### (0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))

Rewrite Strategy: INNERMOST

### (1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted Cpx (relative) TRS to CDT

### (2) Obligation:

Complexity Dependency Tuples Problem
Rules:

ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
div(z0, z1) → ify(ge(z1, s(0)), z0, z1)
ify(false, z0, z1) → divByZeroError
ify(true, z0, z1) → if(ge(z0, z1), z0, z1)
if(false, z0, z1) → 0
if(true, z0, z1) → s(div(minus(z0, z1), z1))
Tuples:

GE(z0, 0) → c
GE(0, s(z0)) → c1
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(z0, 0) → c3
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(z0, z1) → c5(IFY(ge(z1, s(0)), z0, z1), GE(z1, s(0)))
IFY(false, z0, z1) → c6
IFY(true, z0, z1) → c7(IF(ge(z0, z1), z0, z1), GE(z0, z1))
IF(false, z0, z1) → c8
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
S tuples:

GE(z0, 0) → c
GE(0, s(z0)) → c1
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(z0, 0) → c3
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(z0, z1) → c5(IFY(ge(z1, s(0)), z0, z1), GE(z1, s(0)))
IFY(false, z0, z1) → c6
IFY(true, z0, z1) → c7(IF(ge(z0, z1), z0, z1), GE(z0, z1))
IF(false, z0, z1) → c8
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
K tuples:none
Defined Rule Symbols:

ge, minus, div, ify, if

Defined Pair Symbols:

GE, MINUS, DIV, IFY, IF

Compound Symbols:

c, c1, c2, c3, c4, c5, c6, c7, c8, c9

### (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 5 trailing nodes:

GE(z0, 0) → c
GE(0, s(z0)) → c1
MINUS(z0, 0) → c3
IFY(false, z0, z1) → c6
IF(false, z0, z1) → c8

### (4) Obligation:

Complexity Dependency Tuples Problem
Rules:

ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
div(z0, z1) → ify(ge(z1, s(0)), z0, z1)
ify(false, z0, z1) → divByZeroError
ify(true, z0, z1) → if(ge(z0, z1), z0, z1)
if(false, z0, z1) → 0
if(true, z0, z1) → s(div(minus(z0, z1), z1))
Tuples:

GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(z0, z1) → c5(IFY(ge(z1, s(0)), z0, z1), GE(z1, s(0)))
IFY(true, z0, z1) → c7(IF(ge(z0, z1), z0, z1), GE(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
S tuples:

GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(z0, z1) → c5(IFY(ge(z1, s(0)), z0, z1), GE(z1, s(0)))
IFY(true, z0, z1) → c7(IF(ge(z0, z1), z0, z1), GE(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
K tuples:none
Defined Rule Symbols:

ge, minus, div, ify, if

Defined Pair Symbols:

GE, MINUS, DIV, IFY, IF

Compound Symbols:

c2, c4, c5, c7, c9

### (5) CdtUsableRulesProof (EQUIVALENT transformation)

The following rules are not usable and were removed:

div(z0, z1) → ify(ge(z1, s(0)), z0, z1)
ify(false, z0, z1) → divByZeroError
ify(true, z0, z1) → if(ge(z0, z1), z0, z1)
if(false, z0, z1) → 0
if(true, z0, z1) → s(div(minus(z0, z1), z1))

### (6) Obligation:

Complexity Dependency Tuples Problem
Rules:

ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:

GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(z0, z1) → c5(IFY(ge(z1, s(0)), z0, z1), GE(z1, s(0)))
IFY(true, z0, z1) → c7(IF(ge(z0, z1), z0, z1), GE(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
S tuples:

GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(z0, z1) → c5(IFY(ge(z1, s(0)), z0, z1), GE(z1, s(0)))
IFY(true, z0, z1) → c7(IF(ge(z0, z1), z0, z1), GE(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
K tuples:none
Defined Rule Symbols:

ge, minus

Defined Pair Symbols:

GE, MINUS, DIV, IFY, IF

Compound Symbols:

c2, c4, c5, c7, c9

### (7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace DIV(z0, z1) → c5(IFY(ge(z1, s(0)), z0, z1), GE(z1, s(0))) by

DIV(x0, 0) → c5(IFY(false, x0, 0), GE(0, s(0)))
DIV(x0, s(z0)) → c5(IFY(ge(z0, 0), x0, s(z0)), GE(s(z0), s(0)))

### (8) Obligation:

Complexity Dependency Tuples Problem
Rules:

ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:

GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IFY(true, z0, z1) → c7(IF(ge(z0, z1), z0, z1), GE(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, 0) → c5(IFY(false, x0, 0), GE(0, s(0)))
DIV(x0, s(z0)) → c5(IFY(ge(z0, 0), x0, s(z0)), GE(s(z0), s(0)))
S tuples:

GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IFY(true, z0, z1) → c7(IF(ge(z0, z1), z0, z1), GE(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, 0) → c5(IFY(false, x0, 0), GE(0, s(0)))
DIV(x0, s(z0)) → c5(IFY(ge(z0, 0), x0, s(z0)), GE(s(z0), s(0)))
K tuples:none
Defined Rule Symbols:

ge, minus

Defined Pair Symbols:

GE, MINUS, IFY, IF, DIV

Compound Symbols:

c2, c4, c7, c9, c5

### (9) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

DIV(x0, 0) → c5(IFY(false, x0, 0), GE(0, s(0)))

### (10) Obligation:

Complexity Dependency Tuples Problem
Rules:

ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:

GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IFY(true, z0, z1) → c7(IF(ge(z0, z1), z0, z1), GE(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(ge(z0, 0), x0, s(z0)), GE(s(z0), s(0)))
S tuples:

GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IFY(true, z0, z1) → c7(IF(ge(z0, z1), z0, z1), GE(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(ge(z0, 0), x0, s(z0)), GE(s(z0), s(0)))
K tuples:none
Defined Rule Symbols:

ge, minus

Defined Pair Symbols:

GE, MINUS, IFY, IF, DIV

Compound Symbols:

c2, c4, c7, c9, c5

### (11) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace IFY(true, z0, z1) → c7(IF(ge(z0, z1), z0, z1), GE(z0, z1)) by

IFY(true, 0, s(z0)) → c7(IF(false, 0, s(z0)), GE(0, s(z0)))
IFY(true, s(z0), s(z1)) → c7(IF(ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IFY(true, z0, 0) → c7(IF(true, z0, 0), GE(z0, 0))

### (12) Obligation:

Complexity Dependency Tuples Problem
Rules:

ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:

GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(ge(z0, 0), x0, s(z0)), GE(s(z0), s(0)))
IFY(true, 0, s(z0)) → c7(IF(false, 0, s(z0)), GE(0, s(z0)))
IFY(true, s(z0), s(z1)) → c7(IF(ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IFY(true, z0, 0) → c7(IF(true, z0, 0), GE(z0, 0))
S tuples:

GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(ge(z0, 0), x0, s(z0)), GE(s(z0), s(0)))
IFY(true, 0, s(z0)) → c7(IF(false, 0, s(z0)), GE(0, s(z0)))
IFY(true, s(z0), s(z1)) → c7(IF(ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IFY(true, z0, 0) → c7(IF(true, z0, 0), GE(z0, 0))
K tuples:none
Defined Rule Symbols:

ge, minus

Defined Pair Symbols:

GE, MINUS, IF, DIV, IFY

Compound Symbols:

c2, c4, c9, c5, c7

### (13) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)

Removed 1 leading nodes:

IFY(true, z0, 0) → c7(IF(true, z0, 0), GE(z0, 0))
Removed 1 trailing nodes:

IFY(true, 0, s(z0)) → c7(IF(false, 0, s(z0)), GE(0, s(z0)))

### (14) Obligation:

Complexity Dependency Tuples Problem
Rules:

ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:

GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(ge(z0, 0), x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(z1)) → c7(IF(ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
S tuples:

GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(ge(z0, 0), x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(z1)) → c7(IF(ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
K tuples:none
Defined Rule Symbols:

ge, minus

Defined Pair Symbols:

GE, MINUS, IF, DIV, IFY

Compound Symbols:

c2, c4, c9, c5, c7

### (15) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace DIV(x0, s(z0)) → c5(IFY(ge(z0, 0), x0, s(z0)), GE(s(z0), s(0))) by

DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))

### (16) Obligation:

Complexity Dependency Tuples Problem
Rules:

ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:

GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
IFY(true, s(z0), s(z1)) → c7(IF(ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
S tuples:

GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
IFY(true, s(z0), s(z1)) → c7(IF(ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
K tuples:none
Defined Rule Symbols:

ge, minus

Defined Pair Symbols:

GE, MINUS, IF, IFY, DIV

Compound Symbols:

c2, c4, c9, c7, c5

### (17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace IFY(true, s(z0), s(z1)) → c7(IF(ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1))) by

IFY(true, s(0), s(s(z0))) → c7(IF(false, s(0), s(s(z0))), GE(s(0), s(s(z0))))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))

### (18) Obligation:

Complexity Dependency Tuples Problem
Rules:

ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:

GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(0), s(s(z0))) → c7(IF(false, s(0), s(s(z0))), GE(s(0), s(s(z0))))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
S tuples:

GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(0), s(s(z0))) → c7(IF(false, s(0), s(s(z0))), GE(s(0), s(s(z0))))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
K tuples:none
Defined Rule Symbols:

ge, minus

Defined Pair Symbols:

GE, MINUS, IF, DIV, IFY

Compound Symbols:

c2, c4, c9, c5, c7, c7

### (19) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

### (20) Obligation:

Complexity Dependency Tuples Problem
Rules:

ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:

GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IFY(true, s(0), s(s(z0))) → c7(GE(s(0), s(s(z0))))
S tuples:

GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IFY(true, s(0), s(s(z0))) → c7(GE(s(0), s(s(z0))))
K tuples:none
Defined Rule Symbols:

ge, minus

Defined Pair Symbols:

GE, MINUS, IF, DIV, IFY

Compound Symbols:

c2, c4, c9, c5, c7, c7

### (21) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IFY(true, s(0), s(s(z0))) → c7(GE(s(0), s(s(z0))))
We considered the (Usable) Rules:none
And the Tuples:

GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IFY(true, s(0), s(s(z0))) → c7(GE(s(0), s(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = [1]
POL(DIV(x1, x2)) = [1]
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3)) = [1] + [5]x3
POL(IFY(x1, x2, x3)) = x1
POL(MINUS(x1, x2)) = 0
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(false) = [3]
POL(ge(x1, x2)) = [2] + [4]x1 + [2]x2
POL(minus(x1, x2)) = [2] + [5]x1 + [3]x2
POL(s(x1)) = 0
POL(true) = [1]

### (22) Obligation:

Complexity Dependency Tuples Problem
Rules:

ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:

GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IFY(true, s(0), s(s(z0))) → c7(GE(s(0), s(s(z0))))
S tuples:

GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
K tuples:

IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IFY(true, s(0), s(s(z0))) → c7(GE(s(0), s(s(z0))))
Defined Rule Symbols:

ge, minus

Defined Pair Symbols:

GE, MINUS, IF, DIV, IFY

Compound Symbols:

c2, c4, c9, c5, c7, c7

### (23) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use forward instantiation to replace GE(s(z0), s(z1)) → c2(GE(z0, z1)) by

GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))

### (24) Obligation:

Complexity Dependency Tuples Problem
Rules:

ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:

MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IFY(true, s(0), s(s(z0))) → c7(GE(s(0), s(s(z0))))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
S tuples:

MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
K tuples:

IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IFY(true, s(0), s(s(z0))) → c7(GE(s(0), s(s(z0))))
Defined Rule Symbols:

ge, minus

Defined Pair Symbols:

MINUS, IF, DIV, IFY, GE

Compound Symbols:

c4, c9, c5, c7, c7, c2

### (25) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

IFY(true, s(0), s(s(z0))) → c7(GE(s(0), s(s(z0))))

### (26) Obligation:

Complexity Dependency Tuples Problem
Rules:

ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:

MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
S tuples:

MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
K tuples:

IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
Defined Rule Symbols:

ge, minus

Defined Pair Symbols:

MINUS, IF, DIV, IFY, GE

Compound Symbols:

c4, c9, c5, c7, c7, c2

### (27) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing tuple parts

### (28) Obligation:

Complexity Dependency Tuples Problem
Rules:

ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:

MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
S tuples:

MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
K tuples:

IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
Defined Rule Symbols:

ge, minus

Defined Pair Symbols:

MINUS, IF, IFY, GE, DIV

Compound Symbols:

c4, c9, c7, c7, c2, c5

### (29) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use forward instantiation to replace MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1)) by

MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))

### (30) Obligation:

Complexity Dependency Tuples Problem
Rules:

ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:

IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
S tuples:

IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
K tuples:

IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
Defined Rule Symbols:

ge, minus

Defined Pair Symbols:

IF, IFY, GE, DIV, MINUS

Compound Symbols:

c9, c7, c7, c2, c5, c4

### (31) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use instantiation to replace IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1)) by

IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(s(x0)), s(s(x1))), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(x0), s(0)) → c9(DIV(minus(s(x0), s(0)), s(0)), MINUS(s(x0), s(0)))

### (32) Obligation:

Complexity Dependency Tuples Problem
Rules:

ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:

IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(s(x0)), s(s(x1))), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(x0), s(0)) → c9(DIV(minus(s(x0), s(0)), s(0)), MINUS(s(x0), s(0)))
S tuples:

IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(s(x0)), s(s(x1))), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(x0), s(0)) → c9(DIV(minus(s(x0), s(0)), s(0)), MINUS(s(x0), s(0)))
K tuples:

IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
Defined Rule Symbols:

ge, minus

Defined Pair Symbols:

IFY, GE, DIV, MINUS, IF

Compound Symbols:

c7, c7, c2, c5, c4, c9

### (33) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

### (34) Obligation:

Complexity Dependency Tuples Problem
Rules:

ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:

IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(s(x0)), s(s(x1))), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(x0), s(0)) → c9(DIV(minus(s(x0), s(0)), s(0)))
S tuples:

IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(s(x0)), s(s(x1))), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(x0), s(0)) → c9(DIV(minus(s(x0), s(0)), s(0)))
K tuples:

IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
Defined Rule Symbols:

ge, minus

Defined Pair Symbols:

IFY, GE, DIV, MINUS, IF

Compound Symbols:

c7, c7, c2, c5, c4, c9, c9

### (35) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(s(x0)), s(s(x1))), s(s(x1))), MINUS(s(s(x0)), s(s(x1)))) by

IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(s(x0)), s(s(x1))) → c9(MINUS(s(s(x0)), s(s(x1))))

### (36) Obligation:

Complexity Dependency Tuples Problem
Rules:

ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:

IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
IF(true, s(x0), s(0)) → c9(DIV(minus(s(x0), s(0)), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(s(x0)), s(s(x1))) → c9(MINUS(s(s(x0)), s(s(x1))))
S tuples:

IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
IF(true, s(x0), s(0)) → c9(DIV(minus(s(x0), s(0)), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(s(x0)), s(s(x1))) → c9(MINUS(s(s(x0)), s(s(x1))))
K tuples:

IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
Defined Rule Symbols:

ge, minus

Defined Pair Symbols:

IFY, GE, DIV, MINUS, IF

Compound Symbols:

c7, c7, c2, c5, c4, c9, c9

### (37) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

IF(true, s(s(x0)), s(s(x1))) → c9(MINUS(s(s(x0)), s(s(x1))))
We considered the (Usable) Rules:none
And the Tuples:

IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
IF(true, s(x0), s(0)) → c9(DIV(minus(s(x0), s(0)), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(s(x0)), s(s(x1))) → c9(MINUS(s(s(x0)), s(s(x1))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0
POL(DIV(x1, x2)) = x2
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3)) = x2
POL(IFY(x1, x2, x3)) = [1] + x1
POL(MINUS(x1, x2)) = 0
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c7(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(false) = [1]
POL(ge(x1, x2)) = [3]x1
POL(minus(x1, x2)) = 0
POL(s(x1)) = [2]
POL(true) = [1]

### (38) Obligation:

Complexity Dependency Tuples Problem
Rules:

ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:

IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
IF(true, s(x0), s(0)) → c9(DIV(minus(s(x0), s(0)), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(s(x0)), s(s(x1))) → c9(MINUS(s(s(x0)), s(s(x1))))
S tuples:

IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
IF(true, s(x0), s(0)) → c9(DIV(minus(s(x0), s(0)), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
K tuples:

IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IF(true, s(s(x0)), s(s(x1))) → c9(MINUS(s(s(x0)), s(s(x1))))
Defined Rule Symbols:

ge, minus

Defined Pair Symbols:

IFY, GE, DIV, MINUS, IF

Compound Symbols:

c7, c7, c2, c5, c4, c9, c9

### (39) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
We considered the (Usable) Rules:

minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
And the Tuples:

IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
IF(true, s(x0), s(0)) → c9(DIV(minus(s(x0), s(0)), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(s(x0)), s(s(x1))) → c9(MINUS(s(s(x0)), s(s(x1))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0
POL(DIV(x1, x2)) = x1
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3)) = x2
POL(IFY(x1, x2, x3)) = x2
POL(MINUS(x1, x2)) = 0
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c7(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(false) = [2]
POL(ge(x1, x2)) = 0
POL(minus(x1, x2)) = x1
POL(s(x1)) = [2] + x1
POL(true) = 0

### (40) Obligation:

Complexity Dependency Tuples Problem
Rules:

ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:

IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
IF(true, s(x0), s(0)) → c9(DIV(minus(s(x0), s(0)), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(s(x0)), s(s(x1))) → c9(MINUS(s(s(x0)), s(s(x1))))
S tuples:

IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
IF(true, s(x0), s(0)) → c9(DIV(minus(s(x0), s(0)), s(0)))
K tuples:

IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IF(true, s(s(x0)), s(s(x1))) → c9(MINUS(s(s(x0)), s(s(x1))))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
Defined Rule Symbols:

ge, minus

Defined Pair Symbols:

IFY, GE, DIV, MINUS, IF

Compound Symbols:

c7, c7, c2, c5, c4, c9, c9

### (41) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
We considered the (Usable) Rules:

minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
And the Tuples:

IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
IF(true, s(x0), s(0)) → c9(DIV(minus(s(x0), s(0)), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(s(x0)), s(s(x1))) → c9(MINUS(s(s(x0)), s(s(x1))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0
POL(DIV(x1, x2)) = x12
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3)) = x22
POL(IFY(x1, x2, x3)) = x22
POL(MINUS(x1, x2)) = [1] + x1
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c7(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(false) = 0
POL(ge(x1, x2)) = 0
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0

### (42) Obligation:

Complexity Dependency Tuples Problem
Rules:

ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:

IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
IF(true, s(x0), s(0)) → c9(DIV(minus(s(x0), s(0)), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(s(x0)), s(s(x1))) → c9(MINUS(s(s(x0)), s(s(x1))))
S tuples:

IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
IF(true, s(x0), s(0)) → c9(DIV(minus(s(x0), s(0)), s(0)))
K tuples:

IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IF(true, s(s(x0)), s(s(x1))) → c9(MINUS(s(s(x0)), s(s(x1))))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
Defined Rule Symbols:

ge, minus

Defined Pair Symbols:

IFY, GE, DIV, MINUS, IF

Compound Symbols:

c7, c7, c2, c5, c4, c9, c9

### (43) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace IF(true, s(x0), s(0)) → c9(DIV(minus(s(x0), s(0)), s(0))) by

IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)))

### (44) Obligation:

Complexity Dependency Tuples Problem
Rules:

ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:

IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(s(x0)), s(s(x1))) → c9(MINUS(s(s(x0)), s(s(x1))))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)))
S tuples:

IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)))
K tuples:

IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IF(true, s(s(x0)), s(s(x1))) → c9(MINUS(s(s(x0)), s(s(x1))))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
Defined Rule Symbols:

ge, minus

Defined Pair Symbols:

IFY, GE, DIV, MINUS, IF

Compound Symbols:

c7, c7, c2, c5, c4, c9, c9

### (45) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^3))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)))
We considered the (Usable) Rules:

minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
ge(s(z0), s(z1)) → ge(z0, z1)
ge(0, s(z0)) → false
ge(z0, 0) → true
And the Tuples:

IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(s(x0)), s(s(x1))) → c9(MINUS(s(s(x0)), s(s(x1))))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0
POL(DIV(x1, x2)) = x12 + x13
POL(GE(x1, x2)) = [1]
POL(IF(x1, x2, x3)) = x1 + x23 + x13
POL(IFY(x1, x2, x3)) = x22 + x23
POL(MINUS(x1, x2)) = 0
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c7(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(false) = [1]
POL(ge(x1, x2)) = [1]
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0

### (46) Obligation:

Complexity Dependency Tuples Problem
Rules:

ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:

IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(s(x0)), s(s(x1))) → c9(MINUS(s(s(x0)), s(s(x1))))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)))
S tuples:

GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
K tuples:

IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IF(true, s(s(x0)), s(s(x1))) → c9(MINUS(s(s(x0)), s(s(x1))))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)))
Defined Rule Symbols:

ge, minus

Defined Pair Symbols:

IFY, GE, DIV, MINUS, IF

Compound Symbols:

c7, c7, c2, c5, c4, c9, c9

### (47) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)

The following tuples could be moved from S to K by knowledge propagation:

DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))

### (48) Obligation:

Complexity Dependency Tuples Problem
Rules:

ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:

IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(s(x0)), s(s(x1))) → c9(MINUS(s(s(x0)), s(s(x1))))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)))
S tuples:

GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
K tuples:

IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IF(true, s(s(x0)), s(s(x1))) → c9(MINUS(s(s(x0)), s(s(x1))))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
Defined Rule Symbols:

ge, minus

Defined Pair Symbols:

IFY, GE, DIV, MINUS, IF

Compound Symbols:

c7, c7, c2, c5, c4, c9, c9

### (49) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
We considered the (Usable) Rules:

minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
ge(s(z0), s(z1)) → ge(z0, z1)
ge(0, s(z0)) → false
ge(z0, 0) → true
And the Tuples:

IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(s(x0)), s(s(x1))) → c9(MINUS(s(s(x0)), s(s(x1))))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0
POL(DIV(x1, x2)) = [2]x1 + [2]x12
POL(GE(x1, x2)) = x1
POL(IF(x1, x2, x3)) = [2] + x1 + [2]x22
POL(IFY(x1, x2, x3)) = [2]x2 + [2]x22
POL(MINUS(x1, x2)) = x1
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c7(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(false) = 0
POL(ge(x1, x2)) = x1
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0

### (50) Obligation:

Complexity Dependency Tuples Problem
Rules:

ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:

IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(s(x0)), s(s(x1))) → c9(MINUS(s(s(x0)), s(s(x1))))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)))
S tuples:none
K tuples:

IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IF(true, s(s(x0)), s(s(x1))) → c9(MINUS(s(s(x0)), s(s(x1))))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
MINUS(s(s(y0)), s(s(y1))) → c4(MINUS(s(y0), s(y1)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
Defined Rule Symbols:

ge, minus

Defined Pair Symbols:

IFY, GE, DIV, MINUS, IF

Compound Symbols:

c7, c7, c2, c5, c4, c9, c9

### (51) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)

The set S is empty