(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
anchored(Cons(x, xs), y) → anchored(xs, Cons(Cons(Nil, Nil), y))
anchored(Nil, y) → y
goal(x, y) → anchored(x, y)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
anchored(Cons(z0, z1), z2) → anchored(z1, Cons(Cons(Nil, Nil), z2))
anchored(Nil, z0) → z0
goal(z0, z1) → anchored(z0, z1)
Tuples:
ANCHORED(Cons(z0, z1), z2) → c(ANCHORED(z1, Cons(Cons(Nil, Nil), z2)))
ANCHORED(Nil, z0) → c1
GOAL(z0, z1) → c2(ANCHORED(z0, z1))
S tuples:
ANCHORED(Cons(z0, z1), z2) → c(ANCHORED(z1, Cons(Cons(Nil, Nil), z2)))
ANCHORED(Nil, z0) → c1
GOAL(z0, z1) → c2(ANCHORED(z0, z1))
K tuples:none
Defined Rule Symbols:
anchored, goal
Defined Pair Symbols:
ANCHORED, GOAL
Compound Symbols:
c, c1, c2
(3) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
GOAL(z0, z1) → c2(ANCHORED(z0, z1))
Removed 1 trailing nodes:
ANCHORED(Nil, z0) → c1
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
anchored(Cons(z0, z1), z2) → anchored(z1, Cons(Cons(Nil, Nil), z2))
anchored(Nil, z0) → z0
goal(z0, z1) → anchored(z0, z1)
Tuples:
ANCHORED(Cons(z0, z1), z2) → c(ANCHORED(z1, Cons(Cons(Nil, Nil), z2)))
S tuples:
ANCHORED(Cons(z0, z1), z2) → c(ANCHORED(z1, Cons(Cons(Nil, Nil), z2)))
K tuples:none
Defined Rule Symbols:
anchored, goal
Defined Pair Symbols:
ANCHORED
Compound Symbols:
c
(5) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
anchored(Cons(z0, z1), z2) → anchored(z1, Cons(Cons(Nil, Nil), z2))
anchored(Nil, z0) → z0
goal(z0, z1) → anchored(z0, z1)
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
ANCHORED(Cons(z0, z1), z2) → c(ANCHORED(z1, Cons(Cons(Nil, Nil), z2)))
S tuples:
ANCHORED(Cons(z0, z1), z2) → c(ANCHORED(z1, Cons(Cons(Nil, Nil), z2)))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
ANCHORED
Compound Symbols:
c
(7) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ANCHORED(Cons(z0, z1), z2) → c(ANCHORED(z1, Cons(Cons(Nil, Nil), z2)))
We considered the (Usable) Rules:none
And the Tuples:
ANCHORED(Cons(z0, z1), z2) → c(ANCHORED(z1, Cons(Cons(Nil, Nil), z2)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ANCHORED(x1, x2)) = [4]x1 + x2
POL(Cons(x1, x2)) = [5] + x2
POL(Nil) = [1]
POL(c(x1)) = x1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
ANCHORED(Cons(z0, z1), z2) → c(ANCHORED(z1, Cons(Cons(Nil, Nil), z2)))
S tuples:none
K tuples:
ANCHORED(Cons(z0, z1), z2) → c(ANCHORED(z1, Cons(Cons(Nil, Nil), z2)))
Defined Rule Symbols:none
Defined Pair Symbols:
ANCHORED
Compound Symbols:
c
(9) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(10) BOUNDS(O(1), O(1))