(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
list(Cons(x, xs)) → list(xs)
list(Nil) → True
list(Nil) → isEmpty[Match](Nil)
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
goal(x) → list(x)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
list(Cons(z0, z1)) → list(z1)
list(Nil) → True
list(Nil) → isEmpty[Match](Nil)
notEmpty(Cons(z0, z1)) → True
notEmpty(Nil) → False
goal(z0) → list(z0)
Tuples:
LIST(Cons(z0, z1)) → c(LIST(z1))
LIST(Nil) → c1
LIST(Nil) → c2
NOTEMPTY(Cons(z0, z1)) → c3
NOTEMPTY(Nil) → c4
GOAL(z0) → c5(LIST(z0))
S tuples:
LIST(Cons(z0, z1)) → c(LIST(z1))
LIST(Nil) → c1
LIST(Nil) → c2
NOTEMPTY(Cons(z0, z1)) → c3
NOTEMPTY(Nil) → c4
GOAL(z0) → c5(LIST(z0))
K tuples:none
Defined Rule Symbols:
list, notEmpty, goal
Defined Pair Symbols:
LIST, NOTEMPTY, GOAL
Compound Symbols:
c, c1, c2, c3, c4, c5
(3) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
GOAL(z0) → c5(LIST(z0))
Removed 4 trailing nodes:
NOTEMPTY(Nil) → c4
NOTEMPTY(Cons(z0, z1)) → c3
LIST(Nil) → c2
LIST(Nil) → c1
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
list(Cons(z0, z1)) → list(z1)
list(Nil) → True
list(Nil) → isEmpty[Match](Nil)
notEmpty(Cons(z0, z1)) → True
notEmpty(Nil) → False
goal(z0) → list(z0)
Tuples:
LIST(Cons(z0, z1)) → c(LIST(z1))
S tuples:
LIST(Cons(z0, z1)) → c(LIST(z1))
K tuples:none
Defined Rule Symbols:
list, notEmpty, goal
Defined Pair Symbols:
LIST
Compound Symbols:
c
(5) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
list(Cons(z0, z1)) → list(z1)
list(Nil) → True
list(Nil) → isEmpty[Match](Nil)
notEmpty(Cons(z0, z1)) → True
notEmpty(Nil) → False
goal(z0) → list(z0)
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
LIST(Cons(z0, z1)) → c(LIST(z1))
S tuples:
LIST(Cons(z0, z1)) → c(LIST(z1))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
LIST
Compound Symbols:
c
(7) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
LIST(Cons(z0, z1)) → c(LIST(z1))
We considered the (Usable) Rules:none
And the Tuples:
LIST(Cons(z0, z1)) → c(LIST(z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(Cons(x1, x2)) = [1] + x2
POL(LIST(x1)) = [5]x1
POL(c(x1)) = x1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
LIST(Cons(z0, z1)) → c(LIST(z1))
S tuples:none
K tuples:
LIST(Cons(z0, z1)) → c(LIST(z1))
Defined Rule Symbols:none
Defined Pair Symbols:
LIST
Compound Symbols:
c
(9) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(10) BOUNDS(O(1), O(1))