Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
gcd(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0), x, y)
if1(false, x, y) → if3(gt(x, 0), x, y)
if2(true, x, y) → gcd(minus(x, y), y)
if2(false, x, y) → x
if3(true, x, y) → gcd(x, minus(y, x))
if3(false, x, y) → y
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
Renamed function symbols to avoid clashes with predefined symbol.
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus'(s'(x), y) → if'(gt'(s'(x), y), x, y)
if'(true', x, y) → s'(minus'(x, y))
if'(false', x, y) → 0'
gcd'(x, y) → if1'(ge'(x, y), x, y)
if1'(true', x, y) → if2'(gt'(y, 0'), x, y)
if1'(false', x, y) → if3'(gt'(x, 0'), x, y)
if2'(true', x, y) → gcd'(minus'(x, y), y)
if2'(false', x, y) → x
if3'(true', x, y) → gcd'(x, minus'(y, x))
if3'(false', x, y) → y
gt'(0', y) → false'
gt'(s'(x), 0') → true'
gt'(s'(x), s'(y)) → gt'(x, y)
ge'(x, 0') → true'
ge'(0', s'(x)) → false'
ge'(s'(x), s'(y)) → ge'(x, y)
Infered types.
Rules:
minus'(s'(x), y) → if'(gt'(s'(x), y), x, y)
if'(true', x, y) → s'(minus'(x, y))
if'(false', x, y) → 0'
gcd'(x, y) → if1'(ge'(x, y), x, y)
if1'(true', x, y) → if2'(gt'(y, 0'), x, y)
if1'(false', x, y) → if3'(gt'(x, 0'), x, y)
if2'(true', x, y) → gcd'(minus'(x, y), y)
if2'(false', x, y) → x
if3'(true', x, y) → gcd'(x, minus'(y, x))
if3'(false', x, y) → y
gt'(0', y) → false'
gt'(s'(x), 0') → true'
gt'(s'(x), s'(y)) → gt'(x, y)
ge'(x, 0') → true'
ge'(0', s'(x)) → false'
ge'(s'(x), s'(y)) → ge'(x, y)
Types:
minus' :: s':0' → s':0' → s':0'
s' :: s':0' → s':0'
if' :: true':false' → s':0' → s':0' → s':0'
gt' :: s':0' → s':0' → true':false'
true' :: true':false'
false' :: true':false'
0' :: s':0'
gcd' :: s':0' → s':0' → s':0'
if1' :: true':false' → s':0' → s':0' → s':0'
ge' :: s':0' → s':0' → true':false'
if2' :: true':false' → s':0' → s':0' → s':0'
if3' :: true':false' → s':0' → s':0' → s':0'
_hole_s':0'1 :: s':0'
_hole_true':false'2 :: true':false'
_gen_s':0'3 :: Nat → s':0'
Heuristically decided to analyse the following defined symbols:
minus', gt', gcd', ge'
They will be analysed ascendingly in the following order:
gt' < minus'
minus' < gcd'
gt' < gcd'
ge' < gcd'
Rules:
minus'(s'(x), y) → if'(gt'(s'(x), y), x, y)
if'(true', x, y) → s'(minus'(x, y))
if'(false', x, y) → 0'
gcd'(x, y) → if1'(ge'(x, y), x, y)
if1'(true', x, y) → if2'(gt'(y, 0'), x, y)
if1'(false', x, y) → if3'(gt'(x, 0'), x, y)
if2'(true', x, y) → gcd'(minus'(x, y), y)
if2'(false', x, y) → x
if3'(true', x, y) → gcd'(x, minus'(y, x))
if3'(false', x, y) → y
gt'(0', y) → false'
gt'(s'(x), 0') → true'
gt'(s'(x), s'(y)) → gt'(x, y)
ge'(x, 0') → true'
ge'(0', s'(x)) → false'
ge'(s'(x), s'(y)) → ge'(x, y)
Types:
minus' :: s':0' → s':0' → s':0'
s' :: s':0' → s':0'
if' :: true':false' → s':0' → s':0' → s':0'
gt' :: s':0' → s':0' → true':false'
true' :: true':false'
false' :: true':false'
0' :: s':0'
gcd' :: s':0' → s':0' → s':0'
if1' :: true':false' → s':0' → s':0' → s':0'
ge' :: s':0' → s':0' → true':false'
if2' :: true':false' → s':0' → s':0' → s':0'
if3' :: true':false' → s':0' → s':0' → s':0'
_hole_s':0'1 :: s':0'
_hole_true':false'2 :: true':false'
_gen_s':0'3 :: Nat → s':0'
Generator Equations:
_gen_s':0'3(0) ⇔ 0'
_gen_s':0'3(+(x, 1)) ⇔ s'(_gen_s':0'3(x))
The following defined symbols remain to be analysed:
gt', minus', gcd', ge'
They will be analysed ascendingly in the following order:
gt' < minus'
minus' < gcd'
gt' < gcd'
ge' < gcd'
Proved the following rewrite lemma:
gt'(_gen_s':0'3(_n5), _gen_s':0'3(_n5)) → false', rt ∈ Ω(1 + n5)
Induction Base:
gt'(_gen_s':0'3(0), _gen_s':0'3(0)) →RΩ(1)
false'
Induction Step:
gt'(_gen_s':0'3(+(_$n6, 1)), _gen_s':0'3(+(_$n6, 1))) →RΩ(1)
gt'(_gen_s':0'3(_$n6), _gen_s':0'3(_$n6)) →IH
false'
We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Rules:
minus'(s'(x), y) → if'(gt'(s'(x), y), x, y)
if'(true', x, y) → s'(minus'(x, y))
if'(false', x, y) → 0'
gcd'(x, y) → if1'(ge'(x, y), x, y)
if1'(true', x, y) → if2'(gt'(y, 0'), x, y)
if1'(false', x, y) → if3'(gt'(x, 0'), x, y)
if2'(true', x, y) → gcd'(minus'(x, y), y)
if2'(false', x, y) → x
if3'(true', x, y) → gcd'(x, minus'(y, x))
if3'(false', x, y) → y
gt'(0', y) → false'
gt'(s'(x), 0') → true'
gt'(s'(x), s'(y)) → gt'(x, y)
ge'(x, 0') → true'
ge'(0', s'(x)) → false'
ge'(s'(x), s'(y)) → ge'(x, y)
Types:
minus' :: s':0' → s':0' → s':0'
s' :: s':0' → s':0'
if' :: true':false' → s':0' → s':0' → s':0'
gt' :: s':0' → s':0' → true':false'
true' :: true':false'
false' :: true':false'
0' :: s':0'
gcd' :: s':0' → s':0' → s':0'
if1' :: true':false' → s':0' → s':0' → s':0'
ge' :: s':0' → s':0' → true':false'
if2' :: true':false' → s':0' → s':0' → s':0'
if3' :: true':false' → s':0' → s':0' → s':0'
_hole_s':0'1 :: s':0'
_hole_true':false'2 :: true':false'
_gen_s':0'3 :: Nat → s':0'
Lemmas:
gt'(_gen_s':0'3(_n5), _gen_s':0'3(_n5)) → false', rt ∈ Ω(1 + n5)
Generator Equations:
_gen_s':0'3(0) ⇔ 0'
_gen_s':0'3(+(x, 1)) ⇔ s'(_gen_s':0'3(x))
The following defined symbols remain to be analysed:
minus', gcd', ge'
They will be analysed ascendingly in the following order:
minus' < gcd'
ge' < gcd'
Could not prove a rewrite lemma for the defined symbol minus'.
Rules:
minus'(s'(x), y) → if'(gt'(s'(x), y), x, y)
if'(true', x, y) → s'(minus'(x, y))
if'(false', x, y) → 0'
gcd'(x, y) → if1'(ge'(x, y), x, y)
if1'(true', x, y) → if2'(gt'(y, 0'), x, y)
if1'(false', x, y) → if3'(gt'(x, 0'), x, y)
if2'(true', x, y) → gcd'(minus'(x, y), y)
if2'(false', x, y) → x
if3'(true', x, y) → gcd'(x, minus'(y, x))
if3'(false', x, y) → y
gt'(0', y) → false'
gt'(s'(x), 0') → true'
gt'(s'(x), s'(y)) → gt'(x, y)
ge'(x, 0') → true'
ge'(0', s'(x)) → false'
ge'(s'(x), s'(y)) → ge'(x, y)
Types:
minus' :: s':0' → s':0' → s':0'
s' :: s':0' → s':0'
if' :: true':false' → s':0' → s':0' → s':0'
gt' :: s':0' → s':0' → true':false'
true' :: true':false'
false' :: true':false'
0' :: s':0'
gcd' :: s':0' → s':0' → s':0'
if1' :: true':false' → s':0' → s':0' → s':0'
ge' :: s':0' → s':0' → true':false'
if2' :: true':false' → s':0' → s':0' → s':0'
if3' :: true':false' → s':0' → s':0' → s':0'
_hole_s':0'1 :: s':0'
_hole_true':false'2 :: true':false'
_gen_s':0'3 :: Nat → s':0'
Lemmas:
gt'(_gen_s':0'3(_n5), _gen_s':0'3(_n5)) → false', rt ∈ Ω(1 + n5)
Generator Equations:
_gen_s':0'3(0) ⇔ 0'
_gen_s':0'3(+(x, 1)) ⇔ s'(_gen_s':0'3(x))
The following defined symbols remain to be analysed:
ge', gcd'
They will be analysed ascendingly in the following order:
ge' < gcd'
Proved the following rewrite lemma:
ge'(_gen_s':0'3(_n950), _gen_s':0'3(_n950)) → true', rt ∈ Ω(1 + n950)
Induction Base:
ge'(_gen_s':0'3(0), _gen_s':0'3(0)) →RΩ(1)
true'
Induction Step:
ge'(_gen_s':0'3(+(_$n951, 1)), _gen_s':0'3(+(_$n951, 1))) →RΩ(1)
ge'(_gen_s':0'3(_$n951), _gen_s':0'3(_$n951)) →IH
true'
We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Rules:
minus'(s'(x), y) → if'(gt'(s'(x), y), x, y)
if'(true', x, y) → s'(minus'(x, y))
if'(false', x, y) → 0'
gcd'(x, y) → if1'(ge'(x, y), x, y)
if1'(true', x, y) → if2'(gt'(y, 0'), x, y)
if1'(false', x, y) → if3'(gt'(x, 0'), x, y)
if2'(true', x, y) → gcd'(minus'(x, y), y)
if2'(false', x, y) → x
if3'(true', x, y) → gcd'(x, minus'(y, x))
if3'(false', x, y) → y
gt'(0', y) → false'
gt'(s'(x), 0') → true'
gt'(s'(x), s'(y)) → gt'(x, y)
ge'(x, 0') → true'
ge'(0', s'(x)) → false'
ge'(s'(x), s'(y)) → ge'(x, y)
Types:
minus' :: s':0' → s':0' → s':0'
s' :: s':0' → s':0'
if' :: true':false' → s':0' → s':0' → s':0'
gt' :: s':0' → s':0' → true':false'
true' :: true':false'
false' :: true':false'
0' :: s':0'
gcd' :: s':0' → s':0' → s':0'
if1' :: true':false' → s':0' → s':0' → s':0'
ge' :: s':0' → s':0' → true':false'
if2' :: true':false' → s':0' → s':0' → s':0'
if3' :: true':false' → s':0' → s':0' → s':0'
_hole_s':0'1 :: s':0'
_hole_true':false'2 :: true':false'
_gen_s':0'3 :: Nat → s':0'
Lemmas:
gt'(_gen_s':0'3(_n5), _gen_s':0'3(_n5)) → false', rt ∈ Ω(1 + n5)
ge'(_gen_s':0'3(_n950), _gen_s':0'3(_n950)) → true', rt ∈ Ω(1 + n950)
Generator Equations:
_gen_s':0'3(0) ⇔ 0'
_gen_s':0'3(+(x, 1)) ⇔ s'(_gen_s':0'3(x))
The following defined symbols remain to be analysed:
gcd'
Could not prove a rewrite lemma for the defined symbol gcd'.
Rules:
minus'(s'(x), y) → if'(gt'(s'(x), y), x, y)
if'(true', x, y) → s'(minus'(x, y))
if'(false', x, y) → 0'
gcd'(x, y) → if1'(ge'(x, y), x, y)
if1'(true', x, y) → if2'(gt'(y, 0'), x, y)
if1'(false', x, y) → if3'(gt'(x, 0'), x, y)
if2'(true', x, y) → gcd'(minus'(x, y), y)
if2'(false', x, y) → x
if3'(true', x, y) → gcd'(x, minus'(y, x))
if3'(false', x, y) → y
gt'(0', y) → false'
gt'(s'(x), 0') → true'
gt'(s'(x), s'(y)) → gt'(x, y)
ge'(x, 0') → true'
ge'(0', s'(x)) → false'
ge'(s'(x), s'(y)) → ge'(x, y)
Types:
minus' :: s':0' → s':0' → s':0'
s' :: s':0' → s':0'
if' :: true':false' → s':0' → s':0' → s':0'
gt' :: s':0' → s':0' → true':false'
true' :: true':false'
false' :: true':false'
0' :: s':0'
gcd' :: s':0' → s':0' → s':0'
if1' :: true':false' → s':0' → s':0' → s':0'
ge' :: s':0' → s':0' → true':false'
if2' :: true':false' → s':0' → s':0' → s':0'
if3' :: true':false' → s':0' → s':0' → s':0'
_hole_s':0'1 :: s':0'
_hole_true':false'2 :: true':false'
_gen_s':0'3 :: Nat → s':0'
Lemmas:
gt'(_gen_s':0'3(_n5), _gen_s':0'3(_n5)) → false', rt ∈ Ω(1 + n5)
ge'(_gen_s':0'3(_n950), _gen_s':0'3(_n950)) → true', rt ∈ Ω(1 + n950)
Generator Equations:
_gen_s':0'3(0) ⇔ 0'
_gen_s':0'3(+(x, 1)) ⇔ s'(_gen_s':0'3(x))
No more defined symbols left to analyse.
The lowerbound Ω(n) was proven with the following lemma:
gt'(_gen_s':0'3(_n5), _gen_s':0'3(_n5)) → false', rt ∈ Ω(1 + n5)