(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
revapp(Cons(x, xs), rest) → revapp(xs, Cons(x, rest))
revapp(Nil, rest) → rest
goal(xs, ys) → revapp(xs, ys)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
revapp(Cons(z0, z1), z2) → revapp(z1, Cons(z0, z2))
revapp(Nil, z0) → z0
goal(z0, z1) → revapp(z0, z1)
Tuples:
REVAPP(Cons(z0, z1), z2) → c(REVAPP(z1, Cons(z0, z2)))
REVAPP(Nil, z0) → c1
GOAL(z0, z1) → c2(REVAPP(z0, z1))
S tuples:
REVAPP(Cons(z0, z1), z2) → c(REVAPP(z1, Cons(z0, z2)))
REVAPP(Nil, z0) → c1
GOAL(z0, z1) → c2(REVAPP(z0, z1))
K tuples:none
Defined Rule Symbols:
revapp, goal
Defined Pair Symbols:
REVAPP, GOAL
Compound Symbols:
c, c1, c2
(3) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
GOAL(z0, z1) → c2(REVAPP(z0, z1))
Removed 1 trailing nodes:
REVAPP(Nil, z0) → c1
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
revapp(Cons(z0, z1), z2) → revapp(z1, Cons(z0, z2))
revapp(Nil, z0) → z0
goal(z0, z1) → revapp(z0, z1)
Tuples:
REVAPP(Cons(z0, z1), z2) → c(REVAPP(z1, Cons(z0, z2)))
S tuples:
REVAPP(Cons(z0, z1), z2) → c(REVAPP(z1, Cons(z0, z2)))
K tuples:none
Defined Rule Symbols:
revapp, goal
Defined Pair Symbols:
REVAPP
Compound Symbols:
c
(5) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
revapp(Cons(z0, z1), z2) → revapp(z1, Cons(z0, z2))
revapp(Nil, z0) → z0
goal(z0, z1) → revapp(z0, z1)
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
REVAPP(Cons(z0, z1), z2) → c(REVAPP(z1, Cons(z0, z2)))
S tuples:
REVAPP(Cons(z0, z1), z2) → c(REVAPP(z1, Cons(z0, z2)))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
REVAPP
Compound Symbols:
c
(7) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
REVAPP(Cons(z0, z1), z2) → c(REVAPP(z1, Cons(z0, z2)))
We considered the (Usable) Rules:none
And the Tuples:
REVAPP(Cons(z0, z1), z2) → c(REVAPP(z1, Cons(z0, z2)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(Cons(x1, x2)) = [5] + x1 + x2
POL(REVAPP(x1, x2)) = [4]x1 + [3]x2
POL(c(x1)) = x1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
REVAPP(Cons(z0, z1), z2) → c(REVAPP(z1, Cons(z0, z2)))
S tuples:none
K tuples:
REVAPP(Cons(z0, z1), z2) → c(REVAPP(z1, Cons(z0, z2)))
Defined Rule Symbols:none
Defined Pair Symbols:
REVAPP
Compound Symbols:
c
(9) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(10) BOUNDS(O(1), O(1))