We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { dx(X) -> one()
  , dx(a()) -> zero()
  , dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA))
  , dx(times(ALPHA, BETA)) ->
    plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
  , dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA))
  , dx(neg(ALPHA)) -> neg(dx(ALPHA))
  , dx(div(ALPHA, BETA)) ->
    minus(div(dx(ALPHA), BETA),
          times(ALPHA, div(dx(BETA), exp(BETA, two()))))
  , dx(exp(ALPHA, BETA)) ->
    plus(times(BETA, times(exp(ALPHA, minus(BETA, one())), dx(ALPHA))),
         times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))
  , dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We add the following weak dependency pairs:

Strict DPs:
  { dx^#(X) -> c_1()
  , dx^#(a()) -> c_2()
  , dx^#(plus(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))
  , dx^#(times(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))
  , dx^#(minus(ALPHA, BETA)) -> c_5(dx^#(ALPHA), dx^#(BETA))
  , dx^#(neg(ALPHA)) -> c_6(dx^#(ALPHA))
  , dx^#(div(ALPHA, BETA)) -> c_7(dx^#(ALPHA), dx^#(BETA))
  , dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))
  , dx^#(ln(ALPHA)) -> c_9(dx^#(ALPHA)) }

and mark the set of starting terms.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { dx^#(X) -> c_1()
  , dx^#(a()) -> c_2()
  , dx^#(plus(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))
  , dx^#(times(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))
  , dx^#(minus(ALPHA, BETA)) -> c_5(dx^#(ALPHA), dx^#(BETA))
  , dx^#(neg(ALPHA)) -> c_6(dx^#(ALPHA))
  , dx^#(div(ALPHA, BETA)) -> c_7(dx^#(ALPHA), dx^#(BETA))
  , dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))
  , dx^#(ln(ALPHA)) -> c_9(dx^#(ALPHA)) }
Strict Trs:
  { dx(X) -> one()
  , dx(a()) -> zero()
  , dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA))
  , dx(times(ALPHA, BETA)) ->
    plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
  , dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA))
  , dx(neg(ALPHA)) -> neg(dx(ALPHA))
  , dx(div(ALPHA, BETA)) ->
    minus(div(dx(ALPHA), BETA),
          times(ALPHA, div(dx(BETA), exp(BETA, two()))))
  , dx(exp(ALPHA, BETA)) ->
    plus(times(BETA, times(exp(ALPHA, minus(BETA, one())), dx(ALPHA))),
         times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))
  , dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

No rule is usable, rules are removed from the input problem.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { dx^#(X) -> c_1()
  , dx^#(a()) -> c_2()
  , dx^#(plus(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))
  , dx^#(times(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))
  , dx^#(minus(ALPHA, BETA)) -> c_5(dx^#(ALPHA), dx^#(BETA))
  , dx^#(neg(ALPHA)) -> c_6(dx^#(ALPHA))
  , dx^#(div(ALPHA, BETA)) -> c_7(dx^#(ALPHA), dx^#(BETA))
  , dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))
  , dx^#(ln(ALPHA)) -> c_9(dx^#(ALPHA)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following constant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(c_3) = {1, 2}, Uargs(c_4) = {1, 2}, Uargs(c_5) = {1, 2},
  Uargs(c_6) = {1}, Uargs(c_7) = {1, 2}, Uargs(c_8) = {1, 2},
  Uargs(c_9) = {1}

TcT has computed the following constructor-restricted matrix
interpretation.

              [a] = [0]                      
                    [0]                      
                                             
   [plus](x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                    [0 0]      [0 0]      [0]
                                             
  [times](x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                    [0 0]      [0 0]      [0]
                                             
  [minus](x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                    [0 0]      [0 0]      [0]
                                             
        [neg](x1) = [1 0] x1 + [0]           
                    [0 0]      [0]           
                                             
    [div](x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                    [0 0]      [0 0]      [0]
                                             
    [exp](x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                    [0 0]      [0 0]      [0]
                                             
         [ln](x1) = [1 0] x1 + [0]           
                    [0 0]      [0]           
                                             
       [dx^#](x1) = [1]                      
                    [0]                      
                                             
            [c_1] = [0]                      
                    [0]                      
                                             
            [c_2] = [0]                      
                    [0]                      
                                             
    [c_3](x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                    [0 1]      [0 1]      [0]
                                             
    [c_4](x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                    [0 1]      [0 1]      [0]
                                             
    [c_5](x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                    [0 1]      [0 1]      [0]
                                             
        [c_6](x1) = [1 0] x1 + [0]           
                    [0 1]      [0]           
                                             
    [c_7](x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                    [0 1]      [0 1]      [0]
                                             
    [c_8](x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                    [0 1]      [0 1]      [0]
                                             
        [c_9](x1) = [1 0] x1 + [0]           
                    [0 1]      [0]           

The order satisfies the following ordering constraints:

                   [dx^#(X)] =  [1]                           
                                [0]                           
                             >  [0]                           
                                [0]                           
                             =  [c_1()]                       
                                                              
                 [dx^#(a())] =  [1]                           
                                [0]                           
                             >  [0]                           
                                [0]                           
                             =  [c_2()]                       
                                                              
   [dx^#(plus(ALPHA, BETA))] =  [1]                           
                                [0]                           
                             ?  [4]                           
                                [0]                           
                             =  [c_3(dx^#(ALPHA), dx^#(BETA))]
                                                              
  [dx^#(times(ALPHA, BETA))] =  [1]                           
                                [0]                           
                             ?  [4]                           
                                [0]                           
                             =  [c_4(dx^#(ALPHA), dx^#(BETA))]
                                                              
  [dx^#(minus(ALPHA, BETA))] =  [1]                           
                                [0]                           
                             ?  [4]                           
                                [0]                           
                             =  [c_5(dx^#(ALPHA), dx^#(BETA))]
                                                              
          [dx^#(neg(ALPHA))] =  [1]                           
                                [0]                           
                             >= [1]                           
                                [0]                           
                             =  [c_6(dx^#(ALPHA))]            
                                                              
    [dx^#(div(ALPHA, BETA))] =  [1]                           
                                [0]                           
                             ?  [4]                           
                                [0]                           
                             =  [c_7(dx^#(ALPHA), dx^#(BETA))]
                                                              
    [dx^#(exp(ALPHA, BETA))] =  [1]                           
                                [0]                           
                             ?  [4]                           
                                [0]                           
                             =  [c_8(dx^#(ALPHA), dx^#(BETA))]
                                                              
           [dx^#(ln(ALPHA))] =  [1]                           
                                [0]                           
                             >= [1]                           
                                [0]                           
                             =  [c_9(dx^#(ALPHA))]            
                                                              

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { dx^#(plus(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))
  , dx^#(times(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))
  , dx^#(minus(ALPHA, BETA)) -> c_5(dx^#(ALPHA), dx^#(BETA))
  , dx^#(neg(ALPHA)) -> c_6(dx^#(ALPHA))
  , dx^#(div(ALPHA, BETA)) -> c_7(dx^#(ALPHA), dx^#(BETA))
  , dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))
  , dx^#(ln(ALPHA)) -> c_9(dx^#(ALPHA)) }
Weak DPs:
  { dx^#(X) -> c_1()
  , dx^#(a()) -> c_2() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ dx^#(X) -> c_1()
, dx^#(a()) -> c_2() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { dx^#(plus(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))
  , dx^#(times(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))
  , dx^#(minus(ALPHA, BETA)) -> c_5(dx^#(ALPHA), dx^#(BETA))
  , dx^#(neg(ALPHA)) -> c_6(dx^#(ALPHA))
  , dx^#(div(ALPHA, BETA)) -> c_7(dx^#(ALPHA), dx^#(BETA))
  , dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))
  , dx^#(ln(ALPHA)) -> c_9(dx^#(ALPHA)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 4: dx^#(neg(ALPHA)) -> c_6(dx^#(ALPHA))
  , 6: dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))
  , 7: dx^#(ln(ALPHA)) -> c_9(dx^#(ALPHA)) }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_3) = {1, 2}, Uargs(c_4) = {1, 2}, Uargs(c_5) = {1, 2},
    Uargs(c_6) = {1}, Uargs(c_7) = {1, 2}, Uargs(c_8) = {1, 2},
    Uargs(c_9) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
     [plus](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
    [times](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
    [minus](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
          [neg](x1) = [1] x1 + [4]         
                                           
      [div](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
      [exp](x1, x2) = [1] x1 + [1] x2 + [4]
                                           
           [ln](x1) = [1] x1 + [4]         
                                           
         [dx^#](x1) = [2] x1 + [0]         
                                           
      [c_3](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
      [c_4](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
      [c_5](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
          [c_6](x1) = [1] x1 + [1]         
                                           
      [c_7](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
      [c_8](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
          [c_9](x1) = [1] x1 + [0]         
  
  The order satisfies the following ordering constraints:
  
     [dx^#(plus(ALPHA, BETA))] =  [2] ALPHA + [2] BETA + [0]    
                               >= [2] ALPHA + [2] BETA + [0]    
                               =  [c_3(dx^#(ALPHA), dx^#(BETA))]
                                                                
    [dx^#(times(ALPHA, BETA))] =  [2] ALPHA + [2] BETA + [0]    
                               >= [2] ALPHA + [2] BETA + [0]    
                               =  [c_4(dx^#(ALPHA), dx^#(BETA))]
                                                                
    [dx^#(minus(ALPHA, BETA))] =  [2] ALPHA + [2] BETA + [0]    
                               >= [2] ALPHA + [2] BETA + [0]    
                               =  [c_5(dx^#(ALPHA), dx^#(BETA))]
                                                                
            [dx^#(neg(ALPHA))] =  [2] ALPHA + [8]               
                               >  [2] ALPHA + [1]               
                               =  [c_6(dx^#(ALPHA))]            
                                                                
      [dx^#(div(ALPHA, BETA))] =  [2] ALPHA + [2] BETA + [0]    
                               >= [2] ALPHA + [2] BETA + [0]    
                               =  [c_7(dx^#(ALPHA), dx^#(BETA))]
                                                                
      [dx^#(exp(ALPHA, BETA))] =  [2] ALPHA + [2] BETA + [8]    
                               >  [2] ALPHA + [2] BETA + [0]    
                               =  [c_8(dx^#(ALPHA), dx^#(BETA))]
                                                                
             [dx^#(ln(ALPHA))] =  [2] ALPHA + [8]               
                               >  [2] ALPHA + [0]               
                               =  [c_9(dx^#(ALPHA))]            
                                                                

The strictly oriented rules are moved into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { dx^#(plus(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))
  , dx^#(times(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))
  , dx^#(minus(ALPHA, BETA)) -> c_5(dx^#(ALPHA), dx^#(BETA))
  , dx^#(div(ALPHA, BETA)) -> c_7(dx^#(ALPHA), dx^#(BETA)) }
Weak DPs:
  { dx^#(neg(ALPHA)) -> c_6(dx^#(ALPHA))
  , dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))
  , dx^#(ln(ALPHA)) -> c_9(dx^#(ALPHA)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 3: dx^#(minus(ALPHA, BETA)) -> c_5(dx^#(ALPHA), dx^#(BETA))
  , 4: dx^#(div(ALPHA, BETA)) -> c_7(dx^#(ALPHA), dx^#(BETA))
  , 5: dx^#(neg(ALPHA)) -> c_6(dx^#(ALPHA))
  , 6: dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))
  , 7: dx^#(ln(ALPHA)) -> c_9(dx^#(ALPHA)) }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_3) = {1, 2}, Uargs(c_4) = {1, 2}, Uargs(c_5) = {1, 2},
    Uargs(c_6) = {1}, Uargs(c_7) = {1, 2}, Uargs(c_8) = {1, 2},
    Uargs(c_9) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
     [plus](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
    [times](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
    [minus](x1, x2) = [1] x1 + [1] x2 + [2]
                                           
          [neg](x1) = [1] x1 + [2]         
                                           
      [div](x1, x2) = [1] x1 + [1] x2 + [2]
                                           
      [exp](x1, x2) = [1] x1 + [1] x2 + [2]
                                           
           [ln](x1) = [1] x1 + [2]         
                                           
         [dx^#](x1) = [4] x1 + [0]         
                                           
      [c_3](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
      [c_4](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
      [c_5](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
          [c_6](x1) = [1] x1 + [1]         
                                           
      [c_7](x1, x2) = [1] x1 + [1] x2 + [1]
                                           
      [c_8](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
          [c_9](x1) = [1] x1 + [0]         
  
  The order satisfies the following ordering constraints:
  
     [dx^#(plus(ALPHA, BETA))] =  [4] ALPHA + [4] BETA + [0]    
                               >= [4] ALPHA + [4] BETA + [0]    
                               =  [c_3(dx^#(ALPHA), dx^#(BETA))]
                                                                
    [dx^#(times(ALPHA, BETA))] =  [4] ALPHA + [4] BETA + [0]    
                               >= [4] ALPHA + [4] BETA + [0]    
                               =  [c_4(dx^#(ALPHA), dx^#(BETA))]
                                                                
    [dx^#(minus(ALPHA, BETA))] =  [4] ALPHA + [4] BETA + [8]    
                               >  [4] ALPHA + [4] BETA + [0]    
                               =  [c_5(dx^#(ALPHA), dx^#(BETA))]
                                                                
            [dx^#(neg(ALPHA))] =  [4] ALPHA + [8]               
                               >  [4] ALPHA + [1]               
                               =  [c_6(dx^#(ALPHA))]            
                                                                
      [dx^#(div(ALPHA, BETA))] =  [4] ALPHA + [4] BETA + [8]    
                               >  [4] ALPHA + [4] BETA + [1]    
                               =  [c_7(dx^#(ALPHA), dx^#(BETA))]
                                                                
      [dx^#(exp(ALPHA, BETA))] =  [4] ALPHA + [4] BETA + [8]    
                               >  [4] ALPHA + [4] BETA + [0]    
                               =  [c_8(dx^#(ALPHA), dx^#(BETA))]
                                                                
             [dx^#(ln(ALPHA))] =  [4] ALPHA + [8]               
                               >  [4] ALPHA + [0]               
                               =  [c_9(dx^#(ALPHA))]            
                                                                

The strictly oriented rules are moved into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { dx^#(plus(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))
  , dx^#(times(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA)) }
Weak DPs:
  { dx^#(minus(ALPHA, BETA)) -> c_5(dx^#(ALPHA), dx^#(BETA))
  , dx^#(neg(ALPHA)) -> c_6(dx^#(ALPHA))
  , dx^#(div(ALPHA, BETA)) -> c_7(dx^#(ALPHA), dx^#(BETA))
  , dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))
  , dx^#(ln(ALPHA)) -> c_9(dx^#(ALPHA)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 1: dx^#(plus(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))
  , 2: dx^#(times(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))
  , 5: dx^#(div(ALPHA, BETA)) -> c_7(dx^#(ALPHA), dx^#(BETA))
  , 6: dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))
  , 7: dx^#(ln(ALPHA)) -> c_9(dx^#(ALPHA)) }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_3) = {1, 2}, Uargs(c_4) = {1, 2}, Uargs(c_5) = {1, 2},
    Uargs(c_6) = {1}, Uargs(c_7) = {1, 2}, Uargs(c_8) = {1, 2},
    Uargs(c_9) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
     [plus](x1, x2) = [1] x1 + [1] x2 + [2]
                                           
