Runtime Complexity TRS:
The TRS R consists of the following rules:

*(x, +(y, z)) → +(*(x, y), *(x, z))

Rewrite Strategy: INNERMOST


Renamed function symbols to avoid clashes with predefined symbol.


Runtime Complexity TRS:
The TRS R consists of the following rules:


*'(x, +'(y, z)) → +'(*'(x, y), *'(x, z))

Rewrite Strategy: INNERMOST


Sliced the following arguments:
*'/0


Runtime Complexity TRS:
The TRS R consists of the following rules:


*'(+'(y, z)) → +'(*'(y), *'(z))

Rewrite Strategy: INNERMOST


Infered types.


Rules:
*'(+'(y, z)) → +'(*'(y), *'(z))

Types:
*' :: +' → +'
+' :: +' → +' → +'
_hole_+'1 :: +'
_gen_+'2 :: Nat → +'


Heuristically decided to analyse the following defined symbols:
*'


Rules:
*'(+'(y, z)) → +'(*'(y), *'(z))

Types:
*' :: +' → +'
+' :: +' → +' → +'
_hole_+'1 :: +'
_gen_+'2 :: Nat → +'

Generator Equations:
_gen_+'2(0) ⇔ _hole_+'1
_gen_+'2(+(x, 1)) ⇔ +'(_hole_+'1, _gen_+'2(x))

The following defined symbols remain to be analysed:
*'


Proved the following rewrite lemma:
*'(_gen_+'2(+(1, _n4))) → _*3, rt ∈ Ω(n4)

Induction Base:
*'(_gen_+'2(+(1, 0)))

Induction Step:
*'(_gen_+'2(+(1, +(_$n5, 1)))) →RΩ(1)
+'(*'(_hole_+'1), *'(_gen_+'2(+(1, _$n5)))) →IH
+'(*'(_hole_+'1), _*3)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).


Rules:
*'(+'(y, z)) → +'(*'(y), *'(z))

Types:
*' :: +' → +'
+' :: +' → +' → +'
_hole_+'1 :: +'
_gen_+'2 :: Nat → +'

Lemmas:
*'(_gen_+'2(+(1, _n4))) → _*3, rt ∈ Ω(n4)

Generator Equations:
_gen_+'2(0) ⇔ _hole_+'1
_gen_+'2(+(x, 1)) ⇔ +'(_hole_+'1, _gen_+'2(x))

No more defined symbols left to analyse.


The lowerbound Ω(n) was proven with the following lemma:
*'(_gen_+'2(+(1, _n4))) → _*3, rt ∈ Ω(n4)