(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
id_inc(x) → x
id_inc(x) → s(x)
quot(x, y) → div(x, y, 0)
div(x, y, z) → if(ge(y, s(0)), ge(x, y), x, y, z)
if(false, b, x, y, z) → div_by_zero
if(true, false, x, y, z) → z
if(true, true, x, y, z) → div(minus(x, y), y, id_inc(z))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
quot(z0, z1) → div(z0, z1, 0)
div(z0, z1, z2) → if(ge(z1, s(0)), ge(z0, z1), z0, z1, z2)
if(false, z0, z1, z2, z3) → div_by_zero
if(true, false, z0, z1, z2) → z2
if(true, true, z0, z1, z2) → div(minus(z0, z1), z1, id_inc(z2))
Tuples:
GE(z0, 0) → c
GE(0, s(z0)) → c1
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(z0, 0) → c3
MINUS(0, z0) → c4
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
ID_INC(z0) → c6
ID_INC(z0) → c7
QUOT(z0, z1) → c8(DIV(z0, z1, 0))
DIV(z0, z1, z2) → c9(IF(ge(z1, s(0)), ge(z0, z1), z0, z1, z2), GE(z1, s(0)), GE(z0, z1))
IF(false, z0, z1, z2, z3) → c10
IF(true, false, z0, z1, z2) → c11
IF(true, true, z0, z1, z2) → c12(DIV(minus(z0, z1), z1, id_inc(z2)), MINUS(z0, z1), ID_INC(z2))
S tuples:
GE(z0, 0) → c
GE(0, s(z0)) → c1
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(z0, 0) → c3
MINUS(0, z0) → c4
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
ID_INC(z0) → c6
ID_INC(z0) → c7
QUOT(z0, z1) → c8(DIV(z0, z1, 0))
DIV(z0, z1, z2) → c9(IF(ge(z1, s(0)), ge(z0, z1), z0, z1, z2), GE(z1, s(0)), GE(z0, z1))
IF(false, z0, z1, z2, z3) → c10
IF(true, false, z0, z1, z2) → c11
IF(true, true, z0, z1, z2) → c12(DIV(minus(z0, z1), z1, id_inc(z2)), MINUS(z0, z1), ID_INC(z2))
K tuples:none
Defined Rule Symbols:
ge, minus, id_inc, quot, div, if
Defined Pair Symbols:
GE, MINUS, ID_INC, QUOT, DIV, IF
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12
(3) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
QUOT(z0, z1) → c8(DIV(z0, z1, 0))
Removed 8 trailing nodes:
IF(true, false, z0, z1, z2) → c11
IF(false, z0, z1, z2, z3) → c10
GE(z0, 0) → c
GE(0, s(z0)) → c1
MINUS(z0, 0) → c3
MINUS(0, z0) → c4
ID_INC(z0) → c6
ID_INC(z0) → c7
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
quot(z0, z1) → div(z0, z1, 0)
div(z0, z1, z2) → if(ge(z1, s(0)), ge(z0, z1), z0, z1, z2)
if(false, z0, z1, z2, z3) → div_by_zero
if(true, false, z0, z1, z2) → z2
if(true, true, z0, z1, z2) → div(minus(z0, z1), z1, id_inc(z2))
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(z0, z1, z2) → c9(IF(ge(z1, s(0)), ge(z0, z1), z0, z1, z2), GE(z1, s(0)), GE(z0, z1))
IF(true, true, z0, z1, z2) → c12(DIV(minus(z0, z1), z1, id_inc(z2)), MINUS(z0, z1), ID_INC(z2))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(z0, z1, z2) → c9(IF(ge(z1, s(0)), ge(z0, z1), z0, z1, z2), GE(z1, s(0)), GE(z0, z1))
IF(true, true, z0, z1, z2) → c12(DIV(minus(z0, z1), z1, id_inc(z2)), MINUS(z0, z1), ID_INC(z2))
K tuples:none
Defined Rule Symbols:
ge, minus, id_inc, quot, div, if
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c9, c12
(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
quot(z0, z1) → div(z0, z1, 0)
div(z0, z1, z2) → if(ge(z1, s(0)), ge(z0, z1), z0, z1, z2)
if(false, z0, z1, z2, z3) → div_by_zero
if(true, false, z0, z1, z2) → z2
if(true, true, z0, z1, z2) → div(minus(z0, z1), z1, id_inc(z2))
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(z0, z1, z2) → c9(IF(ge(z1, s(0)), ge(z0, z1), z0, z1, z2), GE(z1, s(0)), GE(z0, z1))
IF(true, true, z0, z1, z2) → c12(DIV(minus(z0, z1), z1, id_inc(z2)), MINUS(z0, z1))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(z0, z1, z2) → c9(IF(ge(z1, s(0)), ge(z0, z1), z0, z1, z2), GE(z1, s(0)), GE(z0, z1))
IF(true, true, z0, z1, z2) → c12(DIV(minus(z0, z1), z1, id_inc(z2)), MINUS(z0, z1))
K tuples:none
Defined Rule Symbols:
ge, minus, id_inc, quot, div, if
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c9, c12
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
quot(z0, z1) → div(z0, z1, 0)
div(z0, z1, z2) → if(ge(z1, s(0)), ge(z0, z1), z0, z1, z2)
if(false, z0, z1, z2, z3) → div_by_zero
if(true, false, z0, z1, z2) → z2
if(true, true, z0, z1, z2) → div(minus(z0, z1), z1, id_inc(z2))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(z0, z1, z2) → c9(IF(ge(z1, s(0)), ge(z0, z1), z0, z1, z2), GE(z1, s(0)), GE(z0, z1))
IF(true, true, z0, z1, z2) → c12(DIV(minus(z0, z1), z1, id_inc(z2)), MINUS(z0, z1))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(z0, z1, z2) → c9(IF(ge(z1, s(0)), ge(z0, z1), z0, z1, z2), GE(z1, s(0)), GE(z0, z1))
IF(true, true, z0, z1, z2) → c12(DIV(minus(z0, z1), z1, id_inc(z2)), MINUS(z0, z1))
K tuples:none
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c9, c12
(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
DIV(
z0,
z1,
z2) →
c9(
IF(
ge(
z1,
s(
0)),
ge(
z0,
z1),
z0,
z1,
z2),
GE(
z1,
s(
0)),
GE(
z0,
z1)) by
DIV(0, s(z0), x2) → c9(IF(ge(s(z0), s(0)), false, 0, s(z0), x2), GE(s(z0), s(0)), GE(0, s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2), GE(0, s(0)), GE(z0, 0))
DIV(x0, 0, x2) → c9(IF(false, ge(x0, 0), x0, 0, x2), GE(0, s(0)), GE(x0, 0))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1, z2) → c12(DIV(minus(z0, z1), z1, id_inc(z2)), MINUS(z0, z1))
DIV(0, s(z0), x2) → c9(IF(ge(s(z0), s(0)), false, 0, s(z0), x2), GE(s(z0), s(0)), GE(0, s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2), GE(0, s(0)), GE(z0, 0))
DIV(x0, 0, x2) → c9(IF(false, ge(x0, 0), x0, 0, x2), GE(0, s(0)), GE(x0, 0))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1, z2) → c12(DIV(minus(z0, z1), z1, id_inc(z2)), MINUS(z0, z1))
DIV(0, s(z0), x2) → c9(IF(ge(s(z0), s(0)), false, 0, s(z0), x2), GE(s(z0), s(0)), GE(0, s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2), GE(0, s(0)), GE(z0, 0))
DIV(x0, 0, x2) → c9(IF(false, ge(x0, 0), x0, 0, x2), GE(0, s(0)), GE(x0, 0))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
K tuples:none
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, IF, DIV
Compound Symbols:
c2, c5, c12, c9
(11) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
DIV(x0, 0, x2) → c9(IF(false, ge(x0, 0), x0, 0, x2), GE(0, s(0)), GE(x0, 0))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1, z2) → c12(DIV(minus(z0, z1), z1, id_inc(z2)), MINUS(z0, z1))
DIV(0, s(z0), x2) → c9(IF(ge(s(z0), s(0)), false, 0, s(z0), x2), GE(s(z0), s(0)), GE(0, s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2), GE(0, s(0)), GE(z0, 0))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1, z2) → c12(DIV(minus(z0, z1), z1, id_inc(z2)), MINUS(z0, z1))
DIV(0, s(z0), x2) → c9(IF(ge(s(z0), s(0)), false, 0, s(z0), x2), GE(s(z0), s(0)), GE(0, s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2), GE(0, s(0)), GE(z0, 0))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
K tuples:none
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, IF, DIV
Compound Symbols:
c2, c5, c12, c9
(13) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing tuple parts
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1, z2) → c12(DIV(minus(z0, z1), z1, id_inc(z2)), MINUS(z0, z1))
DIV(s(z0), s(z1), x2) → c9(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1, z2) → c12(DIV(minus(z0, z1), z1, id_inc(z2)), MINUS(z0, z1))
DIV(s(z0), s(z1), x2) → c9(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
K tuples:none
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, IF, DIV
Compound Symbols:
c2, c5, c12, c9, c9
(15) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
We considered the (Usable) Rules:none
And the Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1, z2) → c12(DIV(minus(z0, z1), z1, id_inc(z2)), MINUS(z0, z1))
DIV(s(z0), s(z1), x2) → c9(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(DIV(x1, x2, x3)) = [2]
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3, x4, x5)) = [2]
POL(MINUS(x1, x2)) = 0
POL(c12(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c9(x1)) = x1
POL(c9(x1, x2, x3)) = x1 + x2 + x3
POL(false) = [3]
POL(ge(x1, x2)) = [3] + [2]x1 + [4]x2
POL(id_inc(x1)) = [3] + [3]x1
POL(minus(x1, x2)) = [5] + [2]x1 + [3]x2
POL(s(x1)) = 0
POL(true) = [3]
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1, z2) → c12(DIV(minus(z0, z1), z1, id_inc(z2)), MINUS(z0, z1))
DIV(s(z0), s(z1), x2) → c9(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1, z2) → c12(DIV(minus(z0, z1), z1, id_inc(z2)), MINUS(z0, z1))
DIV(s(z0), s(z1), x2) → c9(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
K tuples:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, IF, DIV
Compound Symbols:
c2, c5, c12, c9, c9
(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IF(
true,
true,
z0,
z1,
z2) →
c12(
DIV(
minus(
z0,
z1),
z1,
id_inc(
z2)),
MINUS(
z0,
z1)) by
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)), MINUS(z0, 0))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)), MINUS(0, z0))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(s(z0), s(z1), x2) → c9(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)), MINUS(z0, 0))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)), MINUS(0, z0))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(s(z0), s(z1), x2) → c9(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)), MINUS(z0, 0))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)), MINUS(0, z0))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
K tuples:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c9, c9, c12
(19) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(s(z0), s(z1), x2) → c9(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(s(z0), s(z1), x2) → c9(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
K tuples:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c9, c9, c12, c12
(21) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
And the Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(s(z0), s(z1), x2) → c9(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(DIV(x1, x2, x3)) = [2]x1
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3, x4, x5)) = [2]x3
POL(MINUS(x1, x2)) = 0
POL(c12(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c9(x1)) = x1
POL(c9(x1, x2, x3)) = x1 + x2 + x3
POL(false) = [2]
POL(ge(x1, x2)) = 0
POL(id_inc(x1)) = [3] + [2]x1
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(s(z0), s(z1), x2) → c9(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(s(z0), s(z1), x2) → c9(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
K tuples:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c9, c9, c12, c12
(23) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
DIV(
s(
z0),
s(
z1),
x2) →
c9(
IF(
ge(
s(
z1),
s(
0)),
ge(
z0,
z1),
s(
z0),
s(
z1),
x2),
GE(
s(
z1),
s(
0)),
GE(
s(
z0),
s(
z1))) by
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(0), s(s(z0)), x2) → c9(IF(ge(s(s(z0)), s(0)), false, s(0), s(s(z0)), x2), GE(s(s(z0)), s(0)), GE(s(0), s(s(z0))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(0), s(s(z0)), x2) → c9(IF(ge(s(s(z0)), s(0)), false, s(0), s(s(z0)), x2), GE(s(s(z0)), s(0)), GE(s(0), s(s(z0))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(0), s(s(z0)), x2) → c9(IF(ge(s(s(z0)), s(0)), false, s(0), s(s(z0)), x2), GE(s(s(z0)), s(0)), GE(s(0), s(s(z0))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
K tuples:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c9, c9, c12, c12
(25) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0)), x2) → c9(GE(s(s(z0)), s(0)), GE(s(0), s(s(z0))))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0)), x2) → c9(GE(s(s(z0)), s(0)), GE(s(0), s(s(z0))))
K tuples:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c9, c9, c12, c12, c9
(27) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
K tuples:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c9, c9, c12, c12, c
(29) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
And the Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(DIV(x1, x2, x3)) = x1
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3, x4, x5)) = x3
POL(MINUS(x1, x2)) = 0
POL(c(x1)) = x1
POL(c12(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c9(x1)) = x1
POL(c9(x1, x2, x3)) = x1 + x2 + x3
POL(false) = [3]
POL(ge(x1, x2)) = [5] + [2]x1 + [2]x2
POL(id_inc(x1)) = [1]
POL(minus(x1, x2)) = x1
POL(s(x1)) = x1
POL(true) = [1]
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
K tuples:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c9, c9, c12, c12, c
(31) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
And the Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [2]
POL(DIV(x1, x2, x3)) = x1
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3, x4, x5)) = x3
POL(MINUS(x1, x2)) = 0
POL(c(x1)) = x1
POL(c12(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c9(x1)) = x1
POL(c9(x1, x2, x3)) = x1 + x2 + x3
POL(false) = [1]
POL(ge(x1, x2)) = [3]x1
POL(id_inc(x1)) = [4] + [3]x1
POL(minus(x1, x2)) = x1
POL(s(x1)) = [4] + x1
POL(true) = 0
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(x0, s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
K tuples:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c9, c9, c12, c12, c
(33) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
DIV(
x0,
s(
z0),
x2) →
c9(
IF(
ge(
z0,
0),
ge(
x0,
s(
z0)),
x0,
s(
z0),
x2),
GE(
s(
z0),
s(
0)),
GE(
x0,
s(
z0))) by
DIV(0, s(z0), x2) → c9(IF(ge(z0, 0), false, 0, s(z0), x2), GE(s(z0), s(0)), GE(0, s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(ge(z1, 0), ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(z0), x2) → c9(IF(true, ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
DIV(0, s(z0), x2) → c9(IF(ge(z0, 0), false, 0, s(z0), x2), GE(s(z0), s(0)), GE(0, s(z0)))
DIV(x0, s(z0), x2) → c9(IF(true, ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(0, s(z0), x2) → c9(IF(ge(z0, 0), false, 0, s(z0), x2), GE(s(z0), s(0)), GE(0, s(z0)))
DIV(x0, s(z0), x2) → c9(IF(true, ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
K tuples:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c9, c12, c12, c9, c
(35) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
DIV(x0, s(z0), x2) → c9(IF(true, ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(x0, s(z0), x2) → c9(IF(true, ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
K tuples:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c9, c12, c12, c9, c
(37) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)
The following tuples could be moved from S to K by knowledge propagation:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
DIV(x0, s(z0), x2) → c9(IF(true, ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(z0, 0, x2) → c9(IF(ge(0, s(0)), true, z0, 0, x2))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(x0, s(z0), x2) → c9(IF(true, ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
K tuples:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c9, c12, c12, c9, c
(39) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
DIV(
z0,
0,
x2) →
c9(
IF(
ge(
0,
s(
0)),
true,
z0,
0,
x2)) by
DIV(x0, 0, x1) → c9(IF(false, true, x0, 0, x1))
(40) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
DIV(x0, s(z0), x2) → c9(IF(true, ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(x0, 0, x1) → c9(IF(false, true, x0, 0, x1))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(x0, s(z0), x2) → c9(IF(true, ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(x0, 0, x1) → c9(IF(false, true, x0, 0, x1))
K tuples:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c9, c12, c12, c9, c
(41) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, id_inc(x2)))
DIV(x0, 0, x1) → c9(IF(false, true, x0, 0, x1))
(42) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
DIV(x0, s(z0), x2) → c9(IF(true, ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(x0, s(z0), x2) → c9(IF(true, ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
K tuples:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c9, c12, c12, c9, c
(43) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IF(
true,
true,
s(
z0),
s(
z1),
x2) →
c12(
DIV(
minus(
z0,
z1),
s(
z1),
id_inc(
x2)),
MINUS(
s(
z0),
s(
z1))) by
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(0), s(z0), x2) → c12(DIV(0, s(z0), id_inc(x2)), MINUS(s(0), s(z0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
(44) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
DIV(x0, s(z0), x2) → c9(IF(true, ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(0), s(z0), x2) → c12(DIV(0, s(z0), id_inc(x2)), MINUS(s(0), s(z0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, id_inc(x2)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(x0, s(z0), x2) → c9(IF(true, ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
K tuples:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c9, c12, c12, c9, c
(45) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IF(
true,
true,
0,
z0,
x2) →
c12(
DIV(
0,
z0,
id_inc(
x2))) by
IF(true, true, 0, x0, z0) → c12(DIV(0, x0, z0))
IF(true, true, 0, x0, z0) → c12(DIV(0, x0, s(z0)))
(46) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
DIV(x0, s(z0), x2) → c9(IF(true, ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(0), s(z0), x2) → c12(DIV(0, s(z0), id_inc(x2)), MINUS(s(0), s(z0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, 0, x0, z0) → c12(DIV(0, x0, z0))
IF(true, true, 0, x0, z0) → c12(DIV(0, x0, s(z0)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(x0, s(z0), x2) → c9(IF(true, ge(x0, s(z0)), x0, s(z0), x2), GE(s(z0), s(0)), GE(x0, s(z0)))
IF(true, true, 0, x0, z0) → c12(DIV(0, x0, z0))
IF(true, true, 0, x0, z0) → c12(DIV(0, x0, s(z0)))
K tuples:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c9, c12, c9, c, c12
(47) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
DIV(
x0,
s(
z0),
x2) →
c9(
IF(
true,
ge(
x0,
s(
z0)),
x0,
s(
z0),
x2),
GE(
s(
z0),
s(
0)),
GE(
x0,
s(
z0))) by
DIV(0, s(z0), x2) → c9(IF(true, false, 0, s(z0), x2), GE(s(z0), s(0)), GE(0, s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(x1), x2) → c9(GE(s(x1), s(0)))
(48) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(0), s(z0), x2) → c12(DIV(0, s(z0), id_inc(x2)), MINUS(s(0), s(z0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, 0, x0, z0) → c12(DIV(0, x0, z0))
IF(true, true, 0, x0, z0) → c12(DIV(0, x0, s(z0)))
DIV(0, s(z0), x2) → c9(IF(true, false, 0, s(z0), x2), GE(s(z0), s(0)), GE(0, s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(x1), x2) → c9(GE(s(x1), s(0)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
IF(true, true, 0, x0, z0) → c12(DIV(0, x0, z0))
IF(true, true, 0, x0, z0) → c12(DIV(0, x0, s(z0)))
DIV(0, s(z0), x2) → c9(IF(true, false, 0, s(z0), x2), GE(s(z0), s(0)), GE(0, s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(x1), x2) → c9(GE(s(x1), s(0)))
K tuples:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), id_inc(x2)), MINUS(s(z0), s(z1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c9, c12, c9, c, c12
(49) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 2 leading nodes:
IF(true, true, 0, x0, z0) → c12(DIV(0, x0, z0))
IF(true, true, 0, x0, z0) → c12(DIV(0, x0, s(z0)))
(50) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(0), s(z0), x2) → c12(DIV(0, s(z0), id_inc(x2)), MINUS(s(0), s(z0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
DIV(0, s(z0), x2) → c9(IF(true, false, 0, s(z0), x2), GE(s(z0), s(0)), GE(0, s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(x1), x2) → c9(GE(s(x1), s(0)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(0, s(z0), x2) → c9(IF(true, false, 0, s(z0), x2), GE(s(z0), s(0)), GE(0, s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(x1), x2) → c9(GE(s(x1), s(0)))
K tuples:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c9, c12, c9, c
(51) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(52) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(0), s(z0), x2) → c12(DIV(0, s(z0), id_inc(x2)), MINUS(s(0), s(z0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(x1), x2) → c9(GE(s(x1), s(0)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(x1), x2) → c9(GE(s(x1), s(0)))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
K tuples:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c9, c12, c9, c
(53) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(54) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(x1), x2) → c9(GE(s(x1), s(0)))
IF(true, true, s(0), s(z0), x2) → c1(DIV(0, s(z0), id_inc(x2)))
IF(true, true, s(0), s(z0), x2) → c1(MINUS(s(0), s(z0)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(x1), x2) → c9(GE(s(x1), s(0)))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
K tuples:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c9, c12, c9, c, c1
(55) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)
