We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { append(@l1, @l2) -> append#1(@l1, @l2)
  , append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2))
  , append#1(nil(), @l2) -> @l2
  , subtrees(@t) -> subtrees#1(@t)
  , subtrees#1(leaf()) -> nil()
  , subtrