(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
dbl(S(0), S(0)) → S(S(S(S(0))))
save(S(x)) → dbl(0, save(x))
save(0) → 0
dbl(0, y) → y
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
dbl(S(0), S(0)) → S(S(S(S(0))))
dbl(0, z0) → z0
save(S(z0)) → dbl(0, save(z0))
save(0) → 0
Tuples:
DBL(S(0), S(0)) → c
DBL(0, z0) → c1
SAVE(S(z0)) → c2(DBL(0, save(z0)), SAVE(z0))
SAVE(0) → c3
S tuples:
DBL(S(0), S(0)) → c
DBL(0, z0) → c1
SAVE(S(z0)) → c2(DBL(0, save(z0)), SAVE(z0))
SAVE(0) → c3
K tuples:none
Defined Rule Symbols:
dbl, save
Defined Pair Symbols:
DBL, SAVE
Compound Symbols:
c, c1, c2, c3
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing nodes:
SAVE(0) → c3
DBL(0, z0) → c1
DBL(S(0), S(0)) → c
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
dbl(S(0), S(0)) → S(S(S(S(0))))
dbl(0, z0) → z0
save(S(z0)) → dbl(0, save(z0))
save(0) → 0
Tuples:
SAVE(S(z0)) → c2(DBL(0, save(z0)), SAVE(z0))
S tuples:
SAVE(S(z0)) → c2(DBL(0, save(z0)), SAVE(z0))
K tuples:none
Defined Rule Symbols:
dbl, save
Defined Pair Symbols:
SAVE
Compound Symbols:
c2
(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
dbl(S(0), S(0)) → S(S(S(S(0))))
dbl(0, z0) → z0
save(S(z0)) → dbl(0, save(z0))
save(0) → 0
Tuples:
SAVE(S(z0)) → c2(SAVE(z0))
S tuples:
SAVE(S(z0)) → c2(SAVE(z0))
K tuples:none
Defined Rule Symbols:
dbl, save
Defined Pair Symbols:
SAVE
Compound Symbols:
c2
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
dbl(S(0), S(0)) → S(S(S(S(0))))
dbl(0, z0) → z0
save(S(z0)) → dbl(0, save(z0))
save(0) → 0
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
SAVE(S(z0)) → c2(SAVE(z0))
S tuples:
SAVE(S(z0)) → c2(SAVE(z0))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
SAVE
Compound Symbols:
c2
(9) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
SAVE(S(z0)) → c2(SAVE(z0))
We considered the (Usable) Rules:none
And the Tuples:
SAVE(S(z0)) → c2(SAVE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(S(x1)) = [1] + x1
POL(SAVE(x1)) = [5]x1
POL(c2(x1)) = x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
SAVE(S(z0)) → c2(SAVE(z0))
S tuples:none
K tuples:
SAVE(S(z0)) → c2(SAVE(z0))
Defined Rule Symbols:none
Defined Pair Symbols:
SAVE
Compound Symbols:
c2
(11) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(12) BOUNDS(O(1), O(1))