The following tuples could be moved from S to K by knowledge propagation:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
(56) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(x1), x2) → c9(GE(s(x1), s(0)))
IF(true, true, s(0), s(z0), x2) → c1(DIV(0, s(z0), id_inc(x2)))
IF(true, true, s(0), s(z0), x2) → c1(MINUS(s(0), s(z0)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(x1), x2) → c9(GE(s(x1), s(0)))
K tuples:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c9, c12, c9, c, c1
(57) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
DIV(x0, s(x1), x2) → c9(GE(s(x1), s(0)))
We considered the (Usable) Rules:none
And the Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(x1), x2) → c9(GE(s(x1), s(0)))
IF(true, true, s(0), s(z0), x2) → c1(DIV(0, s(z0), id_inc(x2)))
IF(true, true, s(0), s(z0), x2) → c1(MINUS(s(0), s(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(DIV(x1, x2, x3)) = x2
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3, x4, x5)) = x4
POL(MINUS(x1, x2)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c9(x1)) = x1
POL(c9(x1, x2, x3)) = x1 + x2 + x3
POL(false) = [3]
POL(ge(x1, x2)) = [2]x1
POL(id_inc(x1)) = [2]
POL(minus(x1, x2)) = [1] + [5]x1 + [2]x2
POL(s(x1)) = [1]
POL(true) = [4]
(58) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(x1), x2) → c9(GE(s(x1), s(0)))
IF(true, true, s(0), s(z0), x2) → c1(DIV(0, s(z0), id_inc(x2)))
IF(true, true, s(0), s(z0), x2) → c1(MINUS(s(0), s(z0)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
K tuples:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
DIV(x0, s(x1), x2) → c9(GE(s(x1), s(0)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c9, c12, c9, c, c1
(59) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
GE(
s(
z0),
s(
z1)) →
c2(
GE(
z0,
z1)) by
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
(60) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(x1), x2) → c9(GE(s(x1), s(0)))
IF(true, true, s(0), s(z0), x2) → c1(DIV(0, s(z0), id_inc(x2)))
IF(true, true, s(0), s(z0), x2) → c1(MINUS(s(0), s(z0)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
S tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
K tuples:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
DIV(x0, s(x1), x2) → c9(GE(s(x1), s(0)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
MINUS, DIV, IF, GE
Compound Symbols:
c5, c9, c12, c9, c, c1, c2
(61) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 5 trailing nodes:
DIV(0, s(z0), x2) → c9(GE(s(z0), s(0)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(s(z0)), s(0)))
IF(true, true, s(0), s(z0), x2) → c1(DIV(0, s(z0), id_inc(x2)))
DIV(s(0), s(s(z0)), x2) → c(GE(s(0), s(s(z0))))
DIV(x0, s(x1), x2) → c9(GE(s(x1), s(0)))
(62) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
IF(true, true, s(0), s(z0), x2) → c1(MINUS(s(0), s(z0)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
S tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z1), s(0)), GE(s(z0), s(z1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
K tuples:
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
MINUS, IF, DIV, GE
Compound Symbols:
c5, c12, c9, c9, c1, c2
(63) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 6 trailing tuple parts
(64) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(0), s(z0), x2) → c1(MINUS(s(0), s(z0)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
S tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, z0), MINUS(x0, x1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
K tuples:
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
MINUS, IF, DIV, GE
Compound Symbols:
c5, c12, c9, c1, c2, c9
(65) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IF(
true,
true,
x0,
x1,
z0) →
c12(
DIV(
minus(
x0,
x1),
x1,
z0),
MINUS(
x0,
x1)) by
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, x2), MINUS(z0, 0))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, x2), MINUS(0, z0))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), x2), MINUS(s(z0), s(z1)))
(66) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(0), s(z0), x2) → c1(MINUS(s(0), s(z0)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, x2), MINUS(z0, 0))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, x2), MINUS(0, z0))
S tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, x2), MINUS(z0, 0))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, x2), MINUS(0, z0))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), x2), MINUS(s(z0), s(z1)))
K tuples:
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
MINUS, IF, DIV, GE
Compound Symbols:
c5, c12, c9, c1, c2, c9
(67) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, x2), MINUS(z0, 0))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, x2), MINUS(0, z0))
(68) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(0), s(z0), x2) → c1(MINUS(s(0), s(z0)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
S tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), x2), MINUS(s(z0), s(z1)))
K tuples:
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
MINUS, IF, DIV, GE
Compound Symbols:
c5, c12, c9, c1, c2, c9
(69) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
And the Tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(0), s(z0), x2) → c1(MINUS(s(0), s(z0)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(DIV(x1, x2, x3)) = x1
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3, x4, x5)) = x3
POL(MINUS(x1, x2)) = 0
POL(c1(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c9(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(false) = [3]
POL(ge(x1, x2)) = [2]x1
POL(id_inc(x1)) = [5]
POL(minus(x1, x2)) = x1
POL(s(x1)) = [2] + x1
POL(true) = 0
(70) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(0), s(z0), x2) → c1(MINUS(s(0), s(z0)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
S tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, x0, x1, z0) → c12(DIV(minus(x0, x1), x1, s(z0)), MINUS(x0, x1))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
K tuples:
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
MINUS, IF, DIV, GE
Compound Symbols:
c5, c12, c9, c1, c2, c9
(71) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IF(
true,
true,
x0,
x1,
z0) →
c12(
DIV(
minus(
x0,
x1),
x1,
s(
z0)),
MINUS(
x0,
x1)) by
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, s(x2)), MINUS(z0, 0))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, s(x2)), MINUS(0, z0))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), s(x2)), MINUS(s(z0), s(z1)))
(72) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(0), s(z0), x2) → c1(MINUS(s(0), s(z0)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, s(x2)), MINUS(z0, 0))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, s(x2)), MINUS(0, z0))
S tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, s(x2)), MINUS(z0, 0))
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, s(x2)), MINUS(0, z0))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), s(x2)), MINUS(s(z0), s(z1)))
K tuples:
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
MINUS, DIV, IF, GE
Compound Symbols:
c5, c9, c12, c1, c2, c9
(73) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
IF(true, true, 0, z0, x2) → c12(DIV(0, z0, s(x2)), MINUS(0, z0))
IF(true, true, z0, 0, x2) → c12(DIV(z0, 0, s(x2)), MINUS(z0, 0))
(74) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(0), s(z0), x2) → c1(MINUS(s(0), s(z0)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
S tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
IF(true, true, s(z0), s(z1), x2) → c12(DIV(minus(z0, z1), s(z1), s(x2)), MINUS(s(z0), s(z1)))
K tuples:
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
MINUS, DIV, IF, GE
Compound Symbols:
c5, c9, c12, c1, c2, c9
(75) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
And the Tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(0), s(z0), x2) → c1(MINUS(s(0), s(z0)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(DIV(x1, x2, x3)) = [2]x1
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3, x4, x5)) = [2]x3
POL(MINUS(x1, x2)) = 0
POL(c1(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c9(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(false) = 0
POL(ge(x1, x2)) = 0
POL(id_inc(x1)) = 0
