(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
cond(true, x) → cond(odd(x), p(p(p(x))))
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(p(p(z0))))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, z0) → c(COND(odd(z0), p(p(p(z0)))), ODD(z0), P(p(p(z0))), P(p(z0)), P(z0))
ODD(0) → c1
ODD(s(0)) → c2
ODD(s(s(z0))) → c3(ODD(z0))
P(0) → c4
P(s(z0)) → c5
S tuples:
COND(true, z0) → c(COND(odd(z0), p(p(p(z0)))), ODD(z0), P(p(p(z0))), P(p(z0)), P(z0))
ODD(0) → c1
ODD(s(0)) → c2
ODD(s(s(z0))) → c3(ODD(z0))
P(0) → c4
P(s(z0)) → c5
K tuples:none
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
COND, ODD, P
Compound Symbols:
c, c1, c2, c3, c4, c5
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing nodes:
P(0) → c4
ODD(0) → c1
ODD(s(0)) → c2
P(s(z0)) → c5
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(p(p(z0))))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, z0) → c(COND(odd(z0), p(p(p(z0)))), ODD(z0), P(p(p(z0))), P(p(z0)), P(z0))
ODD(s(s(z0))) → c3(ODD(z0))
S tuples:
COND(true, z0) → c(COND(odd(z0), p(p(p(z0)))), ODD(z0), P(p(p(z0))), P(p(z0)), P(z0))
ODD(s(s(z0))) → c3(ODD(z0))
K tuples:none
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c3
(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(p(p(z0))))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, z0) → c(COND(odd(z0), p(p(p(z0)))), ODD(z0))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, z0) → c(COND(odd(z0), p(p(p(z0)))), ODD(z0))
K tuples:none
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
cond(true, z0) → cond(odd(z0), p(p(p(z0))))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, z0) → c(COND(odd(z0), p(p(p(z0)))), ODD(z0))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, z0) → c(COND(odd(z0), p(p(p(z0)))), ODD(z0))
K tuples:none
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c
(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
z0) →
c(
COND(
odd(
z0),
p(
p(
p(
z0)))),
ODD(
z0)) by
COND(true, 0) → c(COND(odd(0), p(p(0))), ODD(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), p(p(z0))), ODD(s(z0)))
COND(true, 0) → c(COND(false, p(p(p(0)))), ODD(0))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))), ODD(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(p(s(s(z0)))))), ODD(s(s(z0))))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), p(p(0))), ODD(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), p(p(z0))), ODD(s(z0)))
COND(true, 0) → c(COND(false, p(p(p(0)))), ODD(0))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))), ODD(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(p(s(s(z0)))))), ODD(s(s(z0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), p(p(0))), ODD(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), p(p(z0))), ODD(s(z0)))
COND(true, 0) → c(COND(false, p(p(p(0)))), ODD(0))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))), ODD(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(p(s(s(z0)))))), ODD(s(s(z0))))
K tuples:none
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c
(11) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
COND(true, 0) → c(COND(false, p(p(p(0)))), ODD(0))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), p(p(0))), ODD(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), p(p(z0))), ODD(s(z0)))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))), ODD(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(p(s(s(z0)))))), ODD(s(s(z0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), p(p(0))), ODD(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), p(p(z0))), ODD(s(z0)))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))), ODD(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(p(s(s(z0)))))), ODD(s(s(z0))))
K tuples:none
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c
(13) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(z0)) → c(COND(odd(s(z0)), p(p(z0))), ODD(s(z0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(p(s(s(z0)))))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), p(p(0))))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(z0)) → c(COND(odd(s(z0)), p(p(z0))), ODD(s(z0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(p(s(s(z0)))))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), p(p(0))))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
K tuples:none
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(15) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(z0)) → c(COND(odd(s(z0)), p(p(z0))), ODD(s(z0)))
We considered the (Usable) Rules:
p(s(z0)) → z0
p(0) → 0
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(z0)) → c(COND(odd(s(z0)), p(p(z0))), ODD(s(z0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(p(s(s(z0)))))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), p(p(0))))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2)) = [2]x2
POL(ODD(x1)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = [2]
POL(odd(x1)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [2] + x1
POL(true) = 0
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(z0)) → c(COND(odd(s(z0)), p(p(z0))), ODD(s(z0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(p(s(s(z0)))))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), p(p(0))))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(p(s(s(z0)))))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), p(p(0))))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), p(p(z0))), ODD(s(z0)))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
z0)) →
c(
COND(
odd(
s(
z0)),
p(
p(
z0))),
ODD(
s(
z0))) by
COND(true, s(0)) → c(COND(odd(s(0)), p(0)), ODD(s(0)))
COND(true, s(s(z0))) → c(COND(odd(s(s(z0))), p(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))), ODD(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(p(s(s(z0)))))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), p(p(0))))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
COND(true, s(0)) → c(COND(odd(s(0)), p(0)), ODD(s(0)))
