z0, s(z1)), P(-(s(z1), z0)), -'(s(z1), z0))
S tuples:
-'(z0, 0) → c
-'(s(z0), s(z1)) → c1(-'(z0, z1))
P(s(z0)) → c2
F(s(z0), z1) → c3(F(p(-(s(z0), z1)), p(-(z1, s(z0)))), P(-(s(z0), z1)), -'(s(z0), z1), P(-(z1, s(z0))), -'(z1, s(z0)))
F(z0, s(z1)) → c4(F(p(-(z0, s(z1))), p(-(s(z1), z0))), P(-(z0, s(z1))), -'(z0, s(z1)), P(-(s(z1), z0)), -'(s(z1), z0))
K tuples:none
Defined Rule Symbols:
-, p, f
Defined Pair Symbols:
-', P, F
Compound Symbols:
c, c1, c2, c3, c4
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
-'(z0, 0) → c
P(s(z0)) → c2
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
-(z0, 0) → z0
-(s(z0), s(z1)) → -(z0, z1)
p(s(z0)) → z0
f(s(z0), z1) → f(p(-(s(z0), z1)), p(-(z1, s(z0))))
f(z0, s(z1)) → f(p(-(z0, s(z1))), p(-(s(z1), z0)))
Tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(s(z0), z1) → c3(F(p(-(s(z0), z1)), p(-(z1, s(z0)))), P(-(s(z0), z1)), -'(s(z0), z1), P(-(z1, s(z0))), -'(z1, s(z0)))
F(z0, s(z1)) → c4(F(p(-(z0, s(z1))), p(-(s(z1), z0))), P(-(z0, s(z1))), -'(z0, s(z1)), P(-(s(z1), z0)), -'(s(z1), z0))
S tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(s(z0), z1) → c3(F(p(-(s(z0), z1)), p(-(z1, s(z0)))), P(-(s(z0), z1)), -'(s(z0), z1), P(-(z1, s(z0))), -'(z1, s(z0)))
F(z0, s(z1)) → c4(F(p(-(z0, s(z1))), p(-(s(z1), z0))), P(-(z0, s(z1))), -'(z0, s(z1)), P(-(s(z1), z0)), -'(s(z1), z0))
K tuples:none
Defined Rule Symbols:
-, p, f
Defined Pair Symbols:
-', F
Compound Symbols:
c1, c3, c4
(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
-(z0, 0) → z0
-(s(z0), s(z1)) → -(z0, z1)
p(s(z0)) → z0
f(s(z0), z1) → f(p(-(s(z0), z1)), p(-(z1, s(z0))))
f(z0, s(z1)) → f(p(-(z0, s(z1))), p(-(s(z1), z0)))
Tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(s(z0), z1) → c3(F(p(-(s(z0), z1)), p(-(z1, s(z0)))), -'(s(z0), z1), -'(z1, s(z0)))
F(z0, s(z1)) → c4(F(p(-(z0, s(z1))), p(-(s(z1), z0))), -'(z0, s(z1)), -'(s(z1), z0))
S tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(s(z0), z1) → c3(F(p(-(s(z0), z1)), p(-(z1, s(z0)))), -'(s(z0), z1), -'(z1, s(z0)))
F(z0, s(z1)) → c4(F(p(-(z0, s(z1))), p(-(s(z1), z0))), -'(z0, s(z1)), -'(s(z1), z0))
K tuples:none
Defined Rule Symbols:
-, p, f
Defined Pair Symbols:
-', F
Compound Symbols:
c1, c3, c4
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
f(s(z0), z1) → f(p(-(s(z0), z1)), p(-(z1, s(z0))))
f(z0, s(z1)) → f(p(-(z0, s(z1))), p(-(s(z1), z0)))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(s(z0)) → z0
-(z0, 0) → z0
-(s(z0), s(z1)) → -(z0, z1)
Tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(s(z0), z1) → c3(F(p(-(s(z0), z1)), p(-(z1, s(z0)))), -'(s(z0), z1), -'(z1, s(z0)))
F(z0, s(z1)) → c4(F(p(-(z0, s(z1))), p(-(s(z1), z0))), -'(z0, s(z1)), -'(s(z1), z0))
S tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(s(z0), z1) → c3(F(p(-(s(z0), z1)), p(-(z1, s(z0)))), -'(s(z0), z1), -'(z1, s(z0)))
F(z0, s(z1)) → c4(F(p(-(z0, s(z1))), p(-(s(z1), z0))), -'(z0, s(z1)), -'(s(z1), z0))
K tuples:none
Defined Rule Symbols:
p, -
Defined Pair Symbols:
-', F
Compound Symbols:
c1, c3, c4
(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
s(
z0),
z1) →
c3(
F(
p(
-(
s(
z0),
z1)),
p(
-(
z1,
s(
z0)))),
-'(
s(
z0),
z1),
-'(
z1,
s(
z0))) by
F(s(z1), s(z0)) → c3(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(x0), 0) → c3(F(p(s(x0)), p(-(0, s(x0)))), -'(s(x0), 0), -'(0, s(x0)))
F(s(z0), s(z1)) → c3(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(s(z0)) → z0
-(z0, 0) → z0
-(s(z0), s(z1)) → -(z0, z1)
Tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(z0, s(z1)) → c4(F(p(-(z0, s(z1))), p(-(s(z1), z0))), -'(z0, s(z1)), -'(s(z1), z0))
F(s(z1), s(z0)) → c3(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(x0), 0) → c3(F(p(s(x0)), p(-(0, s(x0)))), -'(s(x0), 0), -'(0, s(x0)))
F(s(z0), s(z1)) → c3(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
S tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(z0, s(z1)) → c4(F(p(-(z0, s(z1))), p(-(s(z1), z0))), -'(z0, s(z1)), -'(s(z1), z0))
F(s(z1), s(z0)) → c3(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(x0), 0) → c3(F(p(s(x0)), p(-(0, s(x0)))), -'(s(x0), 0), -'(0, s(x0)))
F(s(z0), s(z1)) → c3(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
K tuples:none
Defined Rule Symbols:
p, -
Defined Pair Symbols:
-', F
Compound Symbols:
c1, c4, c3
(11) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
F(s(x0), 0) → c3(F(p(s(x0)), p(-(0, s(x0)))), -'(s(x0), 0), -'(0, s(x0)))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(s(z0)) → z0
-(z0, 0) → z0
-(s(z0), s(z1)) → -(z0, z1)
Tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(z0, s(z1)) → c4(F(p(-(z0, s(z1))), p(-(s(z1), z0))), -'(z0, s(z1)), -'(s(z1), z0))
F(s(z1), s(z0)) → c3(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c3(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
S tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(z0, s(z1)) → c4(F(p(-(z0, s(z1))), p(-(s(z1), z0))), -'(z0, s(z1)), -'(s(z1), z0))
F(s(z1), s(z0)) → c3(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c3(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
K tuples:none
Defined Rule Symbols:
p, -
Defined Pair Symbols:
-', F
Compound Symbols:
c1, c4, c3
(13) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(s(z1), s(z0)) → c3(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
We considered the (Usable) Rules:
p(s(z0)) → z0
-(s(z0), s(z1)) → -(z0, z1)
-(z0, 0) → z0
And the Tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(z0, s(z1)) → c4(F(p(-(z0, s(z1))), p(-(s(z1), z0))), -'(z0, s(z1)), -'(s(z1), z0))
F(s(z1), s(z0)) → c3(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c3(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(-(x1, x2)) = x1
POL(-'(x1, x2)) = 0
POL(0) = 0
POL(F(x1, x2)) = [4]x2
POL(c1(x1)) = x1
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(p(x1)) = x1
POL(s(x1)) = [2] + x1
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(s(z0)) → z0
-(z0, 0) → z0
-(s(z0), s(z1)) → -(z0, z1)
Tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(z0, s(z1)) → c4(F(p(-(z0, s(z1))), p(-(s(z1), z0))), -'(z0, s(z1)), -'(s(z1), z0))
F(s(z1), s(z0)) → c3(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c3(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
S tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(z0, s(z1)) → c4(F(p(-(z0, s(z1))), p(-(s(z1), z0))), -'(z0, s(z1)), -'(s(z1), z0))
F(s(z0), s(z1)) → c3(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
K tuples:
F(s(z1), s(z0)) → c3(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
Defined Rule Symbols:
p, -
Defined Pair Symbols:
-', F
Compound Symbols:
c1, c4, c3
(15) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(s(z0), s(z1)) → c3(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
We considered the (Usable) Rules:
p(s(z0)) → z0
-(s(z0), s(z1)) → -(z0, z1)
-(z0, 0) → z0
And the Tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(z0, s(z1)) → c4(F(p(-(z0, s(z1))), p(-(s(z1), z0))), -'(z0, s(z1)), -'(s(z1), z0))
F(s(z1), s(z0)) → c3(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c3(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(-(x1, x2)) = x1
POL(-'(x1, x2)) = 0
POL(0) = 0
POL(F(x1, x2)) = x1
POL(c1(x1)) = x1
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(p(x1)) = x1
POL(s(x1)) = [1] + x1
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(s(z0)) → z0
-(z0, 0) → z0
-(s(z0), s(z1)) → -(z0, z1)
Tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(z0, s(z1)) → c4(F(p(-(z0, s(z1))), p(-(s(z1), z0))), -'(z0, s(z1)), -'(s(z1), z0))
F(s(z1), s(z0)) → c3(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c3(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
S tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(z0, s(z1)) → c4(F(p(-(z0, s(z1))), p(-(s(z1), z0))), -'(z0, s(z1)), -'(s(z1), z0))
K tuples:
F(s(z1), s(z0)) → c3(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c3(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
Defined Rule Symbols:
p, -
Defined Pair Symbols:
-', F
Compound Symbols:
c1, c4, c3
(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
z0,
s(
z1)) →
c4(
F(
p(
-(
z0,
s(
z1))),
p(
-(
s(
z1),
z0))),
-'(
z0,
s(
z1)),
-'(
s(
z1),
z0)) by
F(s(z1), s(z0)) → c4(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(0, s(x1)) → c4(F(p(-(0, s(x1))), p(s(x1))), -'(0, s(x1)), -'(s(x1), 0))
F(s(z0), s(z1)) → c4(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(s(z0)) → z0
-(z0, 0) → z0
-(s(z0), s(z1)) → -(z0, z1)
Tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(s(z1), s(z0)) → c3(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c3(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
F(s(z1), s(z0)) → c4(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(0, s(x1)) → c4(F(p(-(0, s(x1))), p(s(x1))), -'(0, s(x1)), -'(s(x1), 0))
F(s(z0), s(z1)) → c4(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
S tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(s(z1), s(z0)) → c4(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(0, s(x1)) → c4(F(p(-(0, s(x1))), p(s(x1))), -'(0, s(x1)), -'(s(x1), 0))
F(s(z0), s(z1)) → c4(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
K tuples:
F(s(z1), s(z0)) → c3(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c3(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
Defined Rule Symbols:
p, -
Defined Pair Symbols:
-', F
Compound Symbols:
c1, c3, c4
(19) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
F(0, s(x1)) → c4(F(p(-(0, s(x1))), p(s(x1))), -'(0, s(x1)), -'(s(x1), 0))
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(s(z0)) → z0
-(z0, 0) → z0
-(s(z0), s(z1)) → -(z0, z1)
Tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(s(z1), s(z0)) → c3(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c3(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
F(s(z1), s(z0)) → c4(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c4(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
S tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(s(z1), s(z0)) → c4(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c4(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
K tuples:
F(s(z1), s(z0)) → c3(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c3(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
Defined Rule Symbols:
p, -
Defined Pair Symbols:
-', F
Compound Symbols:
c1, c3, c4
(21) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(s(z1), s(z0)) → c4(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
We considered the (Usable) Rules:
p(s(z0)) → z0
-(s(z0), s(z1)) → -(z0, z1)
-(z0, 0) → z0
And the Tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(s(z1), s(z0)) → c3(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c3(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
F(s(z1), s(z0)) → c4(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c4(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(-(x1, x2)) = x1
POL(-'(x1, x2)) = 0
POL(0) = 0
POL(F(x1, x2)) = x2
POL(c1(x1)) = x1
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(p(x1)) = x1
POL(s(x1)) = [2] + x1
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(s(z0)) → z0
-(z0, 0) → z0
-(s(z0), s(z1)) → -(z0, z1)
Tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(s(z1), s(z0)) → c3(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c3(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
