Runtime Complexity TRS:
The TRS R consists of the following rules:
cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(neq(x, 0), y, y)
cond2(false, x, y) → cond1(neq(x, 0), p(x), y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
neq(0, 0) → false
neq(0, s(x)) → true
neq(s(x), 0) → true
neq(s(x), s(y)) → neq(x, y)
p(0) → 0
p(s(x)) → x
Renamed function symbols to avoid clashes with predefined symbol.
Runtime Complexity TRS:
The TRS R consists of the following rules:
cond1'(true', x, y) → cond2'(gr'(x, y), x, y)
cond2'(true', x, y) → cond1'(neq'(x, 0'), y, y)
cond2'(false', x, y) → cond1'(neq'(x, 0'), p'(x), y)
gr'(0', x) → false'
gr'(s'(x), 0') → true'
gr'(s'(x), s'(y)) → gr'(x, y)
neq'(0', 0') → false'
neq'(0', s'(x)) → true'
neq'(s'(x), 0') → true'
neq'(s'(x), s'(y)) → neq'(x, y)
p'(0') → 0'
p'(s'(x)) → x
Infered types.
Rules:
cond1'(true', x, y) → cond2'(gr'(x, y), x, y)
cond2'(true', x, y) → cond1'(neq'(x, 0'), y, y)
cond2'(false', x, y) → cond1'(neq'(x, 0'), p'(x), y)
gr'(0', x) → false'
gr'(s'(x), 0') → true'
gr'(s'(x), s'(y)) → gr'(x, y)
neq'(0', 0') → false'
neq'(0', s'(x)) → true'
neq'(s'(x), 0') → true'
neq'(s'(x), s'(y)) → neq'(x, y)
p'(0') → 0'
p'(s'(x)) → x
Types:
cond1' :: true':false' → 0':s' → 0':s' → cond1':cond2'
true' :: true':false'
cond2' :: true':false' → 0':s' → 0':s' → cond1':cond2'
gr' :: 0':s' → 0':s' → true':false'
neq' :: 0':s' → 0':s' → true':false'
0' :: 0':s'
false' :: true':false'
p' :: 0':s' → 0':s'
s' :: 0':s' → 0':s'
_hole_cond1':cond2'1 :: cond1':cond2'
_hole_true':false'2 :: true':false'
_hole_0':s'3 :: 0':s'
_gen_0':s'4 :: Nat → 0':s'
Heuristically decided to analyse the following defined symbols:
cond1', cond2', gr', neq'
They will be analysed ascendingly in the following order:
cond1' = cond2'
gr' < cond1'
neq' < cond2'
Rules:
cond1'(true', x, y) → cond2'(gr'(x, y), x, y)
cond2'(true', x, y) → cond1'(neq'(x, 0'), y, y)
cond2'(false', x, y) → cond1'(neq'(x, 0'), p'(x), y)
gr'(0', x) → false'
gr'(s'(x), 0') → true'
gr'(s'(x), s'(y)) → gr'(x, y)
neq'(0', 0') → false'
neq'(0', s'(x)) → true'
neq'(s'(x), 0') → true'
neq'(s'(x), s'(y)) → neq'(x, y)
p'(0') → 0'
p'(s'(x)) → x
Types:
cond1' :: true':false' → 0':s' → 0':s' → cond1':cond2'
true' :: true':false'
cond2' :: true':false' → 0':s' → 0':s' → cond1':cond2'
gr' :: 0':s' → 0':s' → true':false'
neq' :: 0':s' → 0':s' → true':false'
0' :: 0':s'
false' :: true':false'
p' :: 0':s' → 0':s'
s' :: 0':s' → 0':s'
_hole_cond1':cond2'1 :: cond1':cond2'
_hole_true':false'2 :: true':false'
_hole_0':s'3 :: 0':s'
_gen_0':s'4 :: Nat → 0':s'
Generator Equations:
_gen_0':s'4(0) ⇔ 0'
_gen_0':s'4(+(x, 1)) ⇔ s'(_gen_0':s'4(x))
The following defined symbols remain to be analysed:
gr', cond1', cond2', neq'
They will be analysed ascendingly in the following order:
cond1' = cond2'
gr' < cond1'
neq' < cond2'
Proved the following rewrite lemma:
gr'(_gen_0':s'4(_n6), _gen_0':s'4(_n6)) → false', rt ∈ Ω(1 + n6)
Induction Base:
gr'(_gen_0':s'4(0), _gen_0':s'4(0)) →RΩ(1)
false'
Induction Step:
gr'(_gen_0':s'4(+(_$n7, 1)), _gen_0':s'4(+(_$n7, 1))) →RΩ(1)
gr'(_gen_0':s'4(_$n7), _gen_0':s'4(_$n7)) →IH
false'
We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Rules:
cond1'(true', x, y) → cond2'(gr'(x, y), x, y)
cond2'(true', x, y) → cond1'(neq'(x, 0'), y, y)
cond2'(false', x, y) → cond1'(neq'(x, 0'), p'(x), y)
gr'(0', x) → false'
gr'(s'(x), 0') → true'
gr'(s'(x), s'(y)) → gr'(x, y)
neq'(0', 0') → false'
neq'(0', s'(x)) → true'
neq'(s'(x), 0') → true'
neq'(s'(x), s'(y)) → neq'(x, y)
p'(0') → 0'
p'(s'(x)) → x
Types:
cond1' :: true':false' → 0':s' → 0':s' → cond1':cond2'
true' :: true':false'
cond2' :: true':false' → 0':s' → 0':s' → cond1':cond2'
gr' :: 0':s' → 0':s' → true':false'
neq' :: 0':s' → 0':s' → true':false'
0' :: 0':s'
false' :: true':false'
p' :: 0':s' → 0':s'
s' :: 0':s' → 0':s'
_hole_cond1':cond2'1 :: cond1':cond2'
_hole_true':false'2 :: true':false'
_hole_0':s'3 :: 0':s'
_gen_0':s'4 :: Nat → 0':s'
Lemmas:
gr'(_gen_0':s'4(_n6), _gen_0':s'4(_n6)) → false', rt ∈ Ω(1 + n6)
Generator Equations:
_gen_0':s'4(0) ⇔ 0'
_gen_0':s'4(+(x, 1)) ⇔ s'(_gen_0':s'4(x))
The following defined symbols remain to be analysed:
neq', cond1', cond2'
They will be analysed ascendingly in the following order:
cond1' = cond2'
neq' < cond2'
Proved the following rewrite lemma:
neq'(_gen_0':s'4(_n516), _gen_0':s'4(_n516)) → false', rt ∈ Ω(1 + n516)
Induction Base:
neq'(_gen_0':s'4(0), _gen_0':s'4(0)) →RΩ(1)
false'
Induction Step:
neq'(_gen_0':s'4(+(_$n517, 1)), _gen_0':s'4(+(_$n517, 1))) →RΩ(1)
neq'(_gen_0':s'4(_$n517), _gen_0':s'4(_$n517)) →IH
false'
We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Rules:
cond1'(true', x, y) → cond2'(gr'(x, y), x, y)
cond2'(true', x, y) → cond1'(neq'(x, 0'), y, y)
cond2'(false', x, y) → cond1'(neq'(x, 0'), p'(x), y)
gr'(0', x) → false'
gr'(s'(x), 0') → true'
gr'(s'(x), s'(y)) → gr'(x, y)
neq'(0', 0') → false'
neq'(0', s'(x)) → true'
neq'(s'(x), 0') → true'
neq'(s'(x), s'(y)) → neq'(x, y)
p'(0') → 0'
p'(s'(x)) → x
Types:
cond1' :: true':false' → 0':s' → 0':s' → cond1':cond2'
true' :: true':false'
cond2' :: true':false' → 0':s' → 0':s' → cond1':cond2'
gr' :: 0':s' → 0':s' → true':false'
neq' :: 0':s' → 0':s' → true':false'
0' :: 0':s'
false' :: true':false'
p' :: 0':s' → 0':s'
s' :: 0':s' → 0':s'
_hole_cond1':cond2'1 :: cond1':cond2'
_hole_true':false'2 :: true':false'
_hole_0':s'3 :: 0':s'
_gen_0':s'4 :: Nat → 0':s'
Lemmas:
gr'(_gen_0':s'4(_n6), _gen_0':s'4(_n6)) → false', rt ∈ Ω(1 + n6)
neq'(_gen_0':s'4(_n516), _gen_0':s'4(_n516)) → false', rt ∈ Ω(1 + n516)
Generator Equations:
_gen_0':s'4(0) ⇔ 0'
_gen_0':s'4(+(x, 1)) ⇔ s'(_gen_0':s'4(x))
The following defined symbols remain to be analysed:
cond2', cond1'
They will be analysed ascendingly in the following order:
cond1' = cond2'
Could not prove a rewrite lemma for the defined symbol cond2'.