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(76) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(0), s(z0), x2) → c1(MINUS(s(0), s(z0)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
S tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
K tuples:
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
MINUS, DIV, IF, GE
Compound Symbols:
c5, c9, c12, c1, c2, c9
(77) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
id_inc(z0) → s(z0)
id_inc(z0) → z0
minus(0, z0) → 0
And the Tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(0), s(z0), x2) → c1(MINUS(s(0), s(z0)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(DIV(x1, x2, x3)) = [1] + [4]x1 + [3]x3
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3, x4, x5)) = [4]x3 + [3]x5
POL(MINUS(x1, x2)) = [3]
POL(c1(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c9(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(false) = [3]
POL(ge(x1, x2)) = x1
POL(id_inc(x1)) = [4] + x1
POL(minus(x1, x2)) = x1
POL(s(x1)) = [4] + x1
POL(true) = 0
(78) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(0), s(z0), x2) → c1(MINUS(s(0), s(z0)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
S tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
K tuples:
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
MINUS, DIV, IF, GE
Compound Symbols:
c5, c9, c12, c1, c2, c9
(79) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
And the Tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(0), s(z0), x2) → c1(MINUS(s(0), s(z0)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(DIV(x1, x2, x3)) = [2] + [2]x12
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3, x4, x5)) = [1] + [2]x32
POL(MINUS(x1, x2)) = [2] + x1
POL(c1(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c9(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(false) = 0
POL(ge(x1, x2)) = 0
POL(id_inc(x1)) = [2] + x1
POL(minus(x1, x2)) = x1
POL(s(x1)) = [2] + x1
POL(true) = 0
(80) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(0), s(z0), x2) → c1(MINUS(s(0), s(z0)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
S tuples:
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
K tuples:
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
MINUS, DIV, IF, GE
Compound Symbols:
c5, c9, c12, c1, c2, c9
(81) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
And the Tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(0), s(z0), x2) → c1(MINUS(s(0), s(z0)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [3]
POL(DIV(x1, x2, x3)) = x2 + x1·x2
POL(GE(x1, x2)) = x2
POL(IF(x1, x2, x3, x4, x5)) = x3·x4
POL(MINUS(x1, x2)) = 0
POL(c1(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c9(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(false) = 0
POL(ge(x1, x2)) = 0
POL(id_inc(x1)) = 0
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(82) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
IF(true, true, s(z0), s(0), x2) → c12(DIV(z0, s(0), id_inc(x2)), MINUS(s(z0), s(0)))
IF(true, true, s(s(z0)), s(s(z1)), x2) → c12(DIV(minus(z0, z1), s(s(z1)), id_inc(x2)), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(0), s(z0), x2) → c1(MINUS(s(0), s(z0)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
S tuples:none
K tuples:
DIV(s(x0), s(x1), x2) → c9(GE(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), z0), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(x1), z0) → c12(DIV(minus(x0, x1), s(x1), s(z0)), MINUS(s(x0), s(x1)))
DIV(s(s(z0)), s(s(z1)), x2) → c9(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1)), x2), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0), x2) → c9(IF(ge(s(0), s(0)), true, s(z0), s(0), x2))
DIV(s(x0), s(z0), x2) → c9(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0), x2), GE(s(x0), s(z0)))
DIV(s(z0), s(z1), x2) → c9(IF(true, ge(z0, z1), s(z0), s(z1), x2), GE(s(z0), s(z1)))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
Defined Rule Symbols:
ge, minus, id_inc
Defined Pair Symbols:
MINUS, DIV, IF, GE
Compound Symbols:
c5, c9, c12, c1, c2, c9
(83) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(84) BOUNDS(O(1), O(1))