We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict Trs: { concat(leaf(), Y) -> Y , concat(cons(U, V), Y) -> cons(U, concat(V, Y)) , lessleaves(X, leaf()) -> false() , lessleaves(leaf(), cons(W, Z)) -> true() , lessleaves(cons(U, V), cons(W, Z)) -> lessleaves(concat(U, V), concat(W, Z)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) The problem is match-bounded by 2. The enriched problem is compatible with the following automaton. { concat_0(2, 2) -> 1 , concat_1(2, 2) -> 3 , concat_1(2, 2) -> 4 , concat_1(2, 2) -> 5 , concat_1(2, 3) -> 3 , concat_1(2, 3) -> 4 , concat_1(2, 3) -> 5 , concat_2(2, 3) -> 4 , concat_2(2, 3) -> 5 , leaf_0() -> 1 , leaf_0() -> 2 , leaf_0() -> 3 , leaf_0() -> 4 , leaf_0() -> 5 , cons_0(2, 2) -> 1 , cons_0(2, 2) -> 2 , cons_0(2, 2) -> 3 , cons_0(2, 2) -> 4 , cons_0(2, 2) -> 5 , cons_1(2, 3) -> 1 , cons_1(2, 3) -> 3 , cons_1(2, 3) -> 4 , cons_1(2, 3) -> 5 , lessleaves_0(2, 2) -> 1 , lessleaves_1(3, 3) -> 1 , lessleaves_2(4, 5) -> 1 , false_0() -> 1 , false_0() -> 2 , false_0() -> 3 , false_0() -> 4 , false_0() -> 5 , false_1() -> 1 , true_0() -> 1 , true_0() -> 2 , true_0() -> 3 , true_0() -> 4 , true_0() -> 5 , true_1() -> 1 } Hurray, we answered YES(?,O(n^1))