Runtime Complexity TRS:
The TRS R consists of the following rules:

cond1(true, x, y) → cond2(gr(x, 0), x, y)
cond2(true, x, y) → cond1(gr(add(x, y), 0), p(x), y)
cond2(false, x, y) → cond3(gr(y, 0), x, y)
cond3(true, x, y) → cond1(gr(add(x, y), 0), x, p(y))
cond3(false, x, y) → cond1(gr(add(x, y), 0), x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
add(0, x) → x
add(s(x), y) → s(add(x, y))
p(0) → 0
p(s(x)) → x

Rewrite Strategy: INNERMOST


Renamed function symbols to avoid clashes with predefined symbol.


Runtime Complexity TRS:
The TRS R consists of the following rules:


cond1'(true', x, y) → cond2'(gr'(x, 0'), x, y)
cond2'(true', x, y) → cond1'(gr'(add'(x, y), 0'), p'(x), y)
cond2'(false', x, y) → cond3'(gr'(y, 0'), x, y)
cond3'(true', x, y) → cond1'(gr'(add'(x, y), 0'), x, p'(y))
cond3'(false', x, y) → cond1'(gr'(add'(x, y), 0'), x, y)
gr'(0', x) → false'
gr'(s'(x), 0') → true'
gr'(s'(x), s'(y)) → gr'(x, y)
add'(0', x) → x
add'(s'(x), y) → s'(add'(x, y))
p'(0') → 0'
p'(s'(x)) → x

Rewrite Strategy: INNERMOST


Infered types.


Rules:
cond1'(true', x, y) → cond2'(gr'(x, 0'), x, y)
cond2'(true', x, y) → cond1'(gr'(add'(x, y), 0'), p'(x), y)
cond2'(false', x, y) → cond3'(gr'(y, 0'), x, y)
cond3'(true', x, y) → cond1'(gr'(add'(x, y), 0'), x, p'(y))
cond3'(false', x, y) → cond1'(gr'(add'(x, y), 0'), x, y)
gr'(0', x) → false'
gr'(s'(x), 0') → true'
gr'(s'(x), s'(y)) → gr'(x, y)
add'(0', x) → x
add'(s'(x), y) → s'(add'(x, y))
p'(0') → 0'
p'(s'(x)) → x

Types:
cond1' :: true':false' → 0':s' → 0':s' → cond1':cond2':cond3'
true' :: true':false'
cond2' :: true':false' → 0':s' → 0':s' → cond1':cond2':cond3'
gr' :: 0':s' → 0':s' → true':false'
0' :: 0':s'
add' :: 0':s' → 0':s' → 0':s'
p' :: 0':s' → 0':s'
false' :: true':false'
cond3' :: true':false' → 0':s' → 0':s' → cond1':cond2':cond3'
s' :: 0':s' → 0':s'
_hole_cond1':cond2':cond3'1 :: cond1':cond2':cond3'
_hole_true':false'2 :: true':false'
_hole_0':s'3 :: 0':s'
_gen_0':s'4 :: Nat → 0':s'


Heuristically decided to analyse the following defined symbols:
cond1', cond2', gr', add', cond3'

They will be analysed ascendingly in the following order:
cond1' = cond2'
gr' < cond1'
cond1' = cond3'
gr' < cond2'
add' < cond2'
cond2' = cond3'
gr' < cond3'
add' < cond3'


Rules:
cond1'(true', x, y) → cond2'(gr'(x, 0'), x, y)
cond2'(true', x, y) → cond1'(gr'(add'(x, y), 0'), p'(x), y)
cond2'(false', x, y) → cond3'(gr'(y, 0'), x, y)
cond3'(true', x, y) → cond1'(gr'(add'(x, y), 0'), x, p'(y))
cond3'(false', x, y) → cond1'(gr'(add'(x, y), 0'), x, y)
gr'(0', x) → false'
gr'(s'(x), 0') → true'
gr'(s'(x), s'(y)) → gr'(x, y)
add'(0', x) → x
add'(s'(x), y) → s'(add'(x, y))
p'(0') → 0'
p'(s'(x)) → x

Types:
cond1' :: true':false' → 0':s' → 0':s' → cond1':cond2':cond3'
true' :: true':false'
cond2' :: true':false' → 0':s' → 0':s' → cond1':cond2':cond3'
gr' :: 0':s' → 0':s' → true':false'
0' :: 0':s'
add' :: 0':s' → 0':s' → 0':s'
p' :: 0':s' → 0':s'
false' :: true':false'
cond3' :: true':false' → 0':s' → 0':s' → cond1':cond2':cond3'
s' :: 0':s' → 0':s'
_hole_cond1':cond2':cond3'1 :: cond1':cond2':cond3'
_hole_true':false'2 :: true':false'
_hole_0':s'3 :: 0':s'
_gen_0':s'4 :: Nat → 0':s'

Generator Equations:
_gen_0':s'4(0) ⇔ 0'
_gen_0':s'4(+(x, 1)) ⇔ s'(_gen_0':s'4(x))

The following defined symbols remain to be analysed:
gr', cond1', cond2', add', cond3'

They will be analysed ascendingly in the following order:
cond1' = cond2'
gr' < cond1'
cond1' = cond3'
gr' < cond2'
add' < cond2'
cond2' = cond3'
gr' < cond3'
add' < cond3'


Proved the following rewrite lemma:
gr'(_gen_0':s'4(_n6), _gen_0':s'4(_n6)) → false', rt ∈ Ω(1 + n6)

Induction Base:
gr'(_gen_0':s'4(0), _gen_0':s'4(0)) →RΩ(1)
false'

Induction Step:
gr'(_gen_0':s'4(+(_$n7, 1)), _gen_0':s'4(+(_$n7, 1))) →RΩ(1)
gr'(_gen_0':s'4(_$n7), _gen_0':s'4(_$n7)) →IH
false'

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).


Rules:
cond1'(true', x, y) → cond2'(gr'(x, 0'), x, y)
cond2'(true', x, y) → cond1'(gr'(add'(x, y), 0'), p'(x), y)
cond2'(false', x, y) → cond3'(gr'(y, 0'), x, y)
cond3'(true', x, y) → cond1'(gr'(add'(x, y), 0'), x, p'(y))
cond3'(false', x, y) → cond1'(gr'(add'(x, y), 0'), x, y)
gr'(0', x) → false'
gr'(s'(x), 0') → true'
gr'(s'(x), s'(y)) → gr'(x, y)
add'(0', x) → x
add'(s'(x), y) → s'(add'(x, y))
p'(0') → 0'
p'(s'(x)) → x

Types:
cond1' :: true':false' → 0':s' → 0':s' → cond1':cond2':cond3'
true' :: true':false'
cond2' :: true':false' → 0':s' → 0':s' → cond1':cond2':cond3'
gr' :: 0':s' → 0':s' → true':false'
0' :: 0':s'
add' :: 0':s' → 0':s' → 0':s'
p' :: 0':s' → 0':s'
false' :: true':false'
cond3' :: true':false' → 0':s' → 0':s' → cond1':cond2':cond3'
s' :: 0':s' → 0':s'
_hole_cond1':cond2':cond3'1 :: cond1':cond2':cond3'
_hole_true':false'2 :: true':false'
_hole_0':s'3 :: 0':s'
_gen_0':s'4 :: Nat → 0':s'

Lemmas:
gr'(_gen_0':s'4(_n6), _gen_0':s'4(_n6)) → false', rt ∈ Ω(1 + n6)

Generator Equations:
_gen_0':s'4(0) ⇔ 0'
_gen_0':s'4(+(x, 1)) ⇔ s'(_gen_0':s'4(x))

The following defined symbols remain to be analysed:
add', cond1', cond2', cond3'

They will be analysed ascendingly in the following order:
cond1' = cond2'
cond1' = cond3'
add' < cond2'
cond2' = cond3'
add' < cond3'


Proved the following rewrite lemma:
add'(_gen_0':s'4(_n591), _gen_0':s'4(b)) → _gen_0':s'4(+(_n591, b)), rt ∈ Ω(1 + n591)

Induction Base:
add'(_gen_0':s'4(0), _gen_0':s'4(b)) →RΩ(1)
_gen_0':s'4(b)

Induction Step:
add'(_gen_0':s'4(+(_$n592, 1)), _gen_0':s'4(_b724)) →RΩ(1)
s'(add'(_gen_0':s'4(_$n592), _gen_0':s'4(_b724))) →IH
s'(_gen_0':s'4(+(_$n592, _b724)))

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).


Rules:
cond1'(true', x, y) → cond2'(gr'(x, 0'), x, y)
cond2'(true', x, y) → cond1'(gr'(add'(x, y), 0'), p'(x), y)
cond2'(false', x, y) → cond3'(gr'(y, 0'), x, y)
cond3'(true', x, y) → cond1'(gr'(add'(x, y), 0'), x, p'(y))
cond3'(false', x, y) → cond1'(gr'(add'(x, y), 0'), x, y)
gr'(0', x) → false'
gr'(s'(x), 0') → true'
gr'(s'(x), s'(y)) → gr'(x, y)
add'(0', x) → x
add'(s'(x), y) → s'(add'(x, y))
p'(0') → 0'
p'(s'(x)) → x

Types:
cond1' :: true':false' → 0':s' → 0':s' → cond1':cond2':cond3'
true' :: true':false'
cond2' :: true':false' → 0':s' → 0':s' → cond1':cond2':cond3'
gr' :: 0':s' → 0':s' → true':false'
0' :: 0':s'
add' :: 0':s' → 0':s' → 0':s'
p' :: 0':s' → 0':s'
false' :: true':false'
cond3' :: true':false' → 0':s' → 0':s' → cond1':cond2':cond3'
s' :: 0':s' → 0':s'
_hole_cond1':cond2':cond3'1 :: cond1':cond2':cond3'
_hole_true':false'2 :: true':false'
_hole_0':s'3 :: 0':s'
_gen_0':s'4 :: Nat → 0':s'

Lemmas:
gr'(_gen_0':s'4(_n6), _gen_0':s'4(_n6)) → false', rt ∈ Ω(1 + n6)
add'(_gen_0':s'4(_n591), _gen_0':s'4(b)) → _gen_0':s'4(+(_n591, b)), rt ∈ Ω(1 + n591)

Generator Equations:
_gen_0':s'4(0) ⇔ 0'
_gen_0':s'4(+(x, 1)) ⇔ s'(_gen_0':s'4(x))

The following defined symbols remain to be analysed:
cond2', cond1', cond3'

They will be analysed ascendingly in the following order:
cond1' = cond2'
cond1' = cond3'
cond2' = cond3'


Could not prove a rewrite lemma for the defined symbol cond2'.


Rules:
cond1'(true', x, y) → cond2'(gr'(x, 0'), x, y)
cond2'(true', x, y) → cond1'(gr'(add'(x, y), 0'), p'(x), y)
cond2'(false', x, y) → cond3'(gr'(y, 0'), x, y)
cond3'(true', x, y) → cond1'(gr'(add'(x, y), 0'), x, p'(y))
cond3'(false', x, y) → cond1'(gr'(add'(x, y), 0'), x, y)
gr'(0', x) → false'
gr'(s'(x), 0') → true'
gr'(s'(x), s'(y)) → gr'(x, y)
add'(0', x) → x
add'(s'(x), y) → s'(add'(x, y))
p'(0') → 0'
p'(s'(x)) → x

Types:
cond1' :: true':false' → 0':s' → 0':s' → cond1':cond2':cond3'
true' :: true':false'
cond2' :: true':false' → 0':s' → 0':s' → cond1':cond2':cond3'
gr' :: 0':s' → 0':s' → true':false'
0' :: 0':s'
add' :: 0':s' → 0':s' → 0':s'
p' :: 0':s' → 0':s'
false' :: true':false'
cond3' :: true':false' → 0':s' → 0':s' → cond1':cond2':cond3'
s' :: 0':s' → 0':s'
_hole_cond1':cond2':cond3'1 :: cond1':cond2':cond3'
_hole_true':false'2 :: true':false'
_hole_0':s'3 :: 0':s'
_gen_0':s'4 :: Nat → 0':s'

Lemmas:
gr'(_gen_0':s'4(_n6), _gen_0':s'4(_n6)) → false', rt ∈ Ω(1 + n6)
add'(_gen_0':s'4(_n591), _gen_0':s'4(b)) → _gen_0':s'4(+(_n591, b)), rt ∈ Ω(1 + n591)

Generator Equations:
_gen_0':s'4(0) ⇔ 0'
_gen_0':s'4(+(x, 1)) ⇔ s'(_gen_0':s'4(x))

The following defined symbols remain to be analysed:
cond1', cond3'

They will be analysed ascendingly in the following order:
cond1' = cond2'
cond1' = cond3'
cond2' = cond3'


Could not prove a rewrite lemma for the defined symbol cond1'.


Rules:
cond1'(true', x, y) → cond2'(gr'(x, 0'), x, y)
cond2'(true', x, y) → cond1'(gr'(add'(x, y), 0'), p'(x), y)
cond2'(false', x, y) → cond3'(gr'(y, 0'), x, y)
cond3'(true', x, y) → cond1'(gr'(add'(x, y), 0'), x, p'(y))
cond3'(false', x, y) → cond1'(gr'(add'(x, y), 0'), x, y)
gr'(0', x) → false'
gr'(s'(x), 0') → true'
gr'(s'(x), s'(y)) → gr'(x, y)
add'(0', x) → x
add'(s'(x), y) → s'(add'(x, y))
p'(0') → 0'
p'(s'(x)) → x

Types:
cond1' :: true':false' → 0':s' → 0':s' → cond1':cond2':cond3'
true' :: true':false'
cond2' :: true':false' → 0':s' → 0':s' → cond1':cond2':cond3'
gr' :: 0':s' → 0':s' → true':false'
0' :: 0':s'
add' :: 0':s' → 0':s' → 0':s'
p' :: 0':s' → 0':s'
false' :: true':false'
cond3' :: true':false' → 0':s' → 0':s' → cond1':cond2':cond3'
s' :: 0':s' → 0':s'
_hole_cond1':cond2':cond3'1 :: cond1':cond2':cond3'
_hole_true':false'2 :: true':false'
_hole_0':s'3 :: 0':s'
_gen_0':s'4 :: Nat → 0':s'

Lemmas:
gr'(_gen_0':s'4(_n6), _gen_0':s'4(_n6)) → false', rt ∈ Ω(1 + n6)
add'(_gen_0':s'4(_n591), _gen_0':s'4(b)) → _gen_0':s'4(+(_n591, b)), rt ∈ Ω(1 + n591)

Generator Equations:
_gen_0':s'4(0) ⇔ 0'
_gen_0':s'4(+(x, 1)) ⇔ s'(_gen_0':s'4(x))

The following defined symbols remain to be analysed:
cond3'

They will be analysed ascendingly in the following order:
cond1' = cond2'
cond1' = cond3'
cond2' = cond3'


Could not prove a rewrite lemma for the defined symbol cond3'.


Rules:
cond1'(true', x, y) → cond2'(gr'(x, 0'), x, y)
cond2'(true', x, y) → cond1'(gr'(add'(x, y), 0'), p'(x), y)
cond2'(false', x, y) → cond3'(gr'(y, 0'), x, y)
cond3'(true', x, y) → cond1'(gr'(add'(x, y), 0'), x, p'(y))
cond3'(false', x, y) → cond1'(gr'(add'(x, y), 0'), x, y)
gr'(0', x) → false'
gr'(s'(x), 0') → true'
gr'(s'(x), s'(y)) → gr'(x, y)
add'(0', x) → x
add'(s'(x), y) → s'(add'(x, y))
p'(0') → 0'
p'(s'(x)) → x

Types:
cond1' :: true':false' → 0':s' → 0':s' → cond1':cond2':cond3'
true' :: true':false'
cond2' :: true':false' → 0':s' → 0':s' → cond1':cond2':cond3'
gr' :: 0':s' → 0':s' → true':false'
0' :: 0':s'
add' :: 0':s' → 0':s' → 0':s'
p' :: 0':s' → 0':s'
false' :: true':false'
cond3' :: true':false' → 0':s' → 0':s' → cond1':cond2':cond3'
s' :: 0':s' → 0':s'
_hole_cond1':cond2':cond3'1 :: cond1':cond2':cond3'
_hole_true':false'2 :: true':false'
_hole_0':s'3 :: 0':s'
_gen_0':s'4 :: Nat → 0':s'

Lemmas:
gr'(_gen_0':s'4(_n6), _gen_0':s'4(_n6)) → false', rt ∈ Ω(1 + n6)
add'(_gen_0':s'4(_n591), _gen_0':s'4(b)) → _gen_0':s'4(+(_n591, b)), rt ∈ Ω(1 + n591)

Generator Equations:
_gen_0':s'4(0) ⇔ 0'
_gen_0':s'4(+(x, 1)) ⇔ s'(_gen_0':s'4(x))

No more defined symbols left to analyse.


The lowerbound Ω(n) was proven with the following lemma:
gr'(_gen_0':s'4(_n6), _gen_0':s'4(_n6)) → false', rt ∈ Ω(1 + n6)