(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m(b)
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, c, z0)) → mark(f(z0, z0, z0))
active(f(z0, z1, z2)) → f(z0, z1, active(z2))
active(d) → m(b)
active(d) → mark(c)
f(z0, z1, mark(z2)) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
ACTIVE(f(z0, z1, z2)) → c2(F(z0, z1, active(z2)), ACTIVE(z2))
ACTIVE(d) → c3
ACTIVE(d) → c4
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
PROPER(b) → c7
PROPER(c) → c8
PROPER(d) → c9
PROPER(f(z0, z1, z2)) → c10(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
ACTIVE(f(z0, z1, z2)) → c2(F(z0, z1, active(z2)), ACTIVE(z2))
ACTIVE(d) → c3
ACTIVE(d) → c4
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
PROPER(b) → c7
PROPER(c) → c8
PROPER(d) → c9
PROPER(f(z0, z1, z2)) → c10(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, f, proper, top
Defined Pair Symbols:
ACTIVE, F, PROPER, TOP
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 5 trailing nodes:
ACTIVE(d) → c3
ACTIVE(d) → c4
PROPER(b) → c7
PROPER(c) → c8
PROPER(d) → c9
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, c, z0)) → mark(f(z0, z0, z0))
active(f(z0, z1, z2)) → f(z0, z1, active(z2))
active(d) → m(b)
active(d) → mark(c)
f(z0, z1, mark(z2)) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
ACTIVE(f(z0, z1, z2)) → c2(F(z0, z1, active(z2)), ACTIVE(z2))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c10(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
ACTIVE(f(z0, z1, z2)) → c2(F(z0, z1, active(z2)), ACTIVE(z2))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c10(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, f, proper, top
Defined Pair Symbols:
ACTIVE, F, PROPER, TOP
Compound Symbols:
c1, c2, c5, c6, c10, c11, c12
(5) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, c, z0)) → mark(f(z0, z0, z0))
active(f(z0, z1, z2)) → f(z0, z1, active(z2))
active(d) → m(b)
active(d) → mark(c)
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
f(z0, z1, mark(z2)) → mark(f(z0, z1, z2))
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
Tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
ACTIVE(f(z0, z1, z2)) → c2(F(z0, z1, active(z2)), ACTIVE(z2))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c10(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
ACTIVE(f(z0, z1, z2)) → c2(F(z0, z1, active(z2)), ACTIVE(z2))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c10(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
ACTIVE, F, PROPER, TOP
Compound Symbols:
c1, c2, c5, c6, c10, c11, c12
(7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
f(
z0,
z1,
z2)) →
c2(
F(
z0,
z1,
active(
z2)),
ACTIVE(
z2)) by
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, m(b)), ACTIVE(d))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)), ACTIVE(d))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, c, z0)) → mark(f(z0, z0, z0))
active(f(z0, z1, z2)) → f(z0, z1, active(z2))
active(d) → m(b)
active(d) → mark(c)
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
f(z0, z1, mark(z2)) → mark(f(z0, z1, z2))
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
Tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c10(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, m(b)), ACTIVE(d))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)), ACTIVE(d))
S tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c10(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, m(b)), ACTIVE(d))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)), ACTIVE(d))
K tuples:none
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
ACTIVE, F, PROPER, TOP
Compound Symbols:
c1, c5, c6, c10, c11, c12, c2
(9) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, m(b)), ACTIVE(d))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, c, z0)) → mark(f(z0, z0, z0))
active(f(z0, z1, z2)) → f(z0, z1, active(z2))
active(d) → m(b)
active(d) → mark(c)
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
f(z0, z1, mark(z2)) → mark(f(z0, z1, z2))
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
Tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c10(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)), ACTIVE(d))
S tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c10(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)), ACTIVE(d))
K tuples:none
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
ACTIVE, F, PROPER, TOP
Compound Symbols:
c1, c5, c6, c10, c11, c12, c2
(11) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, c, z0)) → mark(f(z0, z0, z0))
active(f(z0, z1, z2)) → f(z0, z1, active(z2))
active(d) → m(b)
active(d) → mark(c)
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
f(z0, z1, mark(z2)) → mark(f(z0, z1, z2))
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
Tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c10(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)))
S tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c10(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)))
K tuples:none
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
ACTIVE, F, PROPER, TOP
Compound Symbols:
c1, c5, c6, c10, c11, c12, c2, c2
(13) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
f(
z0,
z1,
z2)) →
c10(
F(
proper(
z0),
proper(
z1),
proper(
z2)),
PROPER(
z0),
PROPER(
z1),
PROPER(
z2)) by
PROPER(f(x0, x1, b)) → c10(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1), PROPER(b))
PROPER(f(x0, x1, c)) → c10(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1), PROPER(c))
PROPER(f(x0, x1, d)) → c10(F(proper(x0), proper(x1), ok(d)), PROPER(x0), PROPER(x1), PROPER(d))
