Runtime Complexity TRS:
The TRS R consists of the following rules:
f(a, a) → f(a, b)
f(a, b) → f(s(a), c)
f(s(X), c) → f(X, c)
f(c, c) → f(a, a)
Renamed function symbols to avoid clashes with predefined symbol.
Runtime Complexity TRS:
The TRS R consists of the following rules:
f'(a', a') → f'(a', b')
f'(a', b') → f'(s'(a'), c')
f'(s'(X), c') → f'(X, c')
f'(c', c') → f'(a', a')
Infered types.
Rules:
f'(a', a') → f'(a', b')
f'(a', b') → f'(s'(a'), c')
f'(s'(X), c') → f'(X, c')
f'(c', c') → f'(a', a')
Types:
f' :: a':b':s':c' → a':b':s':c' → f'
a' :: a':b':s':c'
b' :: a':b':s':c'
s' :: a':b':s':c' → a':b':s':c'
c' :: a':b':s':c'
_hole_f'1 :: f'
_hole_a':b':s':c'2 :: a':b':s':c'
_gen_a':b':s':c'3 :: Nat → a':b':s':c'
Heuristically decided to analyse the following defined symbols:
f'
Rules:
f'(a', a') → f'(a', b')
f'(a', b') → f'(s'(a'), c')
f'(s'(X), c') → f'(X, c')
f'(c', c') → f'(a', a')
Types:
f' :: a':b':s':c' → a':b':s':c' → f'
a' :: a':b':s':c'
b' :: a':b':s':c'
s' :: a':b':s':c' → a':b':s':c'
c' :: a':b':s':c'
_hole_f'1 :: f'
_hole_a':b':s':c'2 :: a':b':s':c'
_gen_a':b':s':c'3 :: Nat → a':b':s':c'
Generator Equations:
_gen_a':b':s':c'3(0) ⇔ c'
_gen_a':b':s':c'3(+(x, 1)) ⇔ s'(_gen_a':b':s':c'3(x))
The following defined symbols remain to be analysed:
f'
Proved the following rewrite lemma:
f'(_gen_a':b':s':c'3(+(1, _n5)), _gen_a':b':s':c'3(0)) → _*4, rt ∈ Ω(n5)
Induction Base:
f'(_gen_a':b':s':c'3(+(1, 0)), _gen_a':b':s':c'3(0))
Induction Step:
f'(_gen_a':b':s':c'3(+(1, +(_$n6, 1))), _gen_a':b':s':c'3(0)) →RΩ(1)
f'(_gen_a':b':s':c'3(+(1, _$n6)), c') →IH
_*4
We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Rules:
f'(a', a') → f'(a', b')
f'(a', b') → f'(s'(a'), c')
f'(s'(X), c') → f'(X, c')
f'(c', c') → f'(a', a')
Types:
f' :: a':b':s':c' → a':b':s':c' → f'
a' :: a':b':s':c'
b' :: a':b':s':c'
s' :: a':b':s':c' → a':b':s':c'
c' :: a':b':s':c'
_hole_f'1 :: f'
_hole_a':b':s':c'2 :: a':b':s':c'
_gen_a':b':s':c'3 :: Nat → a':b':s':c'
Lemmas:
f'(_gen_a':b':s':c'3(+(1, _n5)), _gen_a':b':s':c'3(0)) → _*4, rt ∈ Ω(n5)
Generator Equations:
_gen_a':b':s':c'3(0) ⇔ c'
_gen_a':b':s':c'3(+(x, 1)) ⇔ s'(_gen_a':b':s':c'3(x))
No more defined symbols left to analyse.
The lowerbound Ω(n) was proven with the following lemma:
f'(_gen_a':b':s':c'3(+(1, _n5)), _gen_a':b':s':c'3(0)) → _*4, rt ∈ Ω(n5)