Runtime Complexity TRS:
The TRS R consists of the following rules:

f(x, a) → x
f(x, g(y)) → f(g(x), y)

Rewrite Strategy: INNERMOST


Renamed function symbols to avoid clashes with predefined symbol.


Runtime Complexity TRS:
The TRS R consists of the following rules:


f'(x, a') → x
f'(x, g'(y)) → f'(g'(x), y)

Rewrite Strategy: INNERMOST


Infered types.


Rules:
f'(x, a') → x
f'(x, g'(y)) → f'(g'(x), y)

Types:
f' :: a':g' → a':g' → a':g'
a' :: a':g'
g' :: a':g' → a':g'
_hole_a':g'1 :: a':g'
_gen_a':g'2 :: Nat → a':g'


Heuristically decided to analyse the following defined symbols:
f'


Rules:
f'(x, a') → x
f'(x, g'(y)) → f'(g'(x), y)

Types:
f' :: a':g' → a':g' → a':g'
a' :: a':g'
g' :: a':g' → a':g'
_hole_a':g'1 :: a':g'
_gen_a':g'2 :: Nat → a':g'

Generator Equations:
_gen_a':g'2(0) ⇔ a'
_gen_a':g'2(+(x, 1)) ⇔ g'(_gen_a':g'2(x))

The following defined symbols remain to be analysed:
f'


Could not prove a rewrite lemma for the defined symbol f'.

The following conjecture could not be proven:

f'(_gen_a':g'2(a), _gen_a':g'2(_n4)) →? _gen_a':g'2(+(_n4, a))


Rules:
f'(x, a') → x
f'(x, g'(y)) → f'(g'(x), y)

Types:
f' :: a':g' → a':g' → a':g'
a' :: a':g'
g' :: a':g' → a':g'
_hole_a':g'1 :: a':g'
_gen_a':g'2 :: Nat → a':g'

Generator Equations:
_gen_a':g'2(0) ⇔ a'
_gen_a':g'2(+(x, 1)) ⇔ g'(_gen_a':g'2(x))

No more defined symbols left to analyse.