(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
add0(x', Cons(x, xs)) → add0(Cons(Cons(Nil, Nil), x'), xs)
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
add0(x, Nil) → x
goal(x, y) → add0(x, y)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
add0(z0, Cons(z1, z2)) → add0(Cons(Cons(Nil, Nil), z0), z2)
add0(z0, Nil) → z0
notEmpty(Cons(z0, z1)) → True
notEmpty(Nil) → False
goal(z0, z1) → add0(z0, z1)
Tuples:
ADD0(z0, Cons(z1, z2)) → c(ADD0(Cons(Cons(Nil, Nil), z0), z2))
ADD0(z0, Nil) → c1
NOTEMPTY(Cons(z0, z1)) → c2
NOTEMPTY(Nil) → c3
GOAL(z0, z1) → c4(ADD0(z0, z1))
S tuples:
ADD0(z0, Cons(z1, z2)) → c(ADD0(Cons(Cons(Nil, Nil), z0), z2))
ADD0(z0, Nil) → c1
NOTEMPTY(Cons(z0, z1)) → c2
NOTEMPTY(Nil) → c3
GOAL(z0, z1) → c4(ADD0(z0, z1))
K tuples:none
Defined Rule Symbols:
add0, notEmpty, goal
Defined Pair Symbols:
ADD0, NOTEMPTY, GOAL
Compound Symbols:
c, c1, c2, c3, c4
(3) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
GOAL(z0, z1) → c4(ADD0(z0, z1))
Removed 3 trailing nodes:
NOTEMPTY(Nil) → c3
NOTEMPTY(Cons(z0, z1)) → c2
ADD0(z0, Nil) → c1
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
add0(z0, Cons(z1, z2)) → add0(Cons(Cons(Nil, Nil), z0), z2)
add0(z0, Nil) → z0
notEmpty(Cons(z0, z1)) → True
notEmpty(Nil) → False
goal(z0, z1) → add0(z0, z1)
Tuples:
ADD0(z0, Cons(z1, z2)) → c(ADD0(Cons(Cons(Nil, Nil), z0), z2))
S tuples:
ADD0(z0, Cons(z1, z2)) → c(ADD0(Cons(Cons(Nil, Nil), z0), z2))
K tuples:none
Defined Rule Symbols:
add0, notEmpty, goal
Defined Pair Symbols:
ADD0
Compound Symbols:
c
(5) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
add0(z0, Cons(z1, z2)) → add0(Cons(Cons(Nil, Nil), z0), z2)
add0(z0, Nil) → z0
notEmpty(Cons(z0, z1)) → True
notEmpty(Nil) → False
goal(z0, z1) → add0(z0, z1)
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
ADD0(z0, Cons(z1, z2)) → c(ADD0(Cons(Cons(Nil, Nil), z0), z2))
S tuples:
ADD0(z0, Cons(z1, z2)) → c(ADD0(Cons(Cons(Nil, Nil), z0), z2))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
ADD0
Compound Symbols:
c
(7) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ADD0(z0, Cons(z1, z2)) → c(ADD0(Cons(Cons(Nil, Nil), z0), z2))
We considered the (Usable) Rules:none
And the Tuples:
ADD0(z0, Cons(z1, z2)) → c(ADD0(Cons(Cons(Nil, Nil), z0), z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ADD0(x1, x2)) = [4]x2
POL(Cons(x1, x2)) = [4] + x2
POL(Nil) = [3]
POL(c(x1)) = x1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
ADD0(z0, Cons(z1, z2)) → c(ADD0(Cons(Cons(Nil, Nil), z0), z2))
S tuples:none
K tuples:
ADD0(z0, Cons(z1, z2)) → c(ADD0(Cons(Cons(Nil, Nil), z0), z2))
Defined Rule Symbols:none
Defined Pair Symbols:
ADD0
Compound Symbols:
c
(9) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(10) BOUNDS(O(1), O(1))