(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), x, p(y), z)
cond2(false, x, y, z) → cond1(gr(x, z), p(x), y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted Cpx (relative) TRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

cond1(true, z0, z1, z2) → cond2(gr(z1, z2), z0, z1, z2)
cond2(true, z0, z1, z2) → cond2(gr(z1, z2), z0, p(z1), z2)
cond2(false, z0, z1, z2) → cond1(gr(z0, z2), p(z0), z1, z2)
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:

COND1(true, z0, z1, z2) → c(COND2(gr(z1, z2), z0, z1, z2), GR(z1, z2))
COND2(true, z0, z1, z2) → c1(COND2(gr(z1, z2), z0, p(z1), z2), GR(z1, z2), P(z1))
COND2(false, z0, z1, z2) → c2(COND1(gr(z0, z2), p(z0), z1, z2), GR(z0, z2), P(z0))
GR(0, z0) → c3
GR(s(z0), 0) → c4
GR(s(z0), s(z1)) → c5(GR(z0, z1))
P(0) → c6
P(s(z0)) → c7
S tuples:

COND1(true, z0, z1, z2) → c(COND2(gr(z1, z2), z0, z1, z2), GR(z1, z2))
COND2(true, z0, z1, z2) → c1(COND2(gr(z1, z2), z0, p(z1), z2), GR(z1, z2), P(z1))
COND2(false, z0, z1, z2) → c2(COND1(gr(z0, z2), p(z0), z1, z2), GR(z0, z2), P(z0))
GR(0, z0) → c3
GR(s(z0), 0) → c4
GR(s(z0), s(z1)) → c5(GR(z0, z1))
P(0) → c6
P(s(z0)) → c7
K tuples:none
Defined Rule Symbols:

cond1, cond2, gr, p

Defined Pair Symbols:

COND1, COND2, GR, P

Compound Symbols:

c, c1, c2, c3, c4, c5, c6, c7

(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 4 trailing nodes:

GR(0, z0) → c3
GR(s(z0), 0) → c4
P(0) → c6
P(s(z0)) → c7

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

cond1(true, z0, z1, z2) → cond2(gr(z1, z2), z0, z1, z2)
cond2(true, z0, z1, z2) → cond2(gr(z1, z2), z0, p(z1), z2)
cond2(false, z0, z1, z2) → cond1(gr(z0, z2), p(z0), z1, z2)
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:

COND1(true, z0, z1, z2) → c(COND2(gr(z1, z2), z0, z1, z2), GR(z1, z2))
COND2(true, z0, z1, z2) → c1(COND2(gr(z1, z2), z0, p(z1), z2), GR(z1, z2), P(z1))
COND2(false, z0, z1, z2) → c2(COND1(gr(z0, z2), p(z0), z1, z2), GR(z0, z2), P(z0))
GR(s(z0), s(z1)) → c5(GR(z0, z1))
S tuples:

COND1(true, z0, z1, z2) → c(COND2(gr(z1, z2), z0, z1, z2), GR(z1, z2))
COND2(true, z0, z1, z2) → c1(COND2(gr(z1, z2), z0, p(z1), z2), GR(z1, z2), P(z1))
COND2(false, z0, z1, z2) → c2(COND1(gr(z0, z2), p(z0), z1, z2), GR(z0, z2), P(z0))
GR(s(z0), s(z1)) → c5(GR(z0, z1))
K tuples:none
Defined Rule Symbols:

cond1, cond2, gr, p

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c1, c2, c5

(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing tuple parts

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

cond1(true, z0, z1, z2) → cond2(gr(z1, z2), z0, z1, z2)
cond2(true, z0, z1, z2) → cond2(gr(z1, z2), z0, p(z1), z2)
cond2(false, z0, z1, z2) → cond1(gr(z0, z2), p(z0), z1, z2)
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:

COND1(true, z0, z1, z2) → c(COND2(gr(z1, z2), z0, z1, z2), GR(z1, z2))
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, z0, z1, z2) → c1(COND2(gr(z1, z2), z0, p(z1), z2), GR(z1, z2))
COND2(false, z0, z1, z2) → c2(COND1(gr(z0, z2), p(z0), z1, z2), GR(z0, z2))
S tuples:

COND1(true, z0, z1, z2) → c(COND2(gr(z1, z2), z0, z1, z2), GR(z1, z2))
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, z0, z1, z2) → c1(COND2(gr(z1, z2), z0, p(z1), z2), GR(z1, z2))
COND2(false, z0, z1, z2) → c2(COND1(gr(z0, z2), p(z0), z1, z2), GR(z0, z2))
K tuples:none
Defined Rule Symbols:

cond1, cond2, gr, p

Defined Pair Symbols:

COND1, GR, COND2

Compound Symbols:

c, c5, c1, c2

(7) CdtUsableRulesProof (EQUIVALENT transformation)

The following rules are not usable and were removed:

cond1(true, z0, z1, z2) → cond2(gr(z1, z2), z0, z1, z2)
cond2(true, z0, z1, z2) → cond2(gr(z1, z2), z0, p(z1), z2)
cond2(false, z0, z1, z2) → cond1(gr(z0, z2), p(z0), z1, z2)

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:

COND1(true, z0, z1, z2) → c(COND2(gr(z1, z2), z0, z1, z2), GR(z1, z2))
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, z0, z1, z2) → c1(COND2(gr(z1, z2), z0, p(z1), z2), GR(z1, z2))
COND2(false, z0, z1, z2) → c2(COND1(gr(z0, z2), p(z0), z1, z2), GR(z0, z2))
S tuples:

COND1(true, z0, z1, z2) → c(COND2(gr(z1, z2), z0, z1, z2), GR(z1, z2))
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, z0, z1, z2) → c1(COND2(gr(z1, z2), z0, p(z1), z2), GR(z1, z2))
COND2(false, z0, z1, z2) → c2(COND1(gr(z0, z2), p(z0), z1, z2), GR(z0, z2))
K tuples:none
Defined Rule Symbols:

gr, p

Defined Pair Symbols:

COND1, GR, COND2

Compound Symbols:

c, c5, c1, c2

(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND1(true, z0, z1, z2) → c(COND2(gr(z1, z2), z0, z1, z2), GR(z1, z2)) by

COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0), GR(0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0), GR(s(z0), 0))
COND1(true, x0, s(z0), s(z1)) → c(COND2(gr(z0, z1), x0, s(z0), s(z1)), GR(s(z0), s(z1)))

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, z0, z1, z2) → c1(COND2(gr(z1, z2), z0, p(z1), z2), GR(z1, z2))
COND2(false, z0, z1, z2) → c2(COND1(gr(z0, z2), p(z0), z1, z2), GR(z0, z2))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0), GR(0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0), GR(s(z0), 0))
COND1(true, x0, s(z0), s(z1)) → c(COND2(gr(z0, z1), x0, s(z0), s(z1)), GR(s(z0), s(z1)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, z0, z1, z2) → c1(COND2(gr(z1, z2), z0, p(z1), z2), GR(z1, z2))
COND2(false, z0, z1, z2) → c2(COND1(gr(z0, z2), p(z0), z1, z2), GR(z0, z2))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0), GR(0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0), GR(s(z0), 0))
COND1(true, x0, s(z0), s(z1)) → c(COND2(gr(z0, z1), x0, s(z0), s(z1)), GR(s(z0), s(z1)))
K tuples:none
Defined Rule Symbols:

gr, p

Defined Pair Symbols:

GR, COND2, COND1

Compound Symbols:

c5, c1, c2, c

(11) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing tuple parts

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, z0, z1, z2) → c1(COND2(gr(z1, z2), z0, p(z1), z2), GR(z1, z2))
COND2(false, z0, z1, z2) → c2(COND1(gr(z0, z2), p(z0), z1, z2), GR(z0, z2))
COND1(true, x0, s(z0), s(z1)) → c(COND2(gr(z0, z1), x0, s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, z0, z1, z2) → c1(COND2(gr(z1, z2), z0, p(z1), z2), GR(z1, z2))
COND2(false, z0, z1, z2) → c2(COND1(gr(z0, z2), p(z0), z1, z2), GR(z0, z2))
COND1(true, x0, s(z0), s(z1)) → c(COND2(gr(z0, z1), x0, s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
K tuples:none
Defined Rule Symbols:

gr, p

Defined Pair Symbols:

GR, COND2, COND1

Compound Symbols:

c5, c1, c2, c, c

(13) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(true, z0, z1, z2) → c1(COND2(gr(z1, z2), z0, p(z1), z2), GR(z1, z2)) by

COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2), GR(0, x2))
COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0), GR(0, z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0), GR(s(z0), 0))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(false, z0, z1, z2) → c2(COND1(gr(z0, z2), p(z0), z1, z2), GR(z0, z2))
COND1(true, x0, s(z0), s(z1)) → c(COND2(gr(z0, z1), x0, s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2), GR(0, x2))
COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0), GR(0, z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0), GR(s(z0), 0))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(false, z0, z1, z2) → c2(COND1(gr(z0, z2), p(z0), z1, z2), GR(z0, z2))
COND1(true, x0, s(z0), s(z1)) → c(COND2(gr(z0, z1), x0, s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2), GR(0, x2))
COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0), GR(0, z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0), GR(s(z0), 0))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))
K tuples:none
Defined Rule Symbols:

gr, p

Defined Pair Symbols:

GR, COND2, COND1

Compound Symbols:

c5, c2, c, c, c1

(15) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 3 trailing tuple parts

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(false, z0, z1, z2) → c2(COND1(gr(z0, z2), p(z0), z1, z2), GR(z0, z2))
COND1(true, x0, s(z0), s(z1)) → c(COND2(gr(z0, z1), x0, s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(false, z0, z1, z2) → c2(COND1(gr(z0, z2), p(z0), z1, z2), GR(z0, z2))
COND1(true, x0, s(z0), s(z1)) → c(COND2(gr(z0, z1), x0, s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
K tuples:none
Defined Rule Symbols:

gr, p

Defined Pair Symbols:

GR, COND2, COND1

Compound Symbols:

c5, c2, c, c, c1, c1

(17) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
We considered the (Usable) Rules:

p(s(z0)) → z0
p(0) → 0
And the Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(false, z0, z1, z2) → c2(COND1(gr(z0, z2), p(z0), z1, z2), GR(z0, z2))
COND1(true, x0, s(z0), s(z1)) → c(COND2(gr(z0, z1), x0, s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3, x4)) = x3   
POL(COND2(x1, x2, x3, x4)) = x3   
POL(GR(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = 0   
POL(p(x1)) = x1   
POL(s(x1)) = [1] + x1   
POL(true) = 0   

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(false, z0, z1, z2) → c2(COND1(gr(z0, z2), p(z0), z1, z2), GR(z0, z2))
COND1(true, x0, s(z0), s(z1)) → c(COND2(gr(z0, z1), x0, s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(false, z0, z1, z2) → c2(COND1(gr(z0, z2), p(z0), z1, z2), GR(z0, z2))
COND1(true, x0, s(z0), s(z1)) → c(COND2(gr(z0, z1), x0, s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
K tuples:

COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
Defined Rule Symbols:

gr, p

Defined Pair Symbols:

GR, COND2, COND1

Compound Symbols:

c5, c2, c, c, c1, c1

(19) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(false, z0, z1, z2) → c2(COND1(gr(z0, z2), p(z0), z1, z2), GR(z0, z2)) by

COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2), GR(0, x2))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND2(false, 0, x1, z0) → c2(COND1(false, p(0), x1, z0), GR(0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0), GR(s(z0), 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))

(20) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, s(z0), s(z1)) → c(COND2(gr(z0, z1), x0, s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2), GR(0, x2))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND2(false, 0, x1, z0) → c2(COND1(false, p(0), x1, z0), GR(0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0), GR(s(z0), 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, s(z0), s(z1)) → c(COND2(gr(z0, z1), x0, s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2), GR(0, x2))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND2(false, 0, x1, z0) → c2(COND1(false, p(0), x1, z0), GR(0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0), GR(s(z0), 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
K tuples:

COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
Defined Rule Symbols:

gr, p

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c1, c2

(21) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

COND2(false, 0, x1, z0) → c2(COND1(false, p(0), x1, z0), GR(0, z0))

(22) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, s(z0), s(z1)) → c(COND2(gr(z0, z1), x0, s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2), GR(0, x2))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0), GR(s(z0), 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, s(z0), s(z1)) → c(COND2(gr(z0, z1), x0, s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2), GR(0, x2))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0), GR(s(z0), 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
K tuples:

COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
Defined Rule Symbols:

gr, p

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c1, c2

(23) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing tuple parts

(24) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, s(z0), s(z1)) → c(COND2(gr(z0, z1), x0, s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, s(z0), s(z1)) → c(COND2(gr(z0, z1), x0, s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
K tuples:

COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
Defined Rule Symbols:

gr, p

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c1, c2, c2

(25) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
We considered the (Usable) Rules:

p(s(z0)) → z0
And the Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, s(z0), s(z1)) → c(COND2(gr(z0, z1), x0, s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3, x4)) = [4]x2   
POL(COND2(x1, x2, x3, x4)) = [4]x2   
POL(GR(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = 0   
POL(p(x1)) = x1   
POL(s(x1)) = [2] + x1   
POL(true) = 0   

(26) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, s(z0), s(z1)) → c(COND2(gr(z0, z1), x0, s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, s(z0), s(z1)) → c(COND2(gr(z0, z1), x0, s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
K tuples:

COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
Defined Rule Symbols:

gr, p

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c1, c2, c2

(27) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND1(true, x0, s(z0), s(z1)) → c(COND2(gr(z0, z1), x0, s(z0), s(z1)), GR(s(z0), s(z1))) by

COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))

(28) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
K tuples:

COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
Defined Rule Symbols:

gr, p

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c1, c1, c2, c2, c

(29) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
We considered the (Usable) Rules:none
And the Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3, x4)) = [4]x4   
POL(COND2(x1, x2, x3, x4)) = [4]x4   
POL(GR(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(false) = [4]   
POL(gr(x1, x2)) = 0   
POL(p(x1)) = [2] + [2]x1   
POL(s(x1)) = [2]   
POL(true) = 0   

(30) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
Defined Rule Symbols:

gr, p

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c1, c1, c2, c2, c

(31) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2)) by

COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0), GR(s(z0), 0))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))

(32) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0), GR(s(z0), 0))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
Defined Rule Symbols:

gr, p

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c1, c1, c2, c2, c

(33) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(34) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
Defined Rule Symbols:

gr, p

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c1, c1, c2, c2, c

(35) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, p(s(z0)), s(z1)), GR(s(z0), s(z1))) by

COND2(true, x0, s(z0), s(x2)) → c1(COND2(gr(z0, x2), x0, z0, s(x2)), GR(s(z0), s(x2)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))

(36) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(z0), s(x2)) → c1(COND2(gr(z0, x2), x0, z0, s(x2)), GR(s(z0), s(x2)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
Defined Rule Symbols:

gr, p

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c1, c2, c2, c, c1

(37) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
We considered the (Usable) Rules:

p(s(z0)) → z0
p(0) → 0
And the Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3, x4)) = x3   
POL(COND2(x1, x2, x3, x4)) = x3   
POL(GR(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = 0   
POL(p(x1)) = x1   
POL(s(x1)) = [1] + x1   
POL(true) = 0   

(38) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
Defined Rule Symbols:

gr, p

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c1, c2, c2, c, c1

(39) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(true, x0, 0, x2) → c1(COND2(gr(0, x2), x0, 0, x2)) by

COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))

(40) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
K tuples:

COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
Defined Rule Symbols:

gr, p

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c1, c2, c2, c, c1

(41) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(true, x0, 0, z0) → c1(COND2(false, x0, p(0), z0)) by

COND2(true, x0, 0, x1) → c1(COND2(false, x0, 0, x1))

(42) Obligation:

Complexity Dependency Tuples Problem
Rules:

gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
K tuples:

COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
Defined Rule Symbols:

gr, p

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c1, c2, c2, c, c1

(43) CdtUsableRulesProof (EQUIVALENT transformation)

The following rules are not usable and were removed:

p(0) → 0

(44) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
K tuples:

COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c1, c2, c2, c, c1

(45) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, p(s(z0)), 0)) by

COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))

(46) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
K tuples:

COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c2, c2, c, c1, c1

(47) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
We considered the (Usable) Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
And the Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3, x4)) = [2]x1 + x3   
POL(COND2(x1, x2, x3, x4)) = x3   
POL(GR(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = 0   
POL(p(x1)) = x1   
POL(s(x1)) = [2] + x1   
POL(true) = 0   

(48) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
K tuples:

COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c2, c2, c, c1, c1

(49) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2)) by

COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0), GR(s(z0), 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))

(50) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0), GR(s(z0), 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
K tuples:

COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c2, c2, c, c1, c1

(51) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(52) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
K tuples:

COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c2, c2, c, c1, c1

(53) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), p(s(z0)), x1, s(z1)), GR(s(z0), s(z1))) by

COND2(false, s(z0), x1, s(x2)) → c2(COND1(gr(z0, x2), z0, x1, s(x2)), GR(s(z0), s(x2)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(COND1(false, p(s(0)), x1, s(z0)), GR(s(0), s(z0)))

(54) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(COND1(false, p(s(0)), x1, s(z0)), GR(s(0), s(z0)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(x2)) → c2(COND1(gr(z0, x2), z0, x1, s(x2)), GR(s(z0), s(x2)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(COND1(false, p(s(0)), x1, s(z0)), GR(s(0), s(z0)))
K tuples:

COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c2, c, c1, c1, c2

(55) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(56) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(x2)) → c2(COND1(gr(z0, x2), z0, x1, s(x2)), GR(s(z0), s(x2)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
K tuples:

COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c2, c, c1, c1, c2

(57) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
We considered the (Usable) Rules:

p(s(z0)) → z0
And the Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3, x4)) = x2 + x3   
POL(COND2(x1, x2, x3, x4)) = x2 + x3   
POL(GR(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = [5] + [2]x1 + [3]x2   
POL(p(x1)) = x1   
POL(s(x1)) = [2] + x1   
POL(true) = [4]   

(58) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c2, c, c1, c1, c2

(59) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(false, 0, x1, x2) → c2(COND1(gr(0, x2), 0, x1, x2)) by

COND2(false, 0, x0, z0) → c2(COND1(false, 0, x0, z0))

(60) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, 0, x0, z0) → c2(COND1(false, 0, x0, z0))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, 0, x0, z0) → c2(COND1(false, 0, x0, z0))
K tuples:

COND2(true, x0, s(z0), x2) → c1(COND2(gr(s(z0), x2), x0, z0, x2), GR(s(z0), x2))
COND2(false, s(z0), x1, x2) → c2(COND1(gr(s(z0), x2), z0, x1, x2), GR(s(z0), x2))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c2, c, c1, c1, c2

(61) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

COND2(false, 0, x0, z0) → c2(COND1(false, 0, x0, z0))

(62) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c2, c, c1, c1, c2

(63) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(false, s(z0), x1, 0) → c2(COND1(true, p(s(z0)), x1, 0)) by

COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))

(64) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c1, c2, c2

(65) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
We considered the (Usable) Rules:

p(s(z0)) → z0
And the Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3, x4)) = x2   
POL(COND2(x1, x2, x3, x4)) = x2   
POL(GR(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = 0   
POL(p(x1)) = x1   
POL(s(x1)) = [1] + x1   
POL(true) = 0   

(66) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c1, c2, c2

(67) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)

The following tuples could be moved from S to K by knowledge propagation:

COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))

(68) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c1, c2, c2

(69) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND1(true, x0, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), x0, s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1)))) by

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))

(70) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c1, c2, c2

(71) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
We considered the (Usable) Rules:none
And the Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = [2]   
POL(COND1(x1, x2, x3, x4)) = [2] + [2]x4   
POL(COND2(x1, x2, x3, x4)) = [2] + [2]x4   
POL(GR(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(false) = [2]   
POL(gr(x1, x2)) = [2]x1 + x2   
POL(p(x1)) = [2] + [2]x1   
POL(s(x1)) = 0   
POL(true) = 0   

(72) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c1, c2, c2

(73) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1))) by

COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))

(74) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c1, c2, c2

(75) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, p(s(0)), s(z0)), GR(s(0), s(z0))) by

COND2(true, x0, s(0), s(x1)) → c1(COND2(false, x0, 0, s(x1)), GR(s(0), s(x1)))

(76) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(0), s(x1)) → c1(COND2(false, x0, 0, s(x1)), GR(s(0), s(x1)))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c1, c2, c2

(77) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
We considered the (Usable) Rules:

p(s(z0)) → z0
And the Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3, x4)) = [4]x3   
POL(COND2(x1, x2, x3, x4)) = [4]x3   
POL(GR(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = 0   
POL(p(x1)) = x1   
POL(s(x1)) = [4] + x1   
POL(true) = 0   

(78) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c1, c2, c2

(79) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0))) by

COND2(true, x0, s(s(x1)), s(0)) → c1(COND2(true, x0, s(x1), s(0)), GR(s(s(x1)), s(0)))

(80) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(0)) → c1(COND2(true, x0, s(x1), s(0)), GR(s(s(x1)), s(0)))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c1, c2, c2

(81) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
We considered the (Usable) Rules:

p(s(z0)) → z0
And the Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3, x4)) = [4]x3   
POL(COND2(x1, x2, x3, x4)) = [4]x3   
POL(GR(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = 0   
POL(p(x1)) = x1   
POL(s(x1)) = [4] + x1   
POL(true) = 0   

(82) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c1, c2, c2

(83) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1)))) by

COND2(true, x0, s(s(x1)), s(s(x2))) → c1(COND2(gr(x1, x2), x0, s(x1), s(s(x2))), GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))

(84) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(COND2(gr(x1, x2), x0, s(x1), s(s(x2))), GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c2, c2, c1

(85) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
We considered the (Usable) Rules:

p(s(z0)) → z0
And the Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3, x4)) = [2] + x3   
POL(COND2(x1, x2, x3, x4)) = [2] + x3   
POL(GR(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = 0   
POL(p(x1)) = x1   
POL(s(x1)) = [2] + x1   
POL(true) = 0   

(86) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c2, c2, c1

(87) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1))) by

COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(COND1(false, 0, x1, s(z0)), GR(s(0), s(z0)))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))

(88) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(COND1(false, 0, x1, s(z0)), GR(s(0), s(z0)))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c2, c2, c1

(89) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(90) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c2, c2, c1

(91) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(false, s(z0), x1, s(x2)) → c2(COND1(gr(z0, x2), z0, x1, s(x2)), GR(s(z0), s(x2))) by

COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(COND1(false, 0, x1, s(z0)), GR(s(0), s(z0)))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))

(92) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(0), x1, s(z0)) → c2(COND1(false, 0, x1, s(z0)), GR(s(0), s(z0)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c2, c2, c1

(93) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(94) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c2, c2, c1

(95) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, p(s(s(z0))), x1, s(0)), GR(s(s(z0)), s(0))) by

COND2(false, s(s(x0)), x1, s(0)) → c2(COND1(true, s(x0), x1, s(0)), GR(s(s(x0)), s(0)))

(96) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(x0)), x1, s(0)) → c2(COND1(true, s(x0), x1, s(0)), GR(s(s(x0)), s(0)))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c2, c2, c1

(97) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
We considered the (Usable) Rules:

p(s(z0)) → z0
And the Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3, x4)) = [1] + x2   
POL(COND2(x1, x2, x3, x4)) = [1] + x2   
POL(GR(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = 0   
POL(p(x1)) = x1   
POL(s(x1)) = [2] + x1   
POL(true) = 0   

(98) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c2, c2, c1

(99) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)

The following tuples could be moved from S to K by knowledge propagation:

COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(x1)), s(0)) → c1(COND2(true, x0, s(x1), s(0)), GR(s(s(x1)), s(0)))

(100) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c2, c2, c1

(101) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), p(s(s(z0))), x1, s(s(z1))), GR(s(s(z0)), s(s(z1)))) by

COND2(false, s(s(x0)), x1, s(s(x2))) → c2(COND1(gr(x0, x2), s(x0), x1, s(s(x2))), GR(s(s(x0)), s(s(x2))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(COND1(false, p(s(s(0))), x1, s(s(z0))), GR(s(s(0)), s(s(z0))))

