Runtime Complexity TRS:
The TRS R consists of the following rules:
fac(s(x)) → *(fac(p(s(x))), s(x))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
Renamed function symbols to avoid clashes with predefined symbol.
Runtime Complexity TRS:
The TRS R consists of the following rules:
fac'(s'(x)) → *'(fac'(p'(s'(x))), s'(x))
p'(s'(0')) → 0'
p'(s'(s'(x))) → s'(p'(s'(x)))
Sliced the following arguments:
*'/1
Runtime Complexity TRS:
The TRS R consists of the following rules:
fac'(s'(x)) → *'(fac'(p'(s'(x))))
p'(s'(0')) → 0'
p'(s'(s'(x))) → s'(p'(s'(x)))
Infered types.
Rules:
fac'(s'(x)) → *'(fac'(p'(s'(x))))
p'(s'(0')) → 0'
p'(s'(s'(x))) → s'(p'(s'(x)))
Types:
fac' :: s':0' → *'
s' :: s':0' → s':0'
*' :: *' → *'
p' :: s':0' → s':0'
0' :: s':0'
_hole_*'1 :: *'
_hole_s':0'2 :: s':0'
_gen_*'3 :: Nat → *'
_gen_s':0'4 :: Nat → s':0'
Heuristically decided to analyse the following defined symbols:
fac', p'
They will be analysed ascendingly in the following order:
p' < fac'
Rules:
fac'(s'(x)) → *'(fac'(p'(s'(x))))
p'(s'(0')) → 0'
p'(s'(s'(x))) → s'(p'(s'(x)))
Types:
fac' :: s':0' → *'
s' :: s':0' → s':0'
*' :: *' → *'
p' :: s':0' → s':0'
0' :: s':0'
_hole_*'1 :: *'
_hole_s':0'2 :: s':0'
_gen_*'3 :: Nat → *'
_gen_s':0'4 :: Nat → s':0'
Generator Equations:
_gen_*'3(0) ⇔ _hole_*'1
_gen_*'3(+(x, 1)) ⇔ *'(_gen_*'3(x))
_gen_s':0'4(0) ⇔ 0'
_gen_s':0'4(+(x, 1)) ⇔ s'(_gen_s':0'4(x))
The following defined symbols remain to be analysed:
p', fac'
They will be analysed ascendingly in the following order:
p' < fac'
Proved the following rewrite lemma:
p'(_gen_s':0'4(+(1, _n6))) → _gen_s':0'4(_n6), rt ∈ Ω(1 + n6)
Induction Base:
p'(_gen_s':0'4(+(1, 0))) →RΩ(1)
0'
Induction Step:
p'(_gen_s':0'4(+(1, +(_$n7, 1)))) →RΩ(1)
s'(p'(s'(_gen_s':0'4(_$n7)))) →IH
s'(_gen_s':0'4(_$n7))
We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Rules:
fac'(s'(x)) → *'(fac'(p'(s'(x))))
p'(s'(0')) → 0'
p'(s'(s'(x))) → s'(p'(s'(x)))
Types:
fac' :: s':0' → *'
s' :: s':0' → s':0'
*' :: *' → *'
p' :: s':0' → s':0'
0' :: s':0'
_hole_*'1 :: *'
_hole_s':0'2 :: s':0'
_gen_*'3 :: Nat → *'
_gen_s':0'4 :: Nat → s':0'
Lemmas:
p'(_gen_s':0'4(+(1, _n6))) → _gen_s':0'4(_n6), rt ∈ Ω(1 + n6)
Generator Equations:
_gen_*'3(0) ⇔ _hole_*'1
_gen_*'3(+(x, 1)) ⇔ *'(_gen_*'3(x))
_gen_s':0'4(0) ⇔ 0'
_gen_s':0'4(+(x, 1)) ⇔ s'(_gen_s':0'4(x))
The following defined symbols remain to be analysed:
fac'
Proved the following rewrite lemma:
fac'(_gen_s':0'4(+(1, _n182))) → _*5, rt ∈ Ω(n182 + n1822)
Induction Base:
fac'(_gen_s':0'4(+(1, 0)))
Induction Step:
fac'(_gen_s':0'4(+(1, +(_$n183, 1)))) →RΩ(1)
*'(fac'(p'(s'(_gen_s':0'4(+(1, _$n183)))))) →LΩ(2 + $n183)
*'(fac'(_gen_s':0'4(+(1, _$n183)))) →IH
*'(_*5)
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
Rules:
fac'(s'(x)) → *'(fac'(p'(s'(x))))
p'(s'(0')) → 0'
p'(s'(s'(x))) → s'(p'(s'(x)))
Types:
fac' :: s':0' → *'
s' :: s':0' → s':0'
*' :: *' → *'
p' :: s':0' → s':0'
0' :: s':0'
_hole_*'1 :: *'
_hole_s':0'2 :: s':0'
_gen_*'3 :: Nat → *'
_gen_s':0'4 :: Nat → s':0'
Lemmas:
p'(_gen_s':0'4(+(1, _n6))) → _gen_s':0'4(_n6), rt ∈ Ω(1 + n6)
fac'(_gen_s':0'4(+(1, _n182))) → _*5, rt ∈ Ω(n182 + n1822)
Generator Equations:
_gen_*'3(0) ⇔ _hole_*'1
_gen_*'3(+(x, 1)) ⇔ *'(_gen_*'3(x))
_gen_s':0'4(0) ⇔ 0'
_gen_s':0'4(+(x, 1)) ⇔ s'(_gen_s':0'4(x))
No more defined symbols left to analyse.
The lowerbound Ω(n2) was proven with the following lemma:
fac'(_gen_s':0'4(+(1, _n182))) → _*5, rt ∈ Ω(n182 + n1822)