(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
rev(ls) → r1(ls, empty)
r1(empty, a) → a
r1(cons(x, k), a) → r1(k, cons(x, a))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
rev(z0) → r1(z0, empty)
r1(empty, z0) → z0
r1(cons(z0, z1), z2) → r1(z1, cons(z0, z2))
Tuples:
REV(z0) → c(R1(z0, empty))
R1(empty, z0) → c1
R1(cons(z0, z1), z2) → c2(R1(z1, cons(z0, z2)))
S tuples:
REV(z0) → c(R1(z0, empty))
R1(empty, z0) → c1
R1(cons(z0, z1), z2) → c2(R1(z1, cons(z0, z2)))
K tuples:none
Defined Rule Symbols:
rev, r1
Defined Pair Symbols:
REV, R1
Compound Symbols:
c, c1, c2
(3) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
REV(z0) → c(R1(z0, empty))
Removed 1 trailing nodes:
R1(empty, z0) → c1
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
rev(z0) → r1(z0, empty)
r1(empty, z0) → z0
r1(cons(z0, z1), z2) → r1(z1, cons(z0, z2))
Tuples:
R1(cons(z0, z1), z2) → c2(R1(z1, cons(z0, z2)))
S tuples:
R1(cons(z0, z1), z2) → c2(R1(z1, cons(z0, z2)))
K tuples:none
Defined Rule Symbols:
rev, r1
Defined Pair Symbols:
R1
Compound Symbols:
c2
(5) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
rev(z0) → r1(z0, empty)
r1(empty, z0) → z0
r1(cons(z0, z1), z2) → r1(z1, cons(z0, z2))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
R1(cons(z0, z1), z2) → c2(R1(z1, cons(z0, z2)))
S tuples:
R1(cons(z0, z1), z2) → c2(R1(z1, cons(z0, z2)))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
R1
Compound Symbols:
c2
(7) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
R1(cons(z0, z1), z2) → c2(R1(z1, cons(z0, z2)))
We considered the (Usable) Rules:none
And the Tuples:
R1(cons(z0, z1), z2) → c2(R1(z1, cons(z0, z2)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(R1(x1, x2)) = [4]x1 + [3]x2
POL(c2(x1)) = x1
POL(cons(x1, x2)) = [5] + x1 + x2
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
R1(cons(z0, z1), z2) → c2(R1(z1, cons(z0, z2)))
S tuples:none
K tuples:
R1(cons(z0, z1), z2) → c2(R1(z1, cons(z0, z2)))
Defined Rule Symbols:none
Defined Pair Symbols:
R1
Compound Symbols:
c2
(9) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(10) BOUNDS(O(1), O(1))