Runtime Complexity TRS:
The TRS R consists of the following rules:
f(x, c(y)) → f(x, s(f(y, y)))
f(s(x), y) → f(x, s(c(y)))
Renamed function symbols to avoid clashes with predefined symbol.
Runtime Complexity TRS:
The TRS R consists of the following rules:
f'(x, c'(y)) → f'(x, s'(f'(y, y)))
f'(s'(x), y) → f'(x, s'(c'(y)))
Infered types.
Rules:
f'(x, c'(y)) → f'(x, s'(f'(y, y)))
f'(s'(x), y) → f'(x, s'(c'(y)))
Types:
f' :: c':s' → c':s' → c':s'
c' :: c':s' → c':s'
s' :: c':s' → c':s'
_hole_c':s'1 :: c':s'
_gen_c':s'2 :: Nat → c':s'
Heuristically decided to analyse the following defined symbols:
f'
Rules:
f'(x, c'(y)) → f'(x, s'(f'(y, y)))
f'(s'(x), y) → f'(x, s'(c'(y)))
Types:
f' :: c':s' → c':s' → c':s'
c' :: c':s' → c':s'
s' :: c':s' → c':s'
_hole_c':s'1 :: c':s'
_gen_c':s'2 :: Nat → c':s'
Generator Equations:
_gen_c':s'2(0) ⇔ _hole_c':s'1
_gen_c':s'2(+(x, 1)) ⇔ c'(_gen_c':s'2(x))
The following defined symbols remain to be analysed:
f'
Could not prove a rewrite lemma for the defined symbol f'.
The following conjecture could not be proven:
f'(_gen_c':s'2(a), _gen_c':s'2(+(1, _n4))) →? _*3
Rules:
f'(x, c'(y)) → f'(x, s'(f'(y, y)))
f'(s'(x), y) → f'(x, s'(c'(y)))
Types:
f' :: c':s' → c':s' → c':s'
c' :: c':s' → c':s'
s' :: c':s' → c':s'
_hole_c':s'1 :: c':s'
_gen_c':s'2 :: Nat → c':s'
Generator Equations:
_gen_c':s'2(0) ⇔ _hole_c':s'1
_gen_c':s'2(+(x, 1)) ⇔ c'(_gen_c':s'2(x))
No more defined symbols left to analyse.