PROPER(f(x0, x1, f(z0, z1, z2))) → c10(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, b, x2)) → c10(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(b), PROPER(x2))
PROPER(f(x0, c, x2)) → c10(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(c), PROPER(x2))
PROPER(f(x0, d, x2)) → c10(F(proper(x0), ok(d), proper(x2)), PROPER(x0), PROPER(d), PROPER(x2))
PROPER(f(x0, f(z0, z1, z2), x2)) → c10(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(b, x1, x2)) → c10(F(ok(b), proper(x1), proper(x2)), PROPER(b), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c10(F(ok(c), proper(x1), proper(x2)), PROPER(c), PROPER(x1), PROPER(x2))
PROPER(f(d, x1, x2)) → c10(F(ok(d), proper(x1), proper(x2)), PROPER(d), PROPER(x1), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c10(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, c, z0)) → mark(f(z0, z0, z0))
active(f(z0, z1, z2)) → f(z0, z1, active(z2))
active(d) → m(b)
active(d) → mark(c)
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
f(z0, z1, mark(z2)) → mark(f(z0, z1, z2))
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
Tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)))
PROPER(f(x0, x1, b)) → c10(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1), PROPER(b))
PROPER(f(x0, x1, c)) → c10(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1), PROPER(c))
PROPER(f(x0, x1, d)) → c10(F(proper(x0), proper(x1), ok(d)), PROPER(x0), PROPER(x1), PROPER(d))
PROPER(f(x0, x1, f(z0, z1, z2))) → c10(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, b, x2)) → c10(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(b), PROPER(x2))
PROPER(f(x0, c, x2)) → c10(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(c), PROPER(x2))
PROPER(f(x0, d, x2)) → c10(F(proper(x0), ok(d), proper(x2)), PROPER(x0), PROPER(d), PROPER(x2))
PROPER(f(x0, f(z0, z1, z2), x2)) → c10(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(b, x1, x2)) → c10(F(ok(b), proper(x1), proper(x2)), PROPER(b), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c10(F(ok(c), proper(x1), proper(x2)), PROPER(c), PROPER(x1), PROPER(x2))
PROPER(f(d, x1, x2)) → c10(F(ok(d), proper(x1), proper(x2)), PROPER(d), PROPER(x1), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c10(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
S tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)))
PROPER(f(x0, x1, b)) → c10(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1), PROPER(b))
PROPER(f(x0, x1, c)) → c10(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1), PROPER(c))
PROPER(f(x0, x1, d)) → c10(F(proper(x0), proper(x1), ok(d)), PROPER(x0), PROPER(x1), PROPER(d))
PROPER(f(x0, x1, f(z0, z1, z2))) → c10(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, b, x2)) → c10(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(b), PROPER(x2))
PROPER(f(x0, c, x2)) → c10(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(c), PROPER(x2))
PROPER(f(x0, d, x2)) → c10(F(proper(x0), ok(d), proper(x2)), PROPER(x0), PROPER(d), PROPER(x2))
PROPER(f(x0, f(z0, z1, z2), x2)) → c10(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(b, x1, x2)) → c10(F(ok(b), proper(x1), proper(x2)), PROPER(b), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c10(F(ok(c), proper(x1), proper(x2)), PROPER(c), PROPER(x1), PROPER(x2))
PROPER(f(d, x1, x2)) → c10(F(ok(d), proper(x1), proper(x2)), PROPER(d), PROPER(x1), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c10(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
K tuples:none
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
ACTIVE, F, TOP, PROPER
Compound Symbols:
c1, c5, c6, c11, c12, c2, c2, c10
(15) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 9 trailing tuple parts
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, c, z0)) → mark(f(z0, z0, z0))
active(f(z0, z1, z2)) → f(z0, z1, active(z2))
active(d) → m(b)
active(d) → mark(c)
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
f(z0, z1, mark(z2)) → mark(f(z0, z1, z2))
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
Tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c10(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c10(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c10(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c10(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c10(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, d)) → c10(F(proper(x0), proper(x1), ok(d)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c10(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c10(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, d, x2)) → c10(F(proper(x0), ok(d), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c10(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c10(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(d, x1, x2)) → c10(F(ok(d), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
S tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
TOP(mark(z0)) → c11(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c10(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c10(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c10(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c10(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c10(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, d)) → c10(F(proper(x0), proper(x1), ok(d)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c10(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c10(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, d, x2)) → c10(F(proper(x0), ok(d), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c10(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c10(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(d, x1, x2)) → c10(F(ok(d), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