COND(true, s(s(z0))) → c(COND(odd(s(s(z0))), p(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))), ODD(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(p(s(s(z0)))))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), p(p(0))))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), p(p(z0))), ODD(s(z0)))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(19) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(p(s(s(z0)))))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), p(p(0))))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
COND(true, s(s(z0))) → c(COND(odd(s(s(z0))), p(z0)), ODD(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), p(0)))
COND(true, s(0)) → c(COND(true, p(p(0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(p(s(s(z0)))))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), p(p(0))))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), p(p(z0))), ODD(s(z0)))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(21) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
s(
z0))) →
c(
COND(
odd(
z0),
p(
p(
p(
s(
s(
z0)))))),
ODD(
s(
s(
z0)))) by
COND(true, s(s(x0))) → c(COND(odd(x0), p(p(s(x0)))), ODD(s(s(x0))))
COND(true, s(s(0))) → c(COND(false, p(p(p(s(s(0)))))), ODD(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), p(p(0))))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
COND(true, s(s(z0))) → c(COND(odd(s(s(z0))), p(z0)), ODD(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), p(0)))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(0))) → c(COND(false, p(p(p(s(s(0)))))), ODD(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), p(p(0))))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
COND(true, s(s(x0))) → c(COND(odd(x0), p(p(s(x0)))), ODD(s(s(x0))))
COND(true, s(s(0))) → c(COND(false, p(p(p(s(s(0)))))), ODD(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), p(p(z0))), ODD(s(z0)))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(23) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), p(p(0))))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
COND(true, s(s(z0))) → c(COND(odd(s(s(z0))), p(z0)), ODD(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), p(0)))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), p(p(0))))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
COND(true, s(s(x0))) → c(COND(odd(x0), p(p(s(x0)))), ODD(s(s(x0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), p(p(z0))), ODD(s(z0)))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(25) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
We considered the (Usable) Rules:none
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), p(p(0))))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
COND(true, s(s(z0))) → c(COND(odd(s(s(z0))), p(z0)), ODD(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), p(0)))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [5]
POL(COND(x1, x2)) = [4]
POL(ODD(x1)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = [4]
POL(odd(x1)) = [3]
POL(p(x1)) = [4] + [4]x1
POL(s(x1)) = x1
POL(true) = [5]
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), p(p(0))))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
COND(true, s(s(z0))) → c(COND(odd(s(s(z0))), p(z0)), ODD(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), p(0)))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), p(p(0))))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
COND(true, s(s(x0))) → c(COND(odd(x0), p(p(s(x0)))), ODD(s(s(x0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), p(p(z0))), ODD(s(z0)))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(27) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
We considered the (Usable) Rules:
p(s(z0)) → z0
p(0) → 0
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), p(p(0))))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
COND(true, s(s(z0))) → c(COND(odd(s(s(z0))), p(z0)), ODD(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), p(0)))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2)) = [4] + [4]x2
POL(ODD(x1)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = [1]
POL(odd(x1)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [2] + x1
POL(true) = 0
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), p(p(0))))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
COND(true, s(s(z0))) → c(COND(odd(s(s(z0))), p(z0)), ODD(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), p(0)))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), p(p(0))))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), p(p(z0))), ODD(s(z0)))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(29) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
0) →
c(
COND(
odd(
0),
p(
p(
0)))) by
COND(true, 0) → c(COND(odd(0), p(0)))
COND(true, 0) → c(COND(false, p(p(0))))
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
COND(true, s(s(z0))) → c(COND(odd(s(s(z0))), p(z0)), ODD(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), p(0)))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, 0) → c(COND(odd(0), p(0)))
COND(true, 0) → c(COND(false, p(p(0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, 0) → c(COND(odd(0), p(0)))
COND(true, 0) → c(COND(false, p(p(0))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), p(p(z0))), ODD(s(z0)))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(31) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
COND(true, s(s(z0))) → c(COND(odd(s(s(z0))), p(z0)), ODD(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), p(0)))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, 0) → c(COND(odd(0), p(0)))
COND(true, 0) → c
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, 0) → c(COND(odd(0), p(0)))
COND(true, 0) → c
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), p(p(z0))), ODD(s(z0)))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c
(33) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, 0) → c
We considered the (Usable) Rules:none
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