(102) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(COND1(false, p(s(s(0))), x1, s(s(z0))), GR(s(s(0)), s(s(z0))))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(x0)), x1, s(s(x2))) → c2(COND1(gr(x0, x2), s(x0), x1, s(s(x2))), GR(s(s(x0)), s(s(x2))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(COND1(false, p(s(s(0))), x1, s(s(z0))), GR(s(s(0)), s(s(z0))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c2, c1, c2

(103) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(104) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(x0)), x1, s(s(x2))) → c2(COND1(gr(x0, x2), s(x0), x1, s(s(x2))), GR(s(s(x0)), s(s(x2))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c2, c1, c2

(105) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
We considered the (Usable) Rules:none
And the Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = [4]   
POL(COND1(x1, x2, x3, x4)) = [4]   
POL(COND2(x1, x2, x3, x4)) = [4]   
POL(GR(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(false) = [3]   
POL(gr(x1, x2)) = [4] + [5]x1 + [3]x2   
POL(p(x1)) = [2] + [4]x1   
POL(s(x1)) = [5] + x1   
POL(true) = [2]   

(106) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(x0)), x1, s(s(x2))) → c2(COND1(gr(x0, x2), s(x0), x1, s(s(x2))), GR(s(s(x0)), s(s(x2))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c2, c1, c2

(107) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
We considered the (Usable) Rules:

p(s(z0)) → z0
And the Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3, x4)) = x2   
POL(COND2(x1, x2, x3, x4)) = x2   
POL(GR(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = 0   
POL(p(x1)) = x1   
POL(s(x1)) = [1] + x1   
POL(true) = 0   

(108) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c2, c1, c2

(109) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND1(true, x0, s(s(s(z0))), s(s(s(z1)))) → c(COND2(gr(z0, z1), x0, s(s(s(z0))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1))))) by

COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))

(110) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c2, c1, c2

(111) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
We considered the (Usable) Rules:none
And the Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = [4]   
POL(COND1(x1, x2, x3, x4)) = [2]   
POL(COND2(x1, x2, x3, x4)) = [2]   
POL(GR(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(false) = [5]   
POL(gr(x1, x2)) = [4] + [4]x1 + [3]x2   
POL(p(x1)) = [3] + x1   
POL(s(x1)) = [2]   
POL(true) = [3]   

(112) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c2, c1, c2

(113) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1)))) by

COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))

(114) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c2, c1, c2

(115) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(true, x0, s(s(x1)), s(s(x2))) → c1(COND2(gr(x1, x2), x0, s(x1), s(s(x2))), GR(s(s(x1)), s(s(x2)))) by

COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))

(116) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c2, c1, c2

(117) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0)))) by

COND2(true, x0, s(s(s(x1))), s(s(0))) → c1(COND2(true, x0, s(s(x1)), s(s(0))), GR(s(s(s(x1))), s(s(0))))

(118) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(x1))), s(s(0))) → c1(COND2(true, x0, s(s(x1)), s(s(0))), GR(s(s(s(x1))), s(s(0))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c2, c1, c2

(119) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
We considered the (Usable) Rules:

p(s(z0)) → z0
And the Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3, x4)) = [2]x3   
POL(COND2(x1, x2, x3, x4)) = [2]x3   
POL(GR(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = 0   
POL(p(x1)) = x1   
POL(s(x1)) = [1] + x1   
POL(true) = 0   

(120) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c2, c1, c2

(121) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1))))) by

COND2(true, x0, s(s(s(x1))), s(s(s(x2)))) → c1(COND2(gr(x1, x2), x0, s(s(x1)), s(s(s(x2)))), GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))

(122) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(x1))), s(s(s(x2)))) → c1(COND2(gr(x1, x2), x0, s(s(x1)), s(s(s(x2)))), GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c2, c1, c2

(123) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
We considered the (Usable) Rules:

p(s(z0)) → z0
And the Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3, x4)) = [2]x3   
POL(COND2(x1, x2, x3, x4)) = [2]x3   
POL(GR(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(false) = [5]   
POL(gr(x1, x2)) = 0   
POL(p(x1)) = x1   
POL(s(x1)) = [4] + x1   
POL(true) = 0   

(124) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c2, c1, c2

(125) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0)))) by

COND2(true, x0, s(s(0)), s(s(x1))) → c1(COND2(false, x0, s(0), s(s(x1))), GR(s(s(0)), s(s(x1))))

(126) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(0)), s(s(x1))) → c1(COND2(false, x0, s(0), s(s(x1))), GR(s(s(0)), s(s(x1))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c2, c1, c2

(127) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
We considered the (Usable) Rules:

p(s(z0)) → z0
And the Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3, x4)) = [4]x3   
POL(COND2(x1, x2, x3, x4)) = [4]x3   
POL(GR(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = 0   
POL(p(x1)) = x1   
POL(s(x1)) = [4] + x1   
POL(true) = 0   

(128) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
S tuples:

GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

GR, COND1, COND2

Compound Symbols:

c5, c, c, c1, c2, c1, c2

(129) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use forward instantiation to replace GR(s(z0), s(z1)) → c5(GR(z0, z1)) by

GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))

(130) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
S tuples:

COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), s(z1)) → c1(COND2(gr(z0, z1), x0, z0, s(z1)), GR(s(z0), s(z1)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, s(z1)) → c2(COND1(gr(z0, z1), z0, x1, s(z1)), GR(s(z0), s(z1)))
COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(s(z1))) → c1(COND2(gr(z0, z1), x0, s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c, c1, c2, c1, c2, c5

(131) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

COND2(false, s(0), x1, s(z0)) → c2(GR(s(0), s(z0)))

(132) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
S tuples:

COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)), GR(s(0), s(z0)))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)), GR(s(0), s(z0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)), GR(s(s(z0)), s(0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c, c1, c2, c1, c2, c5

(133) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 9 trailing tuple parts

(134) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
S tuples:

COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c1, c2, c, c2, c1, c5

(135) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use instantiation to replace COND1(true, x0, 0, z0) → c(COND2(false, x0, 0, z0)) by

COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))

(136) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
S tuples:

COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c1, c2, c, c2, c1, c5

(137) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)

The following tuples could be moved from S to K by knowledge propagation:

COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND2(false, s(s(x0)), x1, s(0)) → c2(COND1(true, s(x0), x1, s(0)))

(138) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
S tuples:

COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
K tuples:

COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2)))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c1, c2, c, c2, c1, c5

(139) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use forward instantiation to replace COND1(true, x0, s(x1), s(x2)) → c(GR(s(x1), s(x2))) by

COND1(true, z0, s(s(y0)), s(s(y1))) → c(GR(s(s(y0)), s(s(y1))))

(140) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
S tuples:

COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
K tuples:

COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c1, c2, c, c2, c1, c5

(141) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use instantiation to replace COND2(true, x0, 0, z0) → c1(COND2(false, x0, 0, z0)) by

COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(0)))) → c1(COND2(false, x0, 0, s(s(s(0)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))

(142) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(0)))) → c1(COND2(false, x0, 0, s(s(s(0)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
S tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(0)))) → c1(COND2(false, x0, 0, s(s(s(0)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
K tuples:

COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c1, c2, c, c2, c1, c5

(143) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)

The following tuples could be moved from S to K by knowledge propagation:

COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))

(144) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(0)))) → c1(COND2(false, x0, 0, s(s(s(0)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
S tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND2(true, x0, 0, s(s(s(0)))) → c1(COND2(false, x0, 0, s(s(s(0)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
K tuples:

COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c1, c2, c, c2, c1, c5

(145) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c1(COND2(true, x0, p(s(s(s(s(z0))))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0))))) by

COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))

(146) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(0)))) → c1(COND2(false, x0, 0, s(s(s(0)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
S tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND2(true, x0, 0, s(s(s(0)))) → c1(COND2(false, x0, 0, s(s(s(0)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
K tuples:

COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c1, c2, c, c2, c1, c5

(147) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)

Removed 1 leading nodes:

COND2(true, x0, 0, s(s(s(0)))) → c1(COND2(false, x0, 0, s(s(s(0)))))

(148) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
S tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
K tuples:

COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c1, c2, c, c2, c1, c5

(149) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
We considered the (Usable) Rules:none
And the Tuples:

COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3, x4)) = [1]   
POL(COND2(x1, x2, x3, x4)) = [1]   
POL(GR(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(false) = [3]   
POL(gr(x1, x2)) = [2] + [2]x1 + [5]x2   
POL(p(x1)) = [3] + [3]x1   
POL(s(x1)) = [2]   
POL(true) = 0   

(150) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
S tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
K tuples:

COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c1, c2, c, c2, c1, c5

(151) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
We considered the (Usable) Rules:

p(s(z0)) → z0
And the Tuples:

COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3, x4)) = [4]x3   
POL(COND2(x1, x2, x3, x4)) = [4]x3   
POL(GR(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = 0   
POL(p(x1)) = x1   
POL(s(x1)) = [2] + x1   
POL(true) = 0   

(152) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
S tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
K tuples:

COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c1, c2, c, c2, c1, c5

(153) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use instantiation to replace COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0)) by

COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))

(154) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
S tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
K tuples:

COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c1, c2, c, c2, c1, c5

(155) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use instantiation to replace COND2(false, s(z0), x1, 0) → c2(COND1(true, z0, x1, 0)) by

COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))

(156) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
S tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
K tuples:

COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c1, c, c2, c2, c1, c5

(157) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)

Removed 1 leading nodes:

COND1(true, x0, s(z0), 0) → c(COND2(true, x0, s(z0), 0))

(158) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
S tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
K tuples:

COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND2, COND1, GR

Compound Symbols:

c1, c, c, c2, c2, c1, c5

(159) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use forward instantiation to replace COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0)) by

COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))

(160) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
S tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
K tuples:

COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND2, COND1, GR

Compound Symbols:

c1, c, c, c2, c2, c1, c5

(161) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use forward instantiation to replace COND2(true, x0, s(z0), 0) → c1(COND2(true, x0, z0, 0)) by

COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND2(true, z0, s(s(s(y1))), 0) → c1(COND2(true, z0, s(s(y1)), 0))
COND2(true, z0, s(s(0)), 0) → c1(COND2(true, z0, s(0), 0))

(162) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND2(true, z0, s(s(s(y1))), 0) → c1(COND2(true, z0, s(s(y1)), 0))
COND2(true, z0, s(s(0)), 0) → c1(COND2(true, z0, s(0), 0))
S tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
K tuples:

COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c, c1, c2, c2, c1, c5

(163) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use instantiation to replace COND1(true, x0, s(s(0)), s(s(z0))) → c(COND2(false, x0, s(s(0)), s(s(z0))), GR(s(s(0)), s(s(z0)))) by

COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))

(164) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND2(true, z0, s(s(s(y1))), 0) → c1(COND2(true, z0, s(s(y1)), 0))
COND2(true, z0, s(s(0)), 0) → c1(COND2(true, z0, s(0), 0))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
S tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
K tuples:

COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c, c1, c2, c2, c1, c5

(165) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use instantiation to replace COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2)))) by

COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))

(166) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2)))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND2(true, z0, s(s(s(y1))), 0) → c1(COND2(true, z0, s(s(y1)), 0))
COND2(true, z0, s(s(0)), 0) → c1(COND2(true, z0, s(0), 0))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
S tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
K tuples:

COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c, c1, c2, c2, c1, c5

(167) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use forward instantiation to replace COND2(true, x0, s(x1), s(x2)) → c1(GR(s(x1), s(x2))) by

COND2(true, z0, s(s(y0)), s(s(y1))) → c1(GR(s(s(y0)), s(s(y1))))

(168) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND2(true, z0, s(s(s(y1))), 0) → c1(COND2(true, z0, s(s(y1)), 0))
COND2(true, z0, s(s(0)), 0) → c1(COND2(true, z0, s(0), 0))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
S tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
K tuples:

COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c, c2, c2, c1, c1, c5

(169) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use forward instantiation to replace COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2))) by

COND2(false, s(s(y0)), z1, s(s(y1))) → c2(GR(s(s(y0)), s(s(y1))))

(170) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND2(true, z0, s(s(s(y1))), 0) → c1(COND2(true, z0, s(s(y1)), 0))
COND2(true, z0, s(s(0)), 0) → c1(COND2(true, z0, s(0), 0))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(y0)), z1, s(s(y1))) → c2(GR(s(s(y0)), s(s(y1))))
S tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
K tuples:

COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c, c2, c2, c1, c1, c5

(171) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)

Used rewriting to replace COND2(false, s(s(s(z0))), x1, s(s(0))) → c2(COND1(true, p(s(s(s(z0)))), x1, s(s(0))), GR(s(s(s(z0))), s(s(0)))) by COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))

(172) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND2(true, z0, s(s(s(y1))), 0) → c1(COND2(true, z0, s(s(y1)), 0))
COND2(true, z0, s(s(0)), 0) → c1(COND2(true, z0, s(0), 0))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(y0)), z1, s(s(y1))) → c2(GR(s(s(y0)), s(s(y1))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
S tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
K tuples:

COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c, c2, c2, c1, c1, c5

(173) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
We considered the (Usable) Rules:

p(s(z0)) → z0
And the Tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND2(true, z0, s(s(s(y1))), 0) → c1(COND2(true, z0, s(s(y1)), 0))
COND2(true, z0, s(s(0)), 0) → c1(COND2(true, z0, s(0), 0))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(y0)), z1, s(s(y1))) → c2(GR(s(s(y0)), s(s(y1))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3, x4)) = x2   
POL(COND2(x1, x2, x3, x4)) = x2   
POL(GR(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = 0   
POL(p(x1)) = x1   
POL(s(x1)) = [1] + x1   
POL(true) = 0   

(174) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND2(true, z0, s(s(s(y1))), 0) → c1(COND2(true, z0, s(s(y1)), 0))
COND2(true, z0, s(s(0)), 0) → c1(COND2(true, z0, s(0), 0))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(y0)), z1, s(s(y1))) → c2(GR(s(s(y0)), s(s(y1))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
S tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
K tuples:

COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c, c2, c2, c1, c1, c5

(175) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)

The following tuples could be moved from S to K by knowledge propagation:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(x1))), s(s(0))) → c1(COND2(true, x0, s(s(x1)), s(s(0))), GR(s(s(s(x1))), s(s(0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(x0)), x1, s(s(x2))) → c2(COND1(gr(x0, x2), s(x0), x1, s(s(x2))), GR(s(s(x0)), s(s(x2))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(x0)), x1, s(s(x2))) → c2(COND1(gr(x0, x2), s(x0), x1, s(s(x2))), GR(s(s(x0)), s(s(x2))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))

(176) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND2(true, z0, s(s(s(y1))), 0) → c1(COND2(true, z0, s(s(y1)), 0))
COND2(true, z0, s(s(0)), 0) → c1(COND2(true, z0, s(0), 0))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(y0)), z1, s(s(y1))) → c2(GR(s(s(y0)), s(s(y1))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
S tuples:

COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
K tuples:

COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c, c2, c2, c1, c1, c5

(177) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use instantiation to replace COND1(true, x0, s(s(s(z0))), s(s(0))) → c(COND2(true, x0, s(s(s(z0))), s(s(0))), GR(s(s(s(z0))), s(s(0)))) by

COND1(true, s(x0), s(s(s(z1))), s(s(0))) → c(COND2(true, s(x0), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, s(s(x0)), s(s(s(z1))), s(s(0))) → c(COND2(true, s(s(x0)), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))

(178) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND2(true, z0, s(s(s(y1))), 0) → c1(COND2(true, z0, s(s(y1)), 0))
COND2(true, z0, s(s(0)), 0) → c1(COND2(true, z0, s(0), 0))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(y0)), z1, s(s(y1))) → c2(GR(s(s(y0)), s(s(y1))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, s(x0), s(s(s(z1))), s(s(0))) → c(COND2(true, s(x0), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, s(s(x0)), s(s(s(z1))), s(s(0))) → c(COND2(true, s(s(x0)), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
S tuples:

COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
K tuples:

COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, s(x0), s(s(s(z1))), s(s(0))) → c(COND2(true, s(x0), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, s(s(x0)), s(s(s(z1))), s(s(0))) → c(COND2(true, s(s(x0)), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c2, c2, c, c1, c1, c5

(179) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)