F(s(z1), s(z0)) → c4(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c4(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
S tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(s(z0), s(z1)) → c4(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
K tuples:
F(s(z1), s(z0)) → c3(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c3(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
F(s(z1), s(z0)) → c4(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
Defined Rule Symbols:
p, -
Defined Pair Symbols:
-', F
Compound Symbols:
c1, c3, c4
(23) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(s(z0), s(z1)) → c4(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
We considered the (Usable) Rules:
p(s(z0)) → z0
-(s(z0), s(z1)) → -(z0, z1)
-(z0, 0) → z0
And the Tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(s(z1), s(z0)) → c3(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c3(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
F(s(z1), s(z0)) → c4(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c4(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(-(x1, x2)) = x1
POL(-'(x1, x2)) = 0
POL(0) = 0
POL(F(x1, x2)) = [4]x1
POL(c1(x1)) = x1
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(p(x1)) = x1
POL(s(x1)) = [2] + x1
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(s(z0)) → z0
-(z0, 0) → z0
-(s(z0), s(z1)) → -(z0, z1)
Tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(s(z1), s(z0)) → c3(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c3(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
F(s(z1), s(z0)) → c4(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c4(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
S tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
K tuples:
F(s(z1), s(z0)) → c3(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c3(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
F(s(z1), s(z0)) → c4(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c4(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
Defined Rule Symbols:
p, -
Defined Pair Symbols:
-', F
Compound Symbols:
c1, c3, c4
(25) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
-'(s(z0), s(z1)) → c1(-'(z0, z1))
We considered the (Usable) Rules:
p(s(z0)) → z0
-(s(z0), s(z1)) → -(z0, z1)
-(z0, 0) → z0
And the Tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(s(z1), s(z0)) → c3(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c3(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
F(s(z1), s(z0)) → c4(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c4(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(-(x1, x2)) = x1
POL(-'(x1, x2)) = x1
POL(0) = 0
POL(F(x1, x2)) = x2 + [2]x22 + x1·x2 + x12
POL(c1(x1)) = x1
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(p(x1)) = x1
POL(s(x1)) = [1] + x1
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(s(z0)) → z0
-(z0, 0) → z0
-(s(z0), s(z1)) → -(z0, z1)
Tuples:
-'(s(z0), s(z1)) → c1(-'(z0, z1))
F(s(z1), s(z0)) → c3(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c3(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
F(s(z1), s(z0)) → c4(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c4(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
S tuples:none
K tuples:
F(s(z1), s(z0)) → c3(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c3(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
F(s(z1), s(z0)) → c4(F(p(-(s(z1), s(z0))), p(-(z0, z1))), -'(s(z1), s(z0)), -'(s(z0), s(z1)))
F(s(z0), s(z1)) → c4(F(p(-(z0, z1)), p(-(s(z1), s(z0)))), -'(s(z0), s(z1)), -'(s(z1), s(z0)))
-'(s(z0), s(z1)) → c1(-'(z0, z1))
Defined Rule Symbols:
p, -
Defined Pair Symbols:
-', F
Compound Symbols:
c1, c3, c4
(27) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(28) BOUNDS(O(1), O(1))