(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond3(gr(x, 0), x, y)
cond2(false, x, y) → cond4(gr(y, 0), x, y)
cond3(true, x, y) → cond3(gr(x, 0), p(x), y)
cond3(false, x, y) → cond1(and(gr(x, 0), gr(y, 0)), x, y)
cond4(true, x, y) → cond4(gr(y, 0), x, p(y))
cond4(false, x, y) → cond1(and(gr(x, 0), gr(y, 0)), x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted Cpx (relative) TRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

cond1(true, z0, z1) → cond2(gr(z0, z1), z0, z1)
cond2(true, z0, z1) → cond3(gr(z0, 0), z0, z1)
cond2(false, z0, z1) → cond4(gr(z1, 0), z0, z1)
cond3(true, z0, z1) → cond3(gr(z0, 0), p(z0), z1)
cond3(false, z0, z1) → cond1(and(gr(z0, 0), gr(z1, 0)), z0, z1)
cond4(true, z0, z1) → cond4(gr(z1, 0), z0, p(z1))
cond4(false, z0, z1) → cond1(and(gr(z0, 0), gr(z1, 0)), z0, z1)
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
p(0) → 0
p(s(z0)) → z0
Tuples:

COND1(true, z0, z1) → c(COND2(gr(z0, z1), z0, z1), GR(z0, z1))
COND2(true, z0, z1) → c1(COND3(gr(z0, 0), z0, z1), GR(z0, 0))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1), GR(z1, 0))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1), GR(z0, 0), P(z0))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1), AND(gr(z0, 0), gr(z1, 0)), GR(z0, 0), GR(z1, 0))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)), GR(z1, 0), P(z1))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1), AND(gr(z0, 0), gr(z1, 0)), GR(z0, 0), GR(z1, 0))
GR(0, z0) → c7
GR(s(z0), 0) → c8
GR(s(z0), s(z1)) → c9(GR(z0, z1))
AND(true, true) → c10
AND(false, z0) → c11
AND(z0, false) → c12
P(0) → c13
P(s(z0)) → c14
S tuples:

COND1(true, z0, z1) → c(COND2(gr(z0, z1), z0, z1), GR(z0, z1))
COND2(true, z0, z1) → c1(COND3(gr(z0, 0), z0, z1), GR(z0, 0))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1), GR(z1, 0))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1), GR(z0, 0), P(z0))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1), AND(gr(z0, 0), gr(z1, 0)), GR(z0, 0), GR(z1, 0))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)), GR(z1, 0), P(z1))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1), AND(gr(z0, 0), gr(z1, 0)), GR(z0, 0), GR(z1, 0))
GR(0, z0) → c7
GR(s(z0), 0) → c8
GR(s(z0), s(z1)) → c9(GR(z0, z1))
AND(true, true) → c10
AND(false, z0) → c11
AND(z0, false) → c12
P(0) → c13
P(s(z0)) → c14
K tuples:none
Defined Rule Symbols:

cond1, cond2, cond3, cond4, gr, and, p

Defined Pair Symbols:

COND1, COND2, COND3, COND4, GR, AND, P

Compound Symbols:

c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14

(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 7 trailing nodes:

AND(false, z0) → c11
AND(true, true) → c10
P(s(z0)) → c14
AND(z0, false) → c12
P(0) → c13
GR(0, z0) → c7
GR(s(z0), 0) → c8

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

cond1(true, z0, z1) → cond2(gr(z0, z1), z0, z1)
cond2(true, z0, z1) → cond3(gr(z0, 0), z0, z1)
cond2(false, z0, z1) → cond4(gr(z1, 0), z0, z1)
cond3(true, z0, z1) → cond3(gr(z0, 0), p(z0), z1)
cond3(false, z0, z1) → cond1(and(gr(z0, 0), gr(z1, 0)), z0, z1)
cond4(true, z0, z1) → cond4(gr(z1, 0), z0, p(z1))
cond4(false, z0, z1) → cond1(and(gr(z0, 0), gr(z1, 0)), z0, z1)
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
p(0) → 0
p(s(z0)) → z0
Tuples:

COND1(true, z0, z1) → c(COND2(gr(z0, z1), z0, z1), GR(z0, z1))
COND2(true, z0, z1) → c1(COND3(gr(z0, 0), z0, z1), GR(z0, 0))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1), GR(z1, 0))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1), GR(z0, 0), P(z0))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1), AND(gr(z0, 0), gr(z1, 0)), GR(z0, 0), GR(z1, 0))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)), GR(z1, 0), P(z1))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1), AND(gr(z0, 0), gr(z1, 0)), GR(z0, 0), GR(z1, 0))
GR(s(z0), s(z1)) → c9(GR(z0, z1))
S tuples:

COND1(true, z0, z1) → c(COND2(gr(z0, z1), z0, z1), GR(z0, z1))
COND2(true, z0, z1) → c1(COND3(gr(z0, 0), z0, z1), GR(z0, 0))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1), GR(z1, 0))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1), GR(z0, 0), P(z0))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1), AND(gr(z0, 0), gr(z1, 0)), GR(z0, 0), GR(z1, 0))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)), GR(z1, 0), P(z1))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1), AND(gr(z0, 0), gr(z1, 0)), GR(z0, 0), GR(z1, 0))
GR(s(z0), s(z1)) → c9(GR(z0, z1))
K tuples:none
Defined Rule Symbols:

cond1, cond2, cond3, cond4, gr, and, p

Defined Pair Symbols:

COND1, COND2, COND3, COND4, GR

Compound Symbols:

c, c1, c2, c3, c4, c5, c6, c9

(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 12 trailing tuple parts

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

cond1(true, z0, z1) → cond2(gr(z0, z1), z0, z1)
cond2(true, z0, z1) → cond3(gr(z0, 0), z0, z1)
cond2(false, z0, z1) → cond4(gr(z1, 0), z0, z1)
cond3(true, z0, z1) → cond3(gr(z0, 0), p(z0), z1)
cond3(false, z0, z1) → cond1(and(gr(z0, 0), gr(z1, 0)), z0, z1)
cond4(true, z0, z1) → cond4(gr(z1, 0), z0, p(z1))
cond4(false, z0, z1) → cond1(and(gr(z0, 0), gr(z1, 0)), z0, z1)
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
p(0) → 0
p(s(z0)) → z0
Tuples:

COND1(true, z0, z1) → c(COND2(gr(z0, z1), z0, z1), GR(z0, z1))
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(true, z0, z1) → c1(COND3(gr(z0, 0), z0, z1))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
S tuples:

COND1(true, z0, z1) → c(COND2(gr(z0, z1), z0, z1), GR(z0, z1))
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(true, z0, z1) → c1(COND3(gr(z0, 0), z0, z1))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
K tuples:none
Defined Rule Symbols:

cond1, cond2, cond3, cond4, gr, and, p

Defined Pair Symbols:

COND1, GR, COND2, COND3, COND4

Compound Symbols:

c, c9, c1, c2, c3, c4, c5, c6

(7) CdtUsableRulesProof (EQUIVALENT transformation)

The following rules are not usable and were removed:

cond1(true, z0, z1) → cond2(gr(z0, z1), z0, z1)
cond2(true, z0, z1) → cond3(gr(z0, 0), z0, z1)
cond2(false, z0, z1) → cond4(gr(z1, 0), z0, z1)
cond3(true, z0, z1) → cond3(gr(z0, 0), p(z0), z1)
cond3(false, z0, z1) → cond1(and(gr(z0, 0), gr(z1, 0)), z0, z1)
cond4(true, z0, z1) → cond4(gr(z1, 0), z0, p(z1))
cond4(false, z0, z1) → cond1(and(gr(z0, 0), gr(z1, 0)), z0, z1)

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

COND1(true, z0, z1) → c(COND2(gr(z0, z1), z0, z1), GR(z0, z1))
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(true, z0, z1) → c1(COND3(gr(z0, 0), z0, z1))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
S tuples:

COND1(true, z0, z1) → c(COND2(gr(z0, z1), z0, z1), GR(z0, z1))
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(true, z0, z1) → c1(COND3(gr(z0, 0), z0, z1))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
K tuples:none
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

COND1, GR, COND2, COND3, COND4

Compound Symbols:

c, c9, c1, c2, c3, c4, c5, c6

(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND1(true, z0, z1) → c(COND2(gr(z0, z1), z0, z1), GR(z0, z1)) by

COND1(true, 0, z0) → c(COND2(false, 0, z0), GR(0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0), GR(s(z0), 0))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(true, z0, z1) → c1(COND3(gr(z0, 0), z0, z1))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0), GR(0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0), GR(s(z0), 0))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(true, z0, z1) → c1(COND3(gr(z0, 0), z0, z1))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0), GR(0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0), GR(s(z0), 0))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
K tuples:none
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND2, COND3, COND4, COND1

Compound Symbols:

c9, c1, c2, c3, c4, c5, c6, c

(11) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing tuple parts

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(true, z0, z1) → c1(COND3(gr(z0, 0), z0, z1))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(true, z0, z1) → c1(COND3(gr(z0, 0), z0, z1))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
K tuples:none
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND2, COND3, COND4, COND1

Compound Symbols:

c9, c1, c2, c3, c4, c5, c6, c, c

(13) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(true, z0, z1) → c1(COND3(gr(z0, 0), z0, z1)) by

COND2(true, 0, x1) → c1(COND3(false, 0, x1))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, 0, x1) → c1(COND3(false, 0, x1))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, 0, x1) → c1(COND3(false, 0, x1))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
K tuples:none
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND2, COND3, COND4, COND1

Compound Symbols:

c9, c2, c3, c4, c5, c6, c, c, c1

(15) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)

Removed 1 leading nodes:

COND2(true, 0, x1) → c1(COND3(false, 0, x1))

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
K tuples:none
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND2, COND3, COND4, COND1

Compound Symbols:

c9, c2, c3, c4, c5, c6, c, c, c1

(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1)) by

COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
K tuples:none
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND3, COND4, COND1, COND2

Compound Symbols:

c9, c3, c4, c5, c6, c, c, c1, c2

(19) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1)) by

COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))

(20) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
K tuples:none
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND3, COND4, COND1, COND2

Compound Symbols:

c9, c4, c5, c6, c, c, c1, c2, c3

(21) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
We considered the (Usable) Rules:

p(s(z0)) → z0
p(0) → 0
And the Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3)) = [4]x2   
POL(COND2(x1, x2, x3)) = [4]x2   
POL(COND3(x1, x2, x3)) = [4]x2   
POL(COND4(x1, x2, x3)) = [4]x2   
POL(GR(x1, x2)) = 0   
POL(and(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c9(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = 0   
POL(p(x1)) = x1   
POL(s(x1)) = [4] + x1   
POL(true) = 0   

(22) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
K tuples:

COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND3, COND4, COND1, COND2

Compound Symbols:

c9, c4, c5, c6, c, c, c1, c2, c3

(23) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1)) by

COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))

(24) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
K tuples:

COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND4, COND1, COND2, COND3

Compound Symbols:

c9, c5, c6, c, c, c1, c2, c3, c4

(25) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
We considered the (Usable) Rules:

gr(s(z0), 0) → true
and(z0, false) → false
and(false, z0) → false
and(true, true) → true
gr(0, z0) → false
And the Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3)) = x1   
POL(COND2(x1, x2, x3)) = [2]   
POL(COND3(x1, x2, x3)) = [2]   
POL(COND4(x1, x2, x3)) = [2]   
POL(GR(x1, x2)) = 0   
POL(and(x1, x2)) = x2   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c9(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = [2]   
POL(p(x1)) = 0   
POL(s(x1)) = 0   
POL(true) = [2]   

(26) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
K tuples:

COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND4, COND1, COND2, COND3

Compound Symbols:

c9, c5, c6, c, c, c1, c2, c3, c4

(27) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
We considered the (Usable) Rules:

gr(s(z0), 0) → true
and(z0, false) → false
and(false, z0) → false
and(true, true) → true
gr(0, z0) → false
And the Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = [2]   
POL(COND1(x1, x2, x3)) = x1   
POL(COND2(x1, x2, x3)) = [2]   
POL(COND3(x1, x2, x3)) = [2]   
POL(COND4(x1, x2, x3)) = [2]   
POL(GR(x1, x2)) = 0   
POL(and(x1, x2)) = x1   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c9(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = x2   
POL(p(x1)) = 0   
POL(s(x1)) = 0   
POL(true) = [2]   

(28) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
K tuples:

COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND4, COND1, COND2, COND3

Compound Symbols:

c9, c5, c6, c, c, c1, c2, c3, c4

(29) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1))) by

COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))

(30) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
K tuples:

COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND4, COND1, COND2, COND3

Compound Symbols:

c9, c6, c, c, c1, c2, c3, c4, c5

(31) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
We considered the (Usable) Rules:

p(s(z0)) → z0
p(0) → 0
And the Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3)) = [4]x3   
POL(COND2(x1, x2, x3)) = [4]x3   
POL(COND3(x1, x2, x3)) = [4]x3   
POL(COND4(x1, x2, x3)) = [4]x3   
POL(GR(x1, x2)) = 0   
POL(and(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c9(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = 0   
POL(p(x1)) = x1   
POL(s(x1)) = [4] + x1   
POL(true) = 0   

(32) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
K tuples:

COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND4, COND1, COND2, COND3

Compound Symbols:

c9, c6, c, c, c1, c2, c3, c4, c5

(33) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1)) by

COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))

(34) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
K tuples:

COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND3, COND4

Compound Symbols:

c9, c, c, c1, c2, c3, c4, c5, c6

(35) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
We considered the (Usable) Rules:

gr(s(z0), 0) → true
and(z0, false) → false
and(false, z0) → false
and(true, true) → true
gr(0, z0) → false
And the Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3)) = x1   
POL(COND2(x1, x2, x3)) = [1]   
POL(COND3(x1, x2, x3)) = [1]   
POL(COND4(x1, x2, x3)) = [1]   
POL(GR(x1, x2)) = 0   
POL(and(x1, x2)) = x2   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c9(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = [1]   
POL(p(x1)) = 0   
POL(s(x1)) = 0   
POL(true) = [1]   

(36) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
K tuples:

COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND3, COND4

Compound Symbols:

c9, c, c, c1, c2, c3, c4, c5, c6

(37) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
We considered the (Usable) Rules:

gr(s(z0), 0) → true
and(z0, false) → false
and(false, z0) → false
and(true, true) → true
gr(0, z0) → false
And the Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3)) = x1   
POL(COND2(x1, x2, x3)) = [1]   
POL(COND3(x1, x2, x3)) = [1]   
POL(COND4(x1, x2, x3)) = [1]   
POL(GR(x1, x2)) = 0   
POL(and(x1, x2)) = x1   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c9(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = [1]   
POL(p(x1)) = 0   
POL(s(x1)) = 0   
POL(true) = [1]   

(38) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
K tuples:

COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND3, COND4

Compound Symbols:

c9, c, c, c1, c2, c3, c4, c5, c6

(39) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1))) by

COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))

(40) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
K tuples:

COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND3, COND4

Compound Symbols:

c9, c, c1, c2, c3, c4, c5, c6, c

(41) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
We considered the (Usable) Rules:none
And the Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = [5]   
POL(COND1(x1, x2, x3)) = [1]   
POL(COND2(x1, x2, x3)) = [1]   
POL(COND3(x1, x2, x3)) = [1]   
POL(COND4(x1, x2, x3)) = [1]   
POL(GR(x1, x2)) = 0   
POL(and(x1, x2)) = [4]   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c9(x1)) = x1   
POL(false) = [3]   
POL(gr(x1, x2)) = [2] + [3]x1 + [4]x2   
POL(p(x1)) = [4] + [4]x1   
POL(s(x1)) = [2] + x1   
POL(true) = [3]   

(42) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND3, COND4

Compound Symbols:

c9, c, c1, c2, c3, c4, c5, c6, c

(43) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1)) by

COND3(true, 0, x0) → c3(COND3(false, 0, x0))

(44) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
K tuples:

COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND3, COND4

Compound Symbols:

c9, c, c1, c2, c3, c4, c5, c6, c

(45) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1)) by

COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))

(46) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
K tuples:

COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND3, COND4

Compound Symbols:

c9, c, c1, c2, c3, c4, c5, c6, c

(47) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND3(true, 0, x1) → c3(COND3(false, p(0), x1)) by

COND3(true, 0, x0) → c3(COND3(false, 0, x0))

(48) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
K tuples:

COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND3, COND4

Compound Symbols:

c9, c, c1, c2, c3, c4, c5, c6, c

(49) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)

The following tuples could be moved from S to K by knowledge propagation:

COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))

(50) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
K tuples:

COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND3, COND4

Compound Symbols:

c9, c, c1, c2, c3, c4, c5, c6, c

(51) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1)) by

COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))

(52) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
K tuples:

COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND3, COND4

Compound Symbols:

c9, c, c1, c2, c4, c5, c6, c, c3

(53) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
We considered the (Usable) Rules:none
And the Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = [3]   
POL(COND1(x1, x2, x3)) = x2   
POL(COND2(x1, x2, x3)) = x2   
POL(COND3(x1, x2, x3)) = [3]x1 + x2   
POL(COND4(x1, x2, x3)) = x2   
POL(GR(x1, x2)) = 0   
POL(and(x1, x2)) = [2] + x1 + [2]x2   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c9(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = [3] + [4]x1   
POL(p(x1)) = [5]   
POL(s(x1)) = [4] + x1   
POL(true) = 0   

(54) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
K tuples:

COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND3, COND4

Compound Symbols:

c9, c, c1, c2, c4, c5, c6, c, c3

(55) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)

The following tuples could be moved from S to K by knowledge propagation:

COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))

(56) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND3, COND4

Compound Symbols:

c9, c, c1, c2, c4, c5, c6, c, c3

(57) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0)) by

COND3(false, x0, 0) → c4(COND1(false, x0, 0))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))

(58) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, x0, 0) → c4(COND1(false, x0, 0))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND3, COND4

Compound Symbols:

c9, c, c1, c2, c4, c5, c6, c, c3

(59) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

COND3(false, x0, 0) → c4(COND1(false, x0, 0))

(60) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND3, COND4

Compound Symbols:

c9, c, c1, c2, c4, c5, c6, c, c3

(61) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0))) by

COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))

(62) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND3, COND4

Compound Symbols:

c9, c, c1, c2, c4, c5, c6, c, c3

(63) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND1(true, 0, z0) → c(COND2(false, 0, z0))
We considered the (Usable) Rules:

gr(s(z0), 0) → true
and(z0, false) → false
and(false, z0) → false
and(true, true) → true
gr(0, z0) → false
And the Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3)) = [2]x1   
POL(COND2(x1, x2, x3)) = [2]x2   
POL(COND3(x1, x2, x3)) = [2]   
POL(COND4(x1, x2, x3)) = [2]x2   
POL(GR(x1, x2)) = 0   
POL(and(x1, x2)) = x1   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c9(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = x1   
POL(p(x1)) = [2]   
POL(s(x1)) = [1]   
POL(true) = [1]   

(64) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND3, COND4

Compound Symbols:

c9, c, c1, c2, c4, c5, c6, c, c3

(65) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)

The following tuples could be moved from S to K by knowledge propagation:

COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))

(66) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND3, COND4

Compound Symbols:

c9, c, c1, c2, c4, c5, c6, c, c3

(67) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
We considered the (Usable) Rules:none
And the Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3)) = [2]x2   
POL(COND2(x1, x2, x3)) = [2]x2   
POL(COND3(x1, x2, x3)) = x1·x2   
POL(COND4(x1, x2, x3)) = [2]x2   
POL(GR(x1, x2)) = 0   
POL(and(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c9(x1)) = x1   
POL(false) = [2]   
POL(gr(x1, x2)) = 0   
POL(p(x1)) = 0   
POL(s(x1)) = [2]   
POL(true) = 0   

(68) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND3, COND4

Compound Symbols:

c9, c, c1, c2, c4, c5, c6, c, c3

(69) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
We considered the (Usable) Rules:

gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
And the Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3)) = x2   
POL(COND2(x1, x2, x3)) = x1·x2   
POL(COND3(x1, x2, x3)) = x1·x2   
POL(COND4(x1, x2, x3)) = x2   
POL(GR(x1, x2)) = 0   
POL(and(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c9(x1)) = x1   
POL(false) = [1]   
POL(gr(x1, x2)) = [1]   
POL(p(x1)) = 0   
POL(s(x1)) = [2]   
POL(true) = 0   

(70) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND3, COND4

Compound Symbols:

c9, c, c1, c2, c4, c5, c6, c, c3

(71) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
We considered the (Usable) Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
p(0) → 0
gr(0, z0) → false
And the Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3)) = [2]x32   
POL(COND2(x1, x2, x3)) = [2]x32   
POL(COND3(x1, x2, x3)) = [2]x32   
POL(COND4(x1, x2, x3)) = [2]x32 + [2]x1·x3   
POL(GR(x1, x2)) = 0   
POL(and(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c9(x1)) = x1   
POL(false) = [2]   
POL(gr(x1, x2)) = [2]   
POL(p(x1)) = x1   
POL(s(x1)) = [2] + x1   
POL(true) = 0   

(72) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND3, COND4

Compound Symbols:

c9, c, c1, c2, c4, c5, c6, c, c3

(73) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1)) by

COND3(false, 0, x0) → c4(COND1(false, 0, x0))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, 0, s(z0)) → c4(COND1(and(false, true), 0, s(z0)))

(74) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND3(false, 0, x0) → c4(COND1(false, 0, x0))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND3, COND4

Compound Symbols:

c9, c, c1, c2, c4, c5, c6, c, c3

(75) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

COND3(false, 0, x0) → c4(COND1(false, 0, x0))

(76) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND3, COND4

Compound Symbols:

c9, c, c1, c2, c4, c5, c6, c, c3

(77) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1)) by

COND3(false, s(x0), 0) → c4(COND1(and(true, false), s(x0), 0))
COND3(false, s(x0), s(z0)) → c4(COND1(and(true, true), s(x0), s(z0)))

(78) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND4, COND3

Compound Symbols:

c9, c, c1, c2, c5, c6, c, c3, c4

(79) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0)) by

COND4(true, x0, 0) → c5(COND4(false, x0, 0))

(80) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
K tuples:

COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND4, COND3

Compound Symbols:

c9, c, c1, c2, c5, c6, c, c3, c4

(81) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0)) by

COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))

(82) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
K tuples:

COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND4, COND3

Compound Symbols:

c9, c, c1, c2, c5, c6, c, c3, c4

(83) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND4(true, x0, 0) → c5(COND4(false, x0, p(0))) by

COND4(true, x0, 0) → c5(COND4(false, x0, 0))

(84) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
K tuples:

COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
Defined Rule Symbols:

gr, p, and

Defined Pair Symbols:

GR, COND1, COND2, COND4, COND3

Compound Symbols:

c9, c, c1, c2, c5, c6, c, c3, c4

(85) CdtUsableRulesProof (EQUIVALENT transformation)

The following rules are not usable and were removed:

p(0) → 0

(86) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
K tuples:

COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
Defined Rule Symbols:

p, and, gr

Defined Pair Symbols:

GR, COND1, COND2, COND4, COND3

Compound Symbols:

c9, c, c1, c2, c5, c6, c, c3, c4

(87) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0)))) by

COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))

(88) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
K tuples:

COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
Defined Rule Symbols:

p, and, gr

Defined Pair Symbols:

GR, COND1, COND2, COND4, COND3

Compound Symbols:

c9, c, c1, c2, c6, c, c3, c4, c5

(89) CdtUsableRulesProof (EQUIVALENT transformation)

The following rules are not usable and were removed:

p(s(z0)) → z0

(90) Obligation:

Complexity Dependency Tuples Problem
Rules:

and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
K tuples:

COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
Defined Rule Symbols:

and, gr

Defined Pair Symbols:

GR, COND1, COND2, COND4, COND3

Compound Symbols:

c9, c, c1, c2, c6, c, c3, c4, c5

(91) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
We considered the (Usable) Rules:none
And the Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3)) = x3   
POL(COND2(x1, x2, x3)) = x3   
POL(COND3(x1, x2, x3)) = x3   
POL(COND4(x1, x2, x3)) = x3   
POL(GR(x1, x2)) = 0   
POL(and(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c9(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = 0   
POL(s(x1)) = [2] + x1   
POL(true) = 0   

(92) Obligation:

Complexity Dependency Tuples Problem
Rules:

and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
K tuples:

COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
Defined Rule Symbols:

and, gr

Defined Pair Symbols:

GR, COND1, COND2, COND4, COND3

Compound Symbols:

c9, c, c1, c2, c6, c, c3, c4, c5

(93) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)

The following tuples could be moved from S to K by knowledge propagation:

COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))

(94) Obligation:

Complexity Dependency Tuples Problem
Rules:

and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
Defined Rule Symbols:

and, gr

Defined Pair Symbols:

GR, COND1, COND2, COND4, COND3

Compound Symbols:

c9, c, c1, c2, c6, c, c3, c4, c5

(95) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0)) by

COND4(false, x0, 0) → c6(COND1(false, x0, 0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))

(96) Obligation:

Complexity Dependency Tuples Problem
Rules:

and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, x0, 0) → c6(COND1(false, x0, 0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
Defined Rule Symbols:

and, gr

Defined Pair Symbols:

GR, COND1, COND2, COND4, COND3

Compound Symbols:

c9, c, c1, c2, c6, c, c3, c4, c5

(97) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

COND4(false, x0, 0) → c6(COND1(false, x0, 0))

(98) Obligation:

Complexity Dependency Tuples Problem
Rules:

and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
Defined Rule Symbols:

and, gr

Defined Pair Symbols:

GR, COND1, COND2, COND4, COND3

Compound Symbols:

c9, c, c1, c2, c6, c, c3, c4, c5

(99) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0))) by

COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))

(100) Obligation:

Complexity Dependency Tuples Problem
Rules:

and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
Defined Rule Symbols:

and, gr

Defined Pair Symbols:

GR, COND1, COND2, COND4, COND3

Compound Symbols:

c9, c, c1, c2, c6, c, c3, c4, c5

(101) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1)) by

COND4(false, 0, x0) → c6(COND1(false, 0, x0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, 0, s(z0)) → c6(COND1(and(false, true), 0, s(z0)))

(102) Obligation:

Complexity Dependency Tuples Problem
Rules:

and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))
COND4(false, 0, x0) → c6(COND1(false, 0, x0))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
Defined Rule Symbols:

and, gr

Defined Pair Symbols:

GR, COND1, COND2, COND4, COND3

Compound Symbols:

c9, c, c1, c2, c6, c, c3, c4, c5

(103) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

COND4(false, 0, x0) → c6(COND1(false, 0, x0))

(104) Obligation:

Complexity Dependency Tuples Problem
Rules:

and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
Defined Rule Symbols:

and, gr

Defined Pair Symbols:

GR, COND1, COND2, COND4, COND3

Compound Symbols:

c9, c, c1, c2, c6, c, c3, c4, c5

(105) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
We considered the (Usable) Rules:none
And the Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3)) = [2]x2·x3   
POL(COND2(x1, x2, x3)) = 0   
POL(COND3(x1, x2, x3)) = x1·x2   
POL(COND4(x1, x2, x3)) = [2]x1·x3   
POL(GR(x1, x2)) = 0   
POL(and(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c9(x1)) = x1   
POL(false) = [2]   
POL(gr(x1, x2)) = 0   
POL(s(x1)) = [1]   
POL(true) = 0   

(106) Obligation:

Complexity Dependency Tuples Problem
Rules:

and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
K tuples:

COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
Defined Rule Symbols:

and, gr

Defined Pair Symbols:

GR, COND1, COND2, COND4, COND3

Compound Symbols:

c9, c, c1, c2, c6, c, c3, c4, c5

(107) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)

The following tuples could be moved from S to K by knowledge propagation:

COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))

(108) Obligation:

Complexity Dependency Tuples Problem
Rules:

and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
K tuples:

COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
Defined Rule Symbols:

and, gr

Defined Pair Symbols:

GR, COND1, COND2, COND4, COND3

Compound Symbols:

c9, c, c1, c2, c6, c, c3, c4, c5

(109) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1)) by

COND4(false, s(x0), 0) → c6(COND1(and(true, false), s(x0), 0))
COND4(false, s(x0), s(z0)) → c6(COND1(and(true, true), s(x0), s(z0)))

(110) Obligation:

Complexity Dependency Tuples Problem
Rules:

and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
K tuples:

COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
Defined Rule Symbols:

and, gr

Defined Pair Symbols:

GR, COND1, COND2, COND3, COND4

Compound Symbols:

c9, c, c1, c2, c, c3, c4, c5, c6

(111) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(112) Obligation:

Complexity Dependency Tuples Problem
Rules:

and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))
COND1(true, s(0), s(z0)) → c7(COND2(false, s(0), s(z0)))
COND1(true, s(0), s(z0)) → c7(GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c7(COND2(true, s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(0)) → c7(GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c7(COND2(gr(z0, z1), s(s(z0)), s(s(z1))))
COND1(true, s(s(z0)), s(s(z1))) → c7(GR(s(s(z0)), s(s(z1))))
S tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
K tuples:

COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(0), s(z0)) → c7(COND2(false, s(0), s(z0)))
COND1(true, s(0), s(z0)) → c7(GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c7(COND2(true, s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(0)) → c7(GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c7(COND2(gr(z0, z1), s(s(z0)), s(s(z1))))
COND1(true, s(s(z0)), s(s(z1))) → c7(GR(s(s(z0)), s(s(z1))))
Defined Rule Symbols:

and, gr

Defined Pair Symbols:

GR, COND1, COND2, COND3, COND4

Compound Symbols:

c9, c, c1, c2, c3, c4, c5, c6, c7

(113) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

GR(s(z0), s(z1)) → c9(GR(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))
COND1(true, s(0), s(z0)) → c7(COND2(false, s(0), s(z0)))
COND1(true, s(0), s(z0)) → c7(GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c7(COND2(true, s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(0)) → c7(GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c7(COND2(gr(z0, z1), s(s(z0)), s(s(z1))))
COND1(true, s(s(z0)), s(s(z1))) → c7(GR(s(s(z0)), s(s(z1))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = [1]   
POL(COND1(x1, x2, x3)) = [4]x3   
POL(COND2(x1, x2, x3)) = [4]x3   
POL(COND3(x1, x2, x3)) = [4]x3   
POL(COND4(x1, x2, x3)) = [4]x3   
POL(GR(x1, x2)) = [4]x2   
POL(and(x1, x2)) = [3] + [5]x1 + [4]x2   
POL(c(x1)) = x1   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   
POL(c9(x1)) = x1   
POL(false) = [4]   
POL(gr(x1, x2)) = [1] + [2]x1 + [3]x2   
POL(s(x1)) = [2] + x1   
POL(true) = [5]   

(114) Obligation:

Complexity Dependency Tuples Problem
Rules:

and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:

GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))
COND1(true, s(0), s(z0)) → c7(COND2(false, s(0), s(z0)))
COND1(true, s(0), s(z0)) → c7(GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c7(COND2(true, s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(0)) → c7(GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c7(COND2(gr(z0, z1), s(s(z0)), s(s(z1))))
COND1(true, s(s(z0)), s(s(z1))) → c7(GR(s(s(z0)), s(s(z1))))
S tuples:none
K tuples:

COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(0), s(z0)) → c7(COND2(false, s(0), s(z0)))
COND1(true, s(0), s(z0)) → c7(GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c7(COND2(true, s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(0)) → c7(GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c7(COND2(gr(z0, z1), s(s(z0)), s(s(z1))))
COND1(true, s(s(z0)), s(s(z1))) → c7(GR(s(s(z0)), s(s(z1))))
GR(s(z0), s(z1)) → c9(GR(z0, z1))
Defined Rule Symbols:

and, gr

Defined Pair Symbols:

GR, COND1, COND2, COND3, COND4

Compound Symbols:

c9, c, c1, c2, c3, c4, c5, c6, c7

(115) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)

The set S is empty

(116) BOUNDS(O(1), O(1))