Runtime Complexity TRS:
The TRS R consists of the following rules:
f(x, y) → g(x, y)
g(h(x), y) → h(f(x, y))
g(h(x), y) → h(g(x, y))
Renamed function symbols to avoid clashes with predefined symbol.
Runtime Complexity TRS:
The TRS R consists of the following rules:
f'(x, y) → g'(x, y)
g'(h'(x), y) → h'(f'(x, y))
g'(h'(x), y) → h'(g'(x, y))
Sliced the following arguments:
f'/1
g'/1
Runtime Complexity TRS:
The TRS R consists of the following rules:
f'(x) → g'(x)
g'(h'(x)) → h'(f'(x))
g'(h'(x)) → h'(g'(x))
Infered types.
Rules:
f'(x) → g'(x)
g'(h'(x)) → h'(f'(x))
g'(h'(x)) → h'(g'(x))
Types:
f' :: h' → h'
g' :: h' → h'
h' :: h' → h'
_hole_h'1 :: h'
_gen_h'2 :: Nat → h'
Heuristically decided to analyse the following defined symbols:
f', g'
They will be analysed ascendingly in the following order:
f' = g'
Rules:
f'(x) → g'(x)
g'(h'(x)) → h'(f'(x))
g'(h'(x)) → h'(g'(x))
Types:
f' :: h' → h'
g' :: h' → h'
h' :: h' → h'
_hole_h'1 :: h'
_gen_h'2 :: Nat → h'
Generator Equations:
_gen_h'2(0) ⇔ _hole_h'1
_gen_h'2(+(x, 1)) ⇔ h'(_gen_h'2(x))
The following defined symbols remain to be analysed:
g', f'
They will be analysed ascendingly in the following order:
f' = g'
Proved the following rewrite lemma:
g'(_gen_h'2(+(1, _n4))) → _*3, rt ∈ Ω(n4)
Induction Base:
g'(_gen_h'2(+(1, 0)))
Induction Step:
g'(_gen_h'2(+(1, +(_$n5, 1)))) →RΩ(1)
h'(g'(_gen_h'2(+(1, _$n5)))) →IH
h'(_*3)
We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Rules:
f'(x) → g'(x)
g'(h'(x)) → h'(f'(x))
g'(h'(x)) → h'(g'(x))
Types:
f' :: h' → h'
g' :: h' → h'
h' :: h' → h'
_hole_h'1 :: h'
_gen_h'2 :: Nat → h'
Lemmas:
g'(_gen_h'2(+(1, _n4))) → _*3, rt ∈ Ω(n4)
Generator Equations:
_gen_h'2(0) ⇔ _hole_h'1
_gen_h'2(+(x, 1)) ⇔ h'(_gen_h'2(x))
The following defined symbols remain to be analysed:
f'
They will be analysed ascendingly in the following order:
f' = g'
Proved the following rewrite lemma:
f'(_gen_h'2(_n415)) → _*3, rt ∈ Ω(n415)
Induction Base:
f'(_gen_h'2(0))
Induction Step:
f'(_gen_h'2(+(_$n416, 1))) →RΩ(1)
g'(_gen_h'2(+(_$n416, 1))) →RΩ(1)
h'(f'(_gen_h'2(_$n416))) →IH
h'(_*3)
We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Rules:
f'(x) → g'(x)
g'(h'(x)) → h'(f'(x))
g'(h'(x)) → h'(g'(x))
Types:
f' :: h' → h'
g' :: h' → h'
h' :: h' → h'
_hole_h'1 :: h'
_gen_h'2 :: Nat → h'
Lemmas:
g'(_gen_h'2(+(1, _n4))) → _*3, rt ∈ Ω(n4)
f'(_gen_h'2(_n415)) → _*3, rt ∈ Ω(n415)
Generator Equations:
_gen_h'2(0) ⇔ _hole_h'1
_gen_h'2(+(x, 1)) ⇔ h'(_gen_h'2(x))
The following defined symbols remain to be analysed:
g'
They will be analysed ascendingly in the following order:
f' = g'
Proved the following rewrite lemma:
g'(_gen_h'2(+(1, _n833))) → _*3, rt ∈ Ω(n833)
Induction Base:
g'(_gen_h'2(+(1, 0)))
Induction Step:
g'(_gen_h'2(+(1, +(_$n834, 1)))) →RΩ(1)
h'(g'(_gen_h'2(+(1, _$n834)))) →IH
h'(_*3)
We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Rules:
f'(x) → g'(x)
g'(h'(x)) → h'(f'(x))
g'(h'(x)) → h'(g'(x))
Types:
f' :: h' → h'
g' :: h' → h'
h' :: h' → h'
_hole_h'1 :: h'
_gen_h'2 :: Nat → h'
Lemmas:
g'(_gen_h'2(+(1, _n833))) → _*3, rt ∈ Ω(n833)
f'(_gen_h'2(_n415)) → _*3, rt ∈ Ω(n415)
Generator Equations:
_gen_h'2(0) ⇔ _hole_h'1
_gen_h'2(+(x, 1)) ⇔ h'(_gen_h'2(x))
No more defined symbols left to analyse.
The lowerbound Ω(n) was proven with the following lemma:
g'(_gen_h'2(+(1, _n833))) → _*3, rt ∈ Ω(n833)