Used rewriting to replace COND2(false, s(s(s(z0))), x1, s(s(s(z1)))) → c2(COND1(gr(z0, z1), p(s(s(s(z0)))), x1, s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1))))) by COND2(false, s(s(s(z0))), z1, s(s(s(z2)))) → c2(COND1(gr(z0, z2), s(s(z0)), z1, s(s(s(z2)))), GR(s(s(s(z0))), s(s(s(z2)))))

(180) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND2(true, z0, s(s(s(y1))), 0) → c1(COND2(true, z0, s(s(y1)), 0))
COND2(true, z0, s(s(0)), 0) → c1(COND2(true, z0, s(0), 0))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(y0)), z1, s(s(y1))) → c2(GR(s(s(y0)), s(s(y1))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, s(x0), s(s(s(z1))), s(s(0))) → c(COND2(true, s(x0), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, s(s(x0)), s(s(s(z1))), s(s(0))) → c(COND2(true, s(s(x0)), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND2(false, s(s(s(z0))), z1, s(s(s(z2)))) → c2(COND1(gr(z0, z2), s(s(z0)), z1, s(s(s(z2)))), GR(s(s(s(z0))), s(s(s(z2)))))
S tuples:

COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND2(false, s(s(s(z0))), z1, s(s(s(z2)))) → c2(COND1(gr(z0, z2), s(s(z0)), z1, s(s(s(z2)))), GR(s(s(s(z0))), s(s(s(z2)))))
K tuples:

COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, s(x0), s(s(s(z1))), s(s(0))) → c(COND2(true, s(x0), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, s(s(x0)), s(s(s(z1))), s(s(0))) → c(COND2(true, s(s(x0)), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c2, c2, c, c1, c1, c5

(181) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
We considered the (Usable) Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
And the Tuples:

COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND2(true, z0, s(s(s(y1))), 0) → c1(COND2(true, z0, s(s(y1)), 0))
COND2(true, z0, s(s(0)), 0) → c1(COND2(true, z0, s(0), 0))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(y0)), z1, s(s(y1))) → c2(GR(s(s(y0)), s(s(y1))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, s(x0), s(s(s(z1))), s(s(0))) → c(COND2(true, s(x0), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, s(s(x0)), s(s(s(z1))), s(s(0))) → c(COND2(true, s(s(x0)), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND2(false, s(s(s(z0))), z1, s(s(s(z2)))) → c2(COND1(gr(z0, z2), s(s(z0)), z1, s(s(s(z2)))), GR(s(s(s(z0))), s(s(s(z2)))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3, x4)) = [4]x1 + [4]x2 + x3   
POL(COND2(x1, x2, x3, x4)) = [2]x1 + [4]x2 + x3   
POL(GR(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = [4]   
POL(p(x1)) = x1   
POL(s(x1)) = [4] + x1   
POL(true) = [4]   

(182) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND2(true, z0, s(s(s(y1))), 0) → c1(COND2(true, z0, s(s(y1)), 0))
COND2(true, z0, s(s(0)), 0) → c1(COND2(true, z0, s(0), 0))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(y0)), z1, s(s(y1))) → c2(GR(s(s(y0)), s(s(y1))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, s(x0), s(s(s(z1))), s(s(0))) → c(COND2(true, s(x0), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, s(s(x0)), s(s(s(z1))), s(s(0))) → c(COND2(true, s(s(x0)), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND2(false, s(s(s(z0))), z1, s(s(s(z2)))) → c2(COND1(gr(z0, z2), s(s(z0)), z1, s(s(s(z2)))), GR(s(s(s(z0))), s(s(s(z2)))))
S tuples:

COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND2(false, s(s(s(z0))), z1, s(s(s(z2)))) → c2(COND1(gr(z0, z2), s(s(z0)), z1, s(s(s(z2)))), GR(s(s(s(z0))), s(s(s(z2)))))
K tuples:

COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, s(x0), s(s(s(z1))), s(s(0))) → c(COND2(true, s(x0), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, s(s(x0)), s(s(s(z1))), s(s(0))) → c(COND2(true, s(s(x0)), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c2, c2, c, c1, c1, c5

(183) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND2(false, s(s(s(z0))), z1, s(s(s(z2)))) → c2(COND1(gr(z0, z2), s(s(z0)), z1, s(s(s(z2)))), GR(s(s(s(z0))), s(s(s(z2)))))
We considered the (Usable) Rules:

gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
And the Tuples:

COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND2(true, z0, s(s(s(y1))), 0) → c1(COND2(true, z0, s(s(y1)), 0))
COND2(true, z0, s(s(0)), 0) → c1(COND2(true, z0, s(0), 0))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(y0)), z1, s(s(y1))) → c2(GR(s(s(y0)), s(s(y1))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, s(x0), s(s(s(z1))), s(s(0))) → c(COND2(true, s(x0), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, s(s(x0)), s(s(s(z1))), s(s(0))) → c(COND2(true, s(s(x0)), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND2(false, s(s(s(z0))), z1, s(s(s(z2)))) → c2(COND1(gr(z0, z2), s(s(z0)), z1, s(s(s(z2)))), GR(s(s(s(z0))), s(s(s(z2)))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3, x4)) = [3] + x1 + [4]x2   
POL(COND2(x1, x2, x3, x4)) = [4]x2   
POL(GR(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = [3]   
POL(p(x1)) = [1]   
POL(s(x1)) = [4] + x1   
POL(true) = 0   

(184) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2)))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND2(true, z0, s(s(s(y1))), 0) → c1(COND2(true, z0, s(s(y1)), 0))
COND2(true, z0, s(s(0)), 0) → c1(COND2(true, z0, s(0), 0))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(y0)), z1, s(s(y1))) → c2(GR(s(s(y0)), s(s(y1))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, s(x0), s(s(s(z1))), s(s(0))) → c(COND2(true, s(x0), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, s(s(x0)), s(s(s(z1))), s(s(0))) → c(COND2(true, s(s(x0)), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND2(false, s(s(s(z0))), z1, s(s(s(z2)))) → c2(COND1(gr(z0, z2), s(s(z0)), z1, s(s(s(z2)))), GR(s(s(s(z0))), s(s(s(z2)))))
S tuples:

COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
K tuples:

COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, s(x0), s(s(s(z1))), s(s(0))) → c(COND2(true, s(x0), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, s(s(x0)), s(s(s(z1))), s(s(0))) → c(COND2(true, s(s(x0)), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND2(false, s(s(s(z0))), z1, s(s(s(z2)))) → c2(COND1(gr(z0, z2), s(s(z0)), z1, s(s(s(z2)))), GR(s(s(s(z0))), s(s(s(z2)))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c2, c2, c, c1, c1, c5

(185) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use forward instantiation to replace COND2(false, s(x0), x1, s(x2)) → c2(GR(s(x0), s(x2))) by

COND2(false, s(s(y0)), z1, s(s(y1))) → c2(GR(s(s(y0)), s(s(y1))))

(186) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND2(true, z0, s(s(s(y1))), 0) → c1(COND2(true, z0, s(s(y1)), 0))
COND2(true, z0, s(s(0)), 0) → c1(COND2(true, z0, s(0), 0))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(y0)), z1, s(s(y1))) → c2(GR(s(s(y0)), s(s(y1))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, s(x0), s(s(s(z1))), s(s(0))) → c(COND2(true, s(x0), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, s(s(x0)), s(s(s(z1))), s(s(0))) → c(COND2(true, s(s(x0)), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND2(false, s(s(s(z0))), z1, s(s(s(z2)))) → c2(COND1(gr(z0, z2), s(s(z0)), z1, s(s(s(z2)))), GR(s(s(s(z0))), s(s(s(z2)))))
S tuples:

COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
K tuples:

COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, s(x0), s(s(s(z1))), s(s(0))) → c(COND2(true, s(x0), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, s(s(x0)), s(s(s(z1))), s(s(0))) → c(COND2(true, s(s(x0)), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND2(false, s(s(s(z0))), z1, s(s(s(z2)))) → c2(COND1(gr(z0, z2), s(s(z0)), z1, s(s(s(z2)))), GR(s(s(s(z0))), s(s(s(z2)))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c2, c2, c, c1, c1, c5

(187) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)

Used rewriting to replace COND2(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c1(COND2(gr(z0, z1), x0, p(s(s(s(s(z0))))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1)))))) by COND2(true, z0, s(s(s(s(z1)))), s(s(s(s(z2))))) → c1(COND2(gr(z1, z2), z0, s(s(s(z1))), s(s(s(s(z2))))), GR(s(s(s(s(z1)))), s(s(s(s(z2))))))

(188) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND1(true, x0, s(s(x1)), s(s(x2))) → c(GR(s(s(x1)), s(s(x2))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND2(true, z0, s(s(s(y1))), 0) → c1(COND2(true, z0, s(s(y1)), 0))
COND2(true, z0, s(s(0)), 0) → c1(COND2(true, z0, s(0), 0))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(y0)), z1, s(s(y1))) → c2(GR(s(s(y0)), s(s(y1))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, s(x0), s(s(s(z1))), s(s(0))) → c(COND2(true, s(x0), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, s(s(x0)), s(s(s(z1))), s(s(0))) → c(COND2(true, s(s(x0)), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND2(false, s(s(s(z0))), z1, s(s(s(z2)))) → c2(COND1(gr(z0, z2), s(s(z0)), z1, s(s(s(z2)))), GR(s(s(s(z0))), s(s(s(z2)))))
COND2(true, z0, s(s(s(s(z1)))), s(s(s(s(z2))))) → c1(COND2(gr(z1, z2), z0, s(s(s(z1))), s(s(s(s(z2))))), GR(s(s(s(s(z1)))), s(s(s(s(z2))))))
S tuples:

GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND2(true, z0, s(s(s(s(z1)))), s(s(s(s(z2))))) → c1(COND2(gr(z1, z2), z0, s(s(s(z1))), s(s(s(s(z2))))), GR(s(s(s(s(z1)))), s(s(s(s(z2))))))
K tuples:

COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, s(x0), s(s(s(z1))), s(s(0))) → c(COND2(true, s(x0), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, s(s(x0)), s(s(s(z1))), s(s(0))) → c(COND2(true, s(s(x0)), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND2(false, s(s(s(z0))), z1, s(s(s(z2)))) → c2(COND1(gr(z0, z2), s(s(z0)), z1, s(s(s(z2)))), GR(s(s(s(z0))), s(s(s(z2)))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND1, COND2, GR

Compound Symbols:

c, c2, c2, c, c1, c1, c5

(189) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)

Removed 1 leading nodes:

COND2(true, x0, 0, s(s(s(s(x2))))) → c1(COND2(false, x0, 0, s(s(s(s(x2))))))

(190) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND1(true, z0, s(s(y0)), s(s(y1))) → c(GR(s(s(y0)), s(s(y1))))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND2(true, z0, s(s(s(y1))), 0) → c1(COND2(true, z0, s(s(y1)), 0))
COND2(true, z0, s(s(0)), 0) → c1(COND2(true, z0, s(0), 0))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(y0)), z1, s(s(y1))) → c2(GR(s(s(y0)), s(s(y1))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, s(x0), s(s(s(z1))), s(s(0))) → c(COND2(true, s(x0), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, s(s(x0)), s(s(s(z1))), s(s(0))) → c(COND2(true, s(s(x0)), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND2(false, s(s(s(z0))), z1, s(s(s(z2)))) → c2(COND1(gr(z0, z2), s(s(z0)), z1, s(s(s(z2)))), GR(s(s(s(z0))), s(s(s(z2)))))
COND2(true, z0, s(s(s(s(z1)))), s(s(s(s(z2))))) → c1(COND2(gr(z1, z2), z0, s(s(s(z1))), s(s(s(s(z2))))), GR(s(s(s(s(z1)))), s(s(s(s(z2))))))
S tuples:

GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND2(true, z0, s(s(s(s(z1)))), s(s(s(s(z2))))) → c1(COND2(gr(z1, z2), z0, s(s(s(z1))), s(s(s(s(z2))))), GR(s(s(s(s(z1)))), s(s(s(s(z2))))))
K tuples:

COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, s(x0), s(s(s(z1))), s(s(0))) → c(COND2(true, s(x0), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, s(s(x0)), s(s(s(z1))), s(s(0))) → c(COND2(true, s(s(x0)), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND2(false, s(s(s(z0))), z1, s(s(s(z2)))) → c2(COND1(gr(z0, z2), s(s(z0)), z1, s(s(s(z2)))), GR(s(s(s(z0))), s(s(s(z2)))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND2, COND1, GR

Compound Symbols:

c2, c2, c, c, c1, c1, c5

(191) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

COND2(true, z0, s(s(s(s(z1)))), s(s(s(s(z2))))) → c1(COND2(gr(z1, z2), z0, s(s(s(z1))), s(s(s(s(z2))))), GR(s(s(s(s(z1)))), s(s(s(s(z2))))))
We considered the (Usable) Rules:

p(s(z0)) → z0
And the Tuples:

COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND1(true, z0, s(s(y0)), s(s(y1))) → c(GR(s(s(y0)), s(s(y1))))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND2(true, z0, s(s(s(y1))), 0) → c1(COND2(true, z0, s(s(y1)), 0))
COND2(true, z0, s(s(0)), 0) → c1(COND2(true, z0, s(0), 0))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(y0)), z1, s(s(y1))) → c2(GR(s(s(y0)), s(s(y1))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, s(x0), s(s(s(z1))), s(s(0))) → c(COND2(true, s(x0), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, s(s(x0)), s(s(s(z1))), s(s(0))) → c(COND2(true, s(s(x0)), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND2(false, s(s(s(z0))), z1, s(s(s(z2)))) → c2(COND1(gr(z0, z2), s(s(z0)), z1, s(s(s(z2)))), GR(s(s(s(z0))), s(s(s(z2)))))
COND2(true, z0, s(s(s(s(z1)))), s(s(s(s(z2))))) → c1(COND2(gr(z1, z2), z0, s(s(s(z1))), s(s(s(s(z2))))), GR(s(s(s(s(z1)))), s(s(s(s(z2))))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3, x4)) = x3   
POL(COND2(x1, x2, x3, x4)) = x3   
POL(GR(x1, x2)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = 0   
POL(p(x1)) = x1   
POL(s(x1)) = [1] + x1   
POL(true) = 0   

(192) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND1(true, z0, s(s(y0)), s(s(y1))) → c(GR(s(s(y0)), s(s(y1))))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND2(true, z0, s(s(s(y1))), 0) → c1(COND2(true, z0, s(s(y1)), 0))
COND2(true, z0, s(s(0)), 0) → c1(COND2(true, z0, s(0), 0))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(y0)), z1, s(s(y1))) → c2(GR(s(s(y0)), s(s(y1))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, s(x0), s(s(s(z1))), s(s(0))) → c(COND2(true, s(x0), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, s(s(x0)), s(s(s(z1))), s(s(0))) → c(COND2(true, s(s(x0)), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND2(false, s(s(s(z0))), z1, s(s(s(z2)))) → c2(COND1(gr(z0, z2), s(s(z0)), z1, s(s(s(z2)))), GR(s(s(s(z0))), s(s(s(z2)))))
COND2(true, z0, s(s(s(s(z1)))), s(s(s(s(z2))))) → c1(COND2(gr(z1, z2), z0, s(s(s(z1))), s(s(s(s(z2))))), GR(s(s(s(s(z1)))), s(s(s(s(z2))))))
S tuples:

GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
K tuples:

COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, s(x0), s(s(s(z1))), s(s(0))) → c(COND2(true, s(x0), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, s(s(x0)), s(s(s(z1))), s(s(0))) → c(COND2(true, s(s(x0)), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND2(false, s(s(s(z0))), z1, s(s(s(z2)))) → c2(COND1(gr(z0, z2), s(s(z0)), z1, s(s(s(z2)))), GR(s(s(s(z0))), s(s(s(z2)))))
COND2(true, z0, s(s(s(s(z1)))), s(s(s(s(z2))))) → c1(COND2(gr(z1, z2), z0, s(s(s(z1))), s(s(s(s(z2))))), GR(s(s(s(s(z1)))), s(s(s(s(z2))))))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND2, COND1, GR

Compound Symbols:

c2, c2, c, c, c1, c1, c5

(193) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
We considered the (Usable) Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
And the Tuples:

COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND1(true, z0, s(s(y0)), s(s(y1))) → c(GR(s(s(y0)), s(s(y1))))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND2(true, z0, s(s(s(y1))), 0) → c1(COND2(true, z0, s(s(y1)), 0))
COND2(true, z0, s(s(0)), 0) → c1(COND2(true, z0, s(0), 0))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(y0)), z1, s(s(y1))) → c2(GR(s(s(y0)), s(s(y1))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, s(x0), s(s(s(z1))), s(s(0))) → c(COND2(true, s(x0), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, s(s(x0)), s(s(s(z1))), s(s(0))) → c(COND2(true, s(s(x0)), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND2(false, s(s(s(z0))), z1, s(s(s(z2)))) → c2(COND1(gr(z0, z2), s(s(z0)), z1, s(s(s(z2)))), GR(s(s(s(z0))), s(s(s(z2)))))
COND2(true, z0, s(s(s(s(z1)))), s(s(s(s(z2))))) → c1(COND2(gr(z1, z2), z0, s(s(s(z1))), s(s(s(s(z2))))), GR(s(s(s(s(z1)))), s(s(s(s(z2))))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(COND1(x1, x2, x3, x4)) = [2] + [2]x1 + [3]x2 + [2]x4 + [2]x3·x4 + [3]x2·x4 + x12 + [2]x1·x3   
POL(COND2(x1, x2, x3, x4)) = [3] + [2]x1 + [3]x2 + [2]x3 + [2]x3·x4 + [3]x2·x4 + x1·x4   
POL(GR(x1, x2)) = x2   
POL(c(x1)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c2(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(false) = 0   
POL(gr(x1, x2)) = [1]   
POL(p(x1)) = x1   
POL(s(x1)) = [1] + x1   
POL(true) = [1]   

(194) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:

COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND2(true, x0, s(s(x1)), s(s(x2))) → c1(GR(s(s(x1)), s(s(x2))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND1(true, z0, s(s(y0)), s(s(y1))) → c(GR(s(s(y0)), s(s(y1))))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND2(true, z0, s(s(s(y1))), 0) → c1(COND2(true, z0, s(s(y1)), 0))
COND2(true, z0, s(s(0)), 0) → c1(COND2(true, z0, s(0), 0))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(y0)), z1, s(s(y1))) → c2(GR(s(s(y0)), s(s(y1))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, s(x0), s(s(s(z1))), s(s(0))) → c(COND2(true, s(x0), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, s(s(x0)), s(s(s(z1))), s(s(0))) → c(COND2(true, s(s(x0)), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND2(false, s(s(s(z0))), z1, s(s(s(z2)))) → c2(COND1(gr(z0, z2), s(s(z0)), z1, s(s(s(z2)))), GR(s(s(s(z0))), s(s(s(z2)))))
COND2(true, z0, s(s(s(s(z1)))), s(s(s(s(z2))))) → c1(COND2(gr(z1, z2), z0, s(s(s(z1))), s(s(s(s(z2))))), GR(s(s(s(s(z1)))), s(s(s(s(z2))))))
S tuples:none
K tuples:

COND2(false, s(s(0)), x1, s(s(z0))) → c2(GR(s(s(0)), s(s(z0))))
COND2(false, s(s(z0)), x1, s(s(z1))) → c2(COND1(gr(z0, z1), s(z0), x1, s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, x0, s(s(s(x1))), s(s(s(x2)))) → c(GR(s(s(s(x1))), s(s(s(x2)))))
COND2(true, x0, s(s(s(z0))), s(s(0))) → c1(COND2(true, x0, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND2(true, x0, s(s(s(z0))), s(s(s(z1)))) → c1(COND2(gr(z0, z1), x0, s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND2(true, x0, s(s(0)), s(s(z0))) → c1(COND2(false, x0, s(0), s(s(z0))), GR(s(s(0)), s(s(z0))))
COND1(true, x0, s(s(z0)), s(0)) → c(COND2(true, x0, s(s(z0)), s(0)))
COND2(true, x0, s(s(z0)), s(0)) → c1(COND2(true, x0, s(z0), s(0)))
COND2(true, x0, s(0), s(z0)) → c1(COND2(false, x0, 0, s(z0)))
COND2(false, s(s(z0)), x1, s(0)) → c2(COND1(true, s(z0), x1, s(0)))
COND1(true, x0, 0, 0) → c(COND2(false, x0, 0, 0))
COND1(true, s(x0), 0, s(0)) → c(COND2(false, s(x0), 0, s(0)))
COND2(true, x0, 0, 0) → c1(COND2(false, x0, 0, 0))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(true, x0, s(s(s(s(x1)))), s(s(s(0)))) → c1(COND2(true, x0, s(s(s(x1))), s(s(s(0)))), GR(s(s(s(s(x1)))), s(s(s(0)))))
COND2(false, s(z0), 0, 0) → c2(COND1(true, z0, 0, 0))
COND2(true, z0, s(s(y1)), 0) → c1(COND2(true, z0, s(y1), 0))
COND2(true, z0, s(0), 0) → c1(COND2(true, z0, 0, 0))
COND1(true, s(x0), s(s(z1)), s(s(x2))) → c(GR(s(s(z1)), s(s(x2))))
COND1(true, y0, s(s(z1)), s(s(0))) → c(GR(s(s(z1)), s(s(0))))
COND1(true, y1, s(s(z1)), s(s(s(x2)))) → c(GR(s(s(z1)), s(s(s(x2)))))
COND2(false, s(s(s(z0))), z1, s(s(0))) → c2(COND1(true, s(s(z0)), z1, s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND1(true, y0, 0, s(s(0))) → c(COND2(false, y0, 0, s(s(0))))
COND1(true, y0, s(s(0)), s(s(0))) → c(COND2(false, y0, s(s(0)), s(s(0))), GR(s(s(0)), s(s(0))))
COND1(true, s(x0), s(s(s(z1))), s(s(0))) → c(COND2(true, s(x0), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, s(s(x0)), s(s(s(z1))), s(s(0))) → c(COND2(true, s(s(x0)), s(s(s(z1))), s(s(0))), GR(s(s(s(z1))), s(s(0))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(0)))) → c(COND2(true, x0, s(s(s(s(z0)))), s(s(s(0)))), GR(s(s(s(s(z0)))), s(s(s(0)))))
COND1(true, x0, s(s(s(s(z0)))), s(s(s(s(z1))))) → c(COND2(gr(z0, z1), x0, s(s(s(s(z0)))), s(s(s(s(z1))))), GR(s(s(s(s(z0)))), s(s(s(s(z1))))))
COND1(true, x0, s(s(s(0))), s(s(s(z0)))) → c(COND2(false, x0, s(s(s(0))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND2(true, x0, s(s(s(0))), s(s(s(z0)))) → c1(COND2(false, x0, p(s(s(s(0)))), s(s(s(z0)))), GR(s(s(s(0))), s(s(s(z0)))))
COND1(true, x0, s(0), s(z0)) → c(COND2(false, x0, s(0), s(z0)))
COND1(true, s(x0), 0, s(s(x2))) → c(COND2(false, s(x0), 0, s(s(x2))))
COND1(true, y1, 0, s(s(s(x2)))) → c(COND2(false, y1, 0, s(s(s(x2)))))
COND1(true, s(x0), s(s(0)), s(s(x2))) → c(COND2(false, s(x0), s(s(0)), s(s(x2))), GR(s(s(0)), s(s(x2))))
COND1(true, y1, s(s(0)), s(s(s(x2)))) → c(COND2(false, y1, s(s(0)), s(s(s(x2)))), GR(s(s(0)), s(s(s(x2)))))
COND2(false, s(s(s(z0))), z1, s(s(s(z2)))) → c2(COND1(gr(z0, z2), s(s(z0)), z1, s(s(s(z2)))), GR(s(s(s(z0))), s(s(s(z2)))))
COND2(true, z0, s(s(s(s(z1)))), s(s(s(s(z2))))) → c1(COND2(gr(z1, z2), z0, s(s(s(z1))), s(s(s(s(z2))))), GR(s(s(s(s(z1)))), s(s(s(s(z2))))))
GR(s(s(y0)), s(s(y1))) → c5(GR(s(y0), s(y1)))
Defined Rule Symbols:

p, gr

Defined Pair Symbols:

COND2, COND1, GR

Compound Symbols:

c2, c2, c, c, c1, c1, c5

(195) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)

The set S is empty

(196) BOUNDS(O(1), O(1))