    [times](x1, x2) = [1] x1 + [1] x2 + [2]
                                           
    [minus](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
          [neg](x1) = [1] x1 + [0]         
                                           
      [div](x1, x2) = [1] x1 + [1] x2 + [2]
                                           
      [exp](x1, x2) = [1] x1 + [1] x2 + [2]
                                           
           [ln](x1) = [1] x1 + [2]         
                                           
         [dx^#](x1) = [4] x1 + [0]         
                                           
      [c_3](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
      [c_4](x1, x2) = [1] x1 + [1] x2 + [1]
                                           
      [c_5](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
          [c_6](x1) = [1] x1 + [0]         
                                           
      [c_7](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
      [c_8](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
          [c_9](x1) = [1] x1 + [0]         
  
  The order satisfies the following ordering constraints:
  
     [dx^#(plus(ALPHA, BETA))] =  [4] ALPHA + [4] BETA + [8]    
                               >  [4] ALPHA + [4] BETA + [0]    
                               =  [c_3(dx^#(ALPHA), dx^#(BETA))]
                                                                
    [dx^#(times(ALPHA, BETA))] =  [4] ALPHA + [4] BETA + [8]    
                               >  [4] ALPHA + [4] BETA + [1]    
                               =  [c_4(dx^#(ALPHA), dx^#(BETA))]
                                                                
    [dx^#(minus(ALPHA, BETA))] =  [4] ALPHA + [4] BETA + [0]    
                               >= [4] ALPHA + [4] BETA + [0]    
                               =  [c_5(dx^#(ALPHA), dx^#(BETA))]
                                                                
            [dx^#(neg(ALPHA))] =  [4] ALPHA + [0]               
                               >= [4] ALPHA + [0]               
                               =  [c_6(dx^#(ALPHA))]            
                                                                
      [dx^#(div(ALPHA, BETA))] =  [4] ALPHA + [4] BETA + [8]    
                               >  [4] ALPHA + [4] BETA + [0]    
                               =  [c_7(dx^#(ALPHA), dx^#(BETA))]
                                                                
      [dx^#(exp(ALPHA, BETA))] =  [4] ALPHA + [4] BETA + [8]    
                               >  [4] ALPHA + [4] BETA + [0]    
                               =  [c_8(dx^#(ALPHA), dx^#(BETA))]
                                                                
             [dx^#(ln(ALPHA))] =  [4] ALPHA + [8]               
                               >  [4] ALPHA + [0]               
                               =  [c_9(dx^#(ALPHA))]            
                                                                

The strictly oriented rules are moved into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak DPs:
  { dx^#(plus(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))
  , dx^#(times(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))
  , dx^#(minus(ALPHA, BETA)) -> c_5(dx^#(ALPHA), dx^#(BETA))
  , dx^#(neg(ALPHA)) -> c_6(dx^#(ALPHA))
  , dx^#(div(ALPHA, BETA)) -> c_7(dx^#(ALPHA), dx^#(BETA))
  , dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))
  , dx^#(ln(ALPHA)) -> c_9(dx^#(ALPHA)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ dx^#(plus(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))
, dx^#(times(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))
, dx^#(minus(ALPHA, BETA)) -> c_5(dx^#(ALPHA), dx^#(BETA))
, dx^#(neg(ALPHA)) -> c_6(dx^#(ALPHA))
, dx^#(div(ALPHA, BETA)) -> c_7(dx^#(ALPHA), dx^#(BETA))
, dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))
, dx^#(ln(ALPHA)) -> c_9(dx^#(ALPHA)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Rules: Empty
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(n^1))