K tuples:none
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
ACTIVE, F, TOP, PROPER
Compound Symbols:
c1, c5, c6, c11, c12, c2, c2, c10, c10
(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
mark(
z0)) →
c11(
TOP(
proper(
z0)),
PROPER(
z0)) by
TOP(mark(b)) → c11(TOP(ok(b)), PROPER(b))
TOP(mark(c)) → c11(TOP(ok(c)), PROPER(c))
TOP(mark(d)) → c11(TOP(ok(d)), PROPER(d))
TOP(mark(f(z0, z1, z2))) → c11(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, c, z0)) → mark(f(z0, z0, z0))
active(f(z0, z1, z2)) → f(z0, z1, active(z2))
active(d) → m(b)
active(d) → mark(c)
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
f(z0, z1, mark(z2)) → mark(f(z0, z1, z2))
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
Tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c10(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c10(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c10(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c10(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c10(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, d)) → c10(F(proper(x0), proper(x1), ok(d)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c10(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c10(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, d, x2)) → c10(F(proper(x0), ok(d), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c10(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c10(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(d, x1, x2)) → c10(F(ok(d), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(b)) → c11(TOP(ok(b)), PROPER(b))
TOP(mark(c)) → c11(TOP(ok(c)), PROPER(c))
TOP(mark(d)) → c11(TOP(ok(d)), PROPER(d))
TOP(mark(f(z0, z1, z2))) → c11(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
S tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c10(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c10(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c10(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c10(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c10(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, d)) → c10(F(proper(x0), proper(x1), ok(d)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c10(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c10(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, d, x2)) → c10(F(proper(x0), ok(d), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c10(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c10(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(d, x1, x2)) → c10(F(ok(d), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(b)) → c11(TOP(ok(b)), PROPER(b))
TOP(mark(c)) → c11(TOP(ok(c)), PROPER(c))
TOP(mark(d)) → c11(TOP(ok(d)), PROPER(d))
TOP(mark(f(z0, z1, z2))) → c11(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
K tuples:none
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
ACTIVE, F, TOP, PROPER
Compound Symbols:
c1, c5, c6, c12, c2, c2, c10, c10, c11
(19) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing tuple parts
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, c, z0)) → mark(f(z0, z0, z0))
active(f(z0, z1, z2)) → f(z0, z1, active(z2))
active(d) → m(b)
active(d) → mark(c)
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
f(z0, z1, mark(z2)) → mark(f(z0, z1, z2))
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
Tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c10(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c10(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c10(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c10(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c10(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, d)) → c10(F(proper(x0), proper(x1), ok(d)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c10(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c10(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, d, x2)) → c10(F(proper(x0), ok(d), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c10(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c10(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(d, x1, x2)) → c10(F(ok(d), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c11(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c11(TOP(ok(b)))
TOP(mark(c)) → c11(TOP(ok(c)))
TOP(mark(d)) → c11(TOP(ok(d)))
S tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c10(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c10(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c10(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c10(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c10(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, d)) → c10(F(proper(x0), proper(x1), ok(d)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c10(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c10(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, d, x2)) → c10(F(proper(x0), ok(d), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c10(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c10(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(d, x1, x2)) → c10(F(ok(d), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c11(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c11(TOP(ok(b)))
TOP(mark(c)) → c11(TOP(ok(c)))
TOP(mark(d)) → c11(TOP(ok(d)))
K tuples:none
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
ACTIVE, F, TOP, PROPER
Compound Symbols:
c1, c5, c6, c12, c2, c2, c10, c10, c11, c11
(21) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(c)) → c11(TOP(ok(c)))
We considered the (Usable) Rules:
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
active(d) → mark(c)
active(f(b, c, z0)) → mark(f(z0, z0, z0))
active(d) → m(b)
active(f(z0, z1, z2)) → f(z0, z1, active(z2))
f(z0, z1, mark(z2)) → mark(f(z0, z1, z2))
And the Tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c10(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c10(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c10(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c10(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c10(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, d)) → c10(F(proper(x0), proper(x1), ok(d)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c10(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c10(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, d, x2)) → c10(F(proper(x0), ok(d), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c10(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c10(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(d, x1, x2)) → c10(F(ok(d), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c11(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c11(TOP(ok(b)))
TOP(mark(c)) → c11(TOP(ok(c)))
TOP(mark(d)) → c11(TOP(ok(d)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(F(x1, x2, x3)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [4]x1
POL(active(x1)) = x1
POL(b) = [1]
POL(c) = 0
POL(c1(x1)) = x1
POL(c10(x1, x2, x3)) = x1 + x2 + x3
POL(c10(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c11(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(d) = [1]
POL(f(x1, x2, x3)) = [1]
POL(m(x1)) = x1
POL(mark(x1)) = [1]
POL(ok(x1)) = x1
POL(proper(x1)) = 0
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, c, z0)) → mark(f(z0, z0, z0))
active(f(z0, z1, z2)) → f(z0, z1, active(z2))
active(d) → m(b)
active(d) → mark(c)
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
f(z0, z1, mark(z2)) → mark(f(z0, z1, z2))
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
Tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c10(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c10(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c10(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c10(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c10(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, d)) → c10(F(proper(x0), proper(x1), ok(d)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c10(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c10(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, d, x2)) → c10(F(proper(x0), ok(d), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c10(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c10(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(d, x1, x2)) → c10(F(ok(d), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c11(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c11(TOP(ok(b)))
TOP(mark(c)) → c11(TOP(ok(c)))
TOP(mark(d)) → c11(TOP(ok(d)))
S tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c10(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c10(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c10(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c10(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c10(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, d)) → c10(F(proper(x0), proper(x1), ok(d)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c10(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c10(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, d, x2)) → c10(F(proper(x0), ok(d), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c10(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c10(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(d, x1, x2)) → c10(F(ok(d), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c11(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c11(TOP(ok(b)))
TOP(mark(d)) → c11(TOP(ok(d)))
K tuples:
TOP(mark(c)) → c11(TOP(ok(c)))
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
ACTIVE, F, TOP, PROPER
Compound Symbols:
c1, c5, c6, c12, c2, c2, c10, c10, c11, c11
(23) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(d)) → c11(TOP(ok(d)))
We considered the (Usable) Rules:
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
active(d) → mark(c)
active(f(b, c, z0)) → mark(f(z0, z0, z0))
active(d) → m(b)
active(f(z0, z1, z2)) → f(z0, z1, active(z2))
f(z0, z1, mark(z2)) → mark(f(z0, z1, z2))
And the Tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c10(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c10(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c10(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c10(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c10(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, d)) → c10(F(proper(x0), proper(x1), ok(d)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c10(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c10(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, d, x2)) → c10(F(proper(x0), ok(d), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c10(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c10(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(d, x1, x2)) → c10(F(ok(d), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c11(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c11(TOP(ok(b)))
TOP(mark(c)) → c11(TOP(ok(c)))
TOP(mark(d)) → c11(TOP(ok(d)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(F(x1, x2, x3)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [2]x1
POL(active(x1)) = 0
POL(b) = 0
POL(c) = 0
POL(c1(x1)) = x1
POL(c10(x1, x2, x3)) = x1 + x2 + x3
POL(c10(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c11(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(d) = [1]
POL(f(x1, x2, x3)) = 0
POL(m(x1)) = 0
POL(mark(x1)) = x1
POL(ok(x1)) = 0
POL(proper(x1)) = 0
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, c, z0)) → mark(f(z0, z0, z0))
active(f(z0, z1, z2)) → f(z0, z1, active(z2))
active(d) → m(b)
active(d) → mark(c)
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
f(z0, z1, mark(z2)) → mark(f(z0, z1, z2))
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
Tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c10(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c10(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c10(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c10(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c10(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, d)) → c10(F(proper(x0), proper(x1), ok(d)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c10(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c10(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, d, x2)) → c10(F(proper(x0), ok(d), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c10(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c10(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(d, x1, x2)) → c10(F(ok(d), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c11(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c11(TOP(ok(b)))
TOP(mark(c)) → c11(TOP(ok(c)))
TOP(mark(d)) → c11(TOP(ok(d)))
S tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c10(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c10(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c10(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c10(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c10(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, d)) → c10(F(proper(x0), proper(x1), ok(d)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c10(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c10(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, d, x2)) → c10(F(proper(x0), ok(d), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c10(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c10(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(d, x1, x2)) → c10(F(ok(d), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c11(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c11(TOP(ok(b)))
K tuples:
TOP(mark(c)) → c11(TOP(ok(c)))
TOP(mark(d)) → c11(TOP(ok(d)))
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
ACTIVE, F, TOP, PROPER
Compound Symbols:
c1, c5, c6, c12, c2, c2, c10, c10, c11, c11
(25) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(b)) → c11(TOP(ok(b)))
We considered the (Usable) Rules:
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
active(d) → mark(c)
active(f(b, c, z0)) → mark(f(z0, z0, z0))
active(d) → m(b)
active(f(z0, z1, z2)) → f(z0, z1, active(z2))
f(z0, z1, mark(z2)) → mark(f(z0, z1, z2))
And the Tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c10(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c10(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c10(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c10(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c10(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, d)) → c10(F(proper(x0), proper(x1), ok(d)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c10(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c10(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, d, x2)) → c10(F(proper(x0), ok(d), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c10(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c10(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(d, x1, x2)) → c10(F(ok(d), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c11(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c11(TOP(ok(b)))
TOP(mark(c)) → c11(TOP(ok(c)))
TOP(mark(d)) → c11(TOP(ok(d)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(F(x1, x2, x3)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = 0
POL(b) = [4]
POL(c) = 0
POL(c1(x1)) = x1
POL(c10(x1, x2, x3)) = x1 + x2 + x3
POL(c10(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c11(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(d) = [2]
POL(f(x1, x2, x3)) = 0
POL(m(x1)) = 0
POL(mark(x1)) = x1
POL(ok(x1)) = 0
POL(proper(x1)) = 0
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, c, z0)) → mark(f(z0, z0, z0))
active(f(z0, z1, z2)) → f(z0, z1, active(z2))
active(d) → m(b)
active(d) → mark(c)
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
f(z0, z1, mark(z2)) → mark(f(z0, z1, z2))
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
Tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c10(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c10(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c10(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c10(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c10(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, d)) → c10(F(proper(x0), proper(x1), ok(d)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c10(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c10(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, d, x2)) → c10(F(proper(x0), ok(d), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c10(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c10(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(d, x1, x2)) → c10(F(ok(d), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c11(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c11(TOP(ok(b)))
TOP(mark(c)) → c11(TOP(ok(c)))
TOP(mark(d)) → c11(TOP(ok(d)))
S tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
TOP(ok(z0)) → c12(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c10(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c10(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c10(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c10(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c10(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, d)) → c10(F(proper(x0), proper(x1), ok(d)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c10(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c10(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, d, x2)) → c10(F(proper(x0), ok(d), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c10(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c10(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(d, x1, x2)) → c10(F(ok(d), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c11(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
K tuples:
TOP(mark(c)) → c11(TOP(ok(c)))
TOP(mark(d)) → c11(TOP(ok(d)))
TOP(mark(b)) → c11(TOP(ok(b)))
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
ACTIVE, F, TOP, PROPER
Compound Symbols:
c1, c5, c6, c12, c2, c2, c10, c10, c11, c11
(27) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
ok(
z0)) →
c12(
TOP(
active(
z0)),
ACTIVE(
z0)) by
TOP(ok(f(b, c, z0))) → c12(TOP(mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
TOP(ok(f(z0, z1, z2))) → c12(TOP(f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
TOP(ok(d)) → c12(TOP(m(b)), ACTIVE(d))
TOP(ok(d)) → c12(TOP(mark(c)), ACTIVE(d))
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, c, z0)) → mark(f(z0, z0, z0))
active(f(z0, z1, z2)) → f(z0, z1, active(z2))
active(d) → m(b)
active(d) → mark(c)
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
f(z0, z1, mark(z2)) → mark(f(z0, z1, z2))
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
Tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c10(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c10(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c10(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c10(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c10(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, d)) → c10(F(proper(x0), proper(x1), ok(d)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c10(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c10(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, d, x2)) → c10(F(proper(x0), ok(d), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c10(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c10(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(d, x1, x2)) → c10(F(ok(d), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c11(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c11(TOP(ok(b)))
TOP(mark(c)) → c11(TOP(ok(c)))
TOP(mark(d)) → c11(TOP(ok(d)))
TOP(ok(f(b, c, z0))) → c12(TOP(mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
TOP(ok(f(z0, z1, z2))) → c12(TOP(f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
TOP(ok(d)) → c12(TOP(m(b)), ACTIVE(d))
TOP(ok(d)) → c12(TOP(mark(c)), ACTIVE(d))
S tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c10(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c10(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c10(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c10(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c10(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, d)) → c10(F(proper(x0), proper(x1), ok(d)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c10(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c10(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, d, x2)) → c10(F(proper(x0), ok(d), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c10(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c10(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(d, x1, x2)) → c10(F(ok(d), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c11(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(ok(f(b, c, z0))) → c12(TOP(mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
TOP(ok(f(z0, z1, z2))) → c12(TOP(f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
TOP(ok(d)) → c12(TOP(m(b)), ACTIVE(d))
TOP(ok(d)) → c12(TOP(mark(c)), ACTIVE(d))
K tuples:
TOP(mark(c)) → c11(TOP(ok(c)))
TOP(mark(d)) → c11(TOP(ok(d)))
TOP(mark(b)) → c11(TOP(ok(b)))
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
ACTIVE, F, PROPER, TOP
Compound Symbols:
c1, c5, c6, c2, c2, c10, c10, c11, c11, c12
(29) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 5 trailing nodes:
TOP(mark(d)) → c11(TOP(ok(d)))
TOP(mark(b)) → c11(TOP(ok(b)))
TOP(ok(d)) → c12(TOP(mark(c)), ACTIVE(d))
TOP(mark(c)) → c11(TOP(ok(c)))
TOP(ok(d)) → c12(TOP(m(b)), ACTIVE(d))
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, c, z0)) → mark(f(z0, z0, z0))
active(f(z0, z1, z2)) → f(z0, z1, active(z2))
active(d) → m(b)
active(d) → mark(c)
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
f(z0, z1, mark(z2)) → mark(f(z0, z1, z2))
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
Tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c10(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c10(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c10(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c10(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c10(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, d)) → c10(F(proper(x0), proper(x1), ok(d)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c10(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c10(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, d, x2)) → c10(F(proper(x0), ok(d), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c10(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c10(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(d, x1, x2)) → c10(F(ok(d), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c11(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(ok(f(b, c, z0))) → c12(TOP(mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
TOP(ok(f(z0, z1, z2))) → c12(TOP(f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
S tuples:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c10(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c10(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c10(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c10(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c10(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, d)) → c10(F(proper(x0), proper(x1), ok(d)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c10(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c10(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, d, x2)) → c10(F(proper(x0), ok(d), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c10(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c10(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(d, x1, x2)) → c10(F(ok(d), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c11(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(ok(f(b, c, z0))) → c12(TOP(mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
TOP(ok(f(z0, z1, z2))) → c12(TOP(f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
K tuples:none
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
ACTIVE, F, PROPER, TOP
Compound Symbols:
c1, c5, c6, c2, c2, c10, c10, c11, c12
(31) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
ACTIVE(f(b, c, z0)) → c1(F(z0, z0, z0))
ACTIVE(f(x0, x1, f(b, c, z0))) → c2(F(x0, x1, mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
ACTIVE(f(x0, x1, f(z0, z1, z2))) → c2(F(x0, x1, f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, x1, d)) → c2(F(x0, x1, mark(c)))
PROPER(f(x0, x1, f(z0, z1, z2))) → c10(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c10(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c10(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c10(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c10(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, d)) → c10(F(proper(x0), proper(x1), ok(d)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c10(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c10(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, d, x2)) → c10(F(proper(x0), ok(d), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c10(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c10(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(d, x1, x2)) → c10(F(ok(d), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c11(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(ok(f(b, c, z0))) → c12(TOP(mark(f(z0, z0, z0))), ACTIVE(f(b, c, z0)))
TOP(ok(f(z0, z1, z2))) → c12(TOP(f(z0, z1, active(z2))), ACTIVE(f(z0, z1, z2)))
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, c, z0)) → mark(f(z0, z0, z0))
active(f(z0, z1, z2)) → f(z0, z1, active(z2))
active(d) → m(b)
active(d) → mark(c)
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
f(z0, z1, mark(z2)) → mark(f(z0, z1, z2))
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
Tuples:
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
S tuples:
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
K tuples:none
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
F
Compound Symbols:
c5, c6
(33) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
active(f(b, c, z0)) → mark(f(z0, z0, z0))
active(f(z0, z1, z2)) → f(z0, z1, active(z2))
active(d) → m(b)
active(d) → mark(c)
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
f(z0, z1, mark(z2)) → mark(f(z0, z1, z2))
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
S tuples:
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
F
Compound Symbols:
c5, c6
(35) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
We considered the (Usable) Rules:none
And the Tuples:
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2, x3)) = [4]x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(mark(x1)) = [3]
POL(ok(x1)) = [2] + x1
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
S tuples:
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
K tuples:
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
Defined Rule Symbols:none
Defined Pair Symbols:
F
Compound Symbols:
c5, c6
(37) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
We considered the (Usable) Rules:none
And the Tuples:
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2, x3)) = [4]x1 + [5]x2 + [2]x3
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
S tuples:none
K tuples:
F(ok(z0), ok(z1), ok(z2)) → c6(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c5(F(z0, z1, z2))
Defined Rule Symbols:none
Defined Pair Symbols:
F
Compound Symbols:
c5, c6
(39) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(40) BOUNDS(O(1), O(1))