Rules:
cond1'(true', x, y) → cond2'(gr'(x, y), x, y)
cond2'(true', x, y) → cond1'(neq'(x, 0'), y, y)
cond2'(false', x, y) → cond1'(neq'(x, 0'), p'(x), y)
gr'(0', x) → false'
gr'(s'(x), 0') → true'
gr'(s'(x), s'(y)) → gr'(x, y)
neq'(0', 0') → false'
neq'(0', s'(x)) → true'
neq'(s'(x), 0') → true'
neq'(s'(x), s'(y)) → neq'(x, y)
p'(0') → 0'
p'(s'(x)) → x
Types:
cond1' :: true':false' → 0':s' → 0':s' → cond1':cond2'
true' :: true':false'
cond2' :: true':false' → 0':s' → 0':s' → cond1':cond2'
gr' :: 0':s' → 0':s' → true':false'
neq' :: 0':s' → 0':s' → true':false'
0' :: 0':s'
false' :: true':false'
p' :: 0':s' → 0':s'
s' :: 0':s' → 0':s'
_hole_cond1':cond2'1 :: cond1':cond2'
_hole_true':false'2 :: true':false'
_hole_0':s'3 :: 0':s'
_gen_0':s'4 :: Nat → 0':s'
Lemmas:
gr'(_gen_0':s'4(_n6), _gen_0':s'4(_n6)) → false', rt ∈ Ω(1 + n6)
neq'(_gen_0':s'4(_n516), _gen_0':s'4(_n516)) → false', rt ∈ Ω(1 + n516)
Generator Equations:
_gen_0':s'4(0) ⇔ 0'
_gen_0':s'4(+(x, 1)) ⇔ s'(_gen_0':s'4(x))
The following defined symbols remain to be analysed:
cond1'
They will be analysed ascendingly in the following order:
cond1' = cond2'
Could not prove a rewrite lemma for the defined symbol cond1'.
Rules:
cond1'(true', x, y) → cond2'(gr'(x, y), x, y)
cond2'(true', x, y) → cond1'(neq'(x, 0'), y, y)
cond2'(false', x, y) → cond1'(neq'(x, 0'), p'(x), y)
gr'(0', x) → false'
gr'(s'(x), 0') → true'
gr'(s'(x), s'(y)) → gr'(x, y)
neq'(0', 0') → false'
neq'(0', s'(x)) → true'
neq'(s'(x), 0') → true'
neq'(s'(x), s'(y)) → neq'(x, y)
p'(0') → 0'
p'(s'(x)) → x
Types:
cond1' :: true':false' → 0':s' → 0':s' → cond1':cond2'
true' :: true':false'
cond2' :: true':false' → 0':s' → 0':s' → cond1':cond2'
gr' :: 0':s' → 0':s' → true':false'
neq' :: 0':s' → 0':s' → true':false'
0' :: 0':s'
false' :: true':false'
p' :: 0':s' → 0':s'
s' :: 0':s' → 0':s'
_hole_cond1':cond2'1 :: cond1':cond2'
_hole_true':false'2 :: true':false'
_hole_0':s'3 :: 0':s'
_gen_0':s'4 :: Nat → 0':s'
Lemmas:
gr'(_gen_0':s'4(_n6), _gen_0':s'4(_n6)) → false', rt ∈ Ω(1 + n6)
neq'(_gen_0':s'4(_n516), _gen_0':s'4(_n516)) → false', rt ∈ Ω(1 + n516)
Generator Equations:
_gen_0':s'4(0) ⇔ 0'
_gen_0':s'4(+(x, 1)) ⇔ s'(_gen_0':s'4(x))
No more defined symbols left to analyse.
The lowerbound Ω(n) was proven with the following lemma:
gr'(_gen_0':s'4(_n6), _gen_0':s'4(_n6)) → false', rt ∈ Ω(1 + n6)