COND(true, s(s(z0))) → c(COND(odd(s(s(z0))), p(z0)), ODD(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), p(0)))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, 0) → c(COND(odd(0), p(0)))
COND(true, 0) → c
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [5]
POL(COND(x1, x2)) = [2]
POL(ODD(x1)) = 0
POL(c) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = [4]
POL(odd(x1)) = [2] + x1
POL(p(x1)) = [5] + [5]x1
POL(s(x1)) = x1
POL(true) = [3]
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
COND(true, s(s(z0))) → c(COND(odd(s(s(z0))), p(z0)), ODD(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), p(0)))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, 0) → c(COND(odd(0), p(0)))
COND(true, 0) → c
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(p(p(s(0))))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, 0) → c(COND(odd(0), p(0)))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), p(p(z0))), ODD(s(z0)))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, 0) → c
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c
(35) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
0)) →
c(
COND(
true,
p(
p(
p(
s(
0)))))) by
COND(true, s(0)) → c(COND(true, p(p(0))))
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(s(s(z0))), p(z0)), ODD(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), p(0)))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, 0) → c(COND(odd(0), p(0)))
COND(true, 0) → c
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, 0) → c(COND(odd(0), p(0)))
COND(true, s(0)) → c(COND(true, p(p(0))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), p(p(z0))), ODD(s(z0)))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, 0) → c
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c
(37) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
COND(true, 0) → c
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(s(s(z0))), p(z0)), ODD(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), p(0)))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, 0) → c(COND(odd(0), p(0)))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, 0) → c(COND(odd(0), p(0)))
COND(true, s(0)) → c(COND(true, p(p(0))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(39) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(0)) → c(COND(true, p(p(0))))
We considered the (Usable) Rules:
p(s(z0)) → z0
p(0) → 0
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(s(s(z0))), p(z0)), ODD(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), p(0)))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, 0) → c(COND(odd(0), p(0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2)) = [4]x2
POL(ODD(x1)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = [3]
POL(odd(x1)) = [1]
POL(p(x1)) = x1
POL(s(x1)) = [4] + x1
POL(true) = 0
(40) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(s(s(z0))), p(z0)), ODD(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), p(0)))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, 0) → c(COND(odd(0), p(0)))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, 0) → c(COND(odd(0), p(0)))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(41) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
ODD(
s(
s(
z0))) →
c3(
ODD(
z0)) by
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
(42) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(s(s(z0))), p(z0)), ODD(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), p(0)))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, 0) → c(COND(odd(0), p(0)))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
S tuples:
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, 0) → c(COND(odd(0), p(0)))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(43) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
COND(true, s(s(0))) → c(ODD(s(s(0))))
(44) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(s(s(z0))), p(z0)), ODD(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), p(0)))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, 0) → c(COND(odd(0), p(0)))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
S tuples:
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, 0) → c(COND(odd(0), p(0)))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(45) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(46) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(s(s(z0))), p(z0)), ODD(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), p(0)))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, 0) → c(COND(odd(0), p(0)))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
S tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, 0) → c(COND(odd(0), p(0)))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(47) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace COND(true, s(s(z0))) → c(COND(odd(s(s(z0))), p(z0)), ODD(s(s(z0)))) by COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
(48) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), p(0)))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, 0) → c(COND(odd(0), p(0)))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
S tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, 0) → c(COND(odd(0), p(0)))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(49) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0)))) by COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
(50) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), p(0)))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, 0) → c(COND(odd(0), p(0)))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
S tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, 0) → c(COND(odd(0), p(0)))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(51) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace COND(true, s(0)) → c(COND(odd(s(0)), p(0))) by COND(true, s(0)) → c(COND(odd(s(0)), 0))
(52) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, 0) → c(COND(odd(0), p(0)))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), 0))
S tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, 0) → c(COND(odd(0), p(0)))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(53) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
0) →
c(
COND(
odd(
0),
p(
0))) by
COND(true, 0) → c(COND(odd(0), 0))
COND(true, 0) → c(COND(false, p(0)))
(54) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), 0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, 0) → c(COND(false, p(0)))
S tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, 0) → c(COND(false, p(0)))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(55) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(56) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), 0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, 0) → c
S tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, 0) → c
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3, c
(57) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, 0) → c
We considered the (Usable) Rules:none
And the Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), 0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, 0) → c
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(COND(x1, x2)) = [4]
POL(ODD(x1)) = [2]x1
POL(c) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = [3]
POL(odd(x1)) = [4]
POL(p(x1)) = [2]x1
POL(s(x1)) = 0
POL(true) = [3]
(58) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), 0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, 0) → c
S tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, 0) → c(COND(odd(0), 0))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, 0) → c
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3, c
(59) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
0) →
c(
COND(
odd(
0),
0)) by
COND(true, 0) → c(COND(false, 0))
(60) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), 0))
COND(true, 0) → c
COND(true, 0) → c(COND(false, 0))
S tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, 0) → c(COND(false, 0))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, 0) → c
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3, c
(61) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
COND(true, 0) → c
(62) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(x0))) → c(COND(odd(x0), p(p(s(x0)))), ODD(s(s(x0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), 0))
COND(true, 0) → c(COND(false, 0))
S tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, 0) → c(COND(false, 0))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(63) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(64) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(x0))) → c(COND(odd(x0), p(p(s(x0)))), ODD(s(s(x0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), 0))
COND(true, 0) → c
S tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, 0) → c
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3, c
(65) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, 0) → c
We considered the (Usable) Rules:none
And the Tuples:
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(x0))) → c(COND(odd(x0), p(p(s(x0)))), ODD(s(s(x0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), 0))
COND(true, 0) → c
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [4]
POL(COND(x1, x2)) = [4]
POL(ODD(x1)) = 0
POL(c) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = [3]
POL(odd(x1)) = [2]
POL(p(x1)) = [3] + [4]x1
POL(s(x1)) = x1
POL(true) = [3]
(66) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(x0))) → c(COND(odd(x0), p(p(s(x0)))), ODD(s(s(x0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), 0))
COND(true, 0) → c
S tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, 0) → c
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3, c
(67) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace COND(true, s(0)) → c(COND(true, p(p(0)))) by COND(true, s(0)) → c(COND(true, p(0)))
(68) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(x0))) → c(COND(odd(x0), p(p(s(x0)))), ODD(s(s(x0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(odd(s(0)), 0))
COND(true, 0) → c
COND(true, s(0)) → c(COND(true, p(0)))
S tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, 0) → c
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3, c
(69) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
COND(true, s(0)) → c(COND(odd(s(0)), 0))
COND(true, 0) → c
(70) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(x0))) → c(COND(odd(x0), p(p(s(x0)))), ODD(s(s(x0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(0)))
S tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(71) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
0)) →
c(
COND(
true,
p(
0))) by
COND(true, s(0)) → c(COND(true, 0))
(72) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(x0))) → c(COND(odd(x0), p(p(s(x0)))), ODD(s(s(x0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0))
S tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(73) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
COND(true, s(0)) → c(COND(true, 0))
(74) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(x0))) → c(COND(odd(x0), p(p(s(x0)))), ODD(s(s(x0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
S tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(75) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace COND(true, s(s(x0))) → c(COND(odd(x0), p(p(s(x0)))), ODD(s(s(x0)))) by COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
(76) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
S tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(77) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(p(s(s(s(s(z0)))))))), ODD(s(s(s(s(z0)))))) by COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
(78) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
S tuples:
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c3, c
(79) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
We considered the (Usable) Rules:
p(s(z0)) → z0
odd(s(0)) → true
odd(0) → false
odd(s(s(z0))) → odd(z0)
p(0) → 0
And the Tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [4]
POL(COND(x1, x2)) = [2] + [4]x1 + [4]x2
POL(ODD(x1)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = [2]
POL(odd(x1)) = [4]
POL(p(x1)) = x1
POL(s(x1)) = [4] + x1
POL(true) = [2]
(80) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
S tuples:
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c3, c
(81) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
COND(
true,
s(
s(
x0))) →
c(
ODD(
s(
s(
x0)))) by
COND(true, s(s(s(s(y0))))) → c(ODD(s(s(s(s(y0))))))
(82) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(0)) → c(COND(true, p(p(0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(y0))))) → c(ODD(s(s(s(s(y0))))))
S tuples:
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
K tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(y0))))) → c(ODD(s(s(s(s(y0))))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c3, c
(83) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace COND(true, s(0)) → c(COND(true, p(p(0)))) by COND(true, s(0)) → c(COND(true, p(0)))
(84) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(y0))))) → c(ODD(s(s(s(s(y0))))))
COND(true, s(0)) → c(COND(true, p(0)))
S tuples:
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
K tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(y0))))) → c(ODD(s(s(s(s(y0))))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(85) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
0)) →
c(
COND(
true,
p(
0))) by
COND(true, s(0)) → c(COND(true, 0))
(86) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(y0))))) → c(ODD(s(s(s(s(y0))))))
COND(true, s(0)) → c(COND(true, 0))
S tuples:
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
K tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), p(p(s(z0)))), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, p(p(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(y0))))) → c(ODD(s(s(s(s(y0))))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(87) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
COND(true, s(0)) → c(COND(true, 0))
(88) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(y0))))) → c(ODD(s(s(s(s(y0))))))
S tuples:
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
K tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(y0))))) → c(ODD(s(s(s(s(y0))))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(89) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
ODD(
s(
s(
s(
s(
y0))))) →
c3(
ODD(
s(
s(
y0)))) by
ODD(s(s(s(s(s(s(y0))))))) → c3(ODD(s(s(s(s(y0))))))
(90) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(y0))))) → c(ODD(s(s(s(s(y0))))))
ODD(s(s(s(s(s(s(y0))))))) → c3(ODD(s(s(s(s(y0))))))
S tuples:
COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0))))))))
ODD(s(s(s(s(s(s(y0))))))) → c3(ODD(s(s(s(s(y0))))))
K tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(y0))))) → c(ODD(s(s(s(s(y0))))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(91) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace COND(true, s(s(s(0)))) → c(COND(true, p(p(p(s(s(s(0)))))))) by COND(true, s(s(s(0)))) → c(COND(true, p(p(s(s(0))))))
(92) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(y0))))) → c(ODD(s(s(s(s(y0))))))
ODD(s(s(s(s(s(s(y0))))))) → c3(ODD(s(s(s(s(y0))))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(s(s(0))))))
S tuples:
ODD(s(s(s(s(s(s(y0))))))) → c3(ODD(s(s(s(s(y0))))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(s(s(0))))))
K tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(y0))))) → c(ODD(s(s(s(s(y0))))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(93) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(s(0)))) → c(COND(true, p(p(s(s(0))))))
We considered the (Usable) Rules:
p(s(z0)) → z0
p(0) → 0
And the Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(y0))))) → c(ODD(s(s(s(s(y0))))))
ODD(s(s(s(s(s(s(y0))))))) → c3(ODD(s(s(s(s(y0))))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(s(s(0))))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2)) = [2]x2
POL(ODD(x1)) = [3]
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = [5]
POL(odd(x1)) = [5]
POL(p(x1)) = x1
POL(s(x1)) = [4] + x1
POL(true) = [2]
(94) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(y0))))) → c(ODD(s(s(s(s(y0))))))
ODD(s(s(s(s(s(s(y0))))))) → c3(ODD(s(s(s(s(y0))))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(s(s(0))))))
S tuples:
ODD(s(s(s(s(s(s(y0))))))) → c3(ODD(s(s(s(s(y0))))))
K tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(y0))))) → c(ODD(s(s(s(s(y0))))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(s(s(0))))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(95) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ODD(s(s(s(s(s(s(y0))))))) → c3(ODD(s(s(s(s(y0))))))
We considered the (Usable) Rules:
p(s(z0)) → z0
p(0) → 0
And the Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(y0))))) → c(ODD(s(s(s(s(y0))))))
ODD(s(s(s(s(s(s(y0))))))) → c3(ODD(s(s(s(s(y0))))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(s(s(0))))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [3]
POL(COND(x1, x2)) = [3] + x22
POL(ODD(x1)) = [2] + x1
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = 0
POL(odd(x1)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(96) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), p(z0)), ODD(s(s(z0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(y0))))) → c(ODD(s(s(s(s(y0))))))
ODD(s(s(s(s(s(s(y0))))))) → c3(ODD(s(s(s(s(y0))))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(s(s(0))))))
S tuples:none
K tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(p(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(y0))))) → c(ODD(s(s(s(s(y0))))))
COND(true, s(s(s(0)))) → c(COND(true, p(p(s(s(0))))))
ODD(s(s(s(s(s(s(y0))))))) → c3(ODD(s(s(s(s(y0))))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c3
(97) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(98) BOUNDS(O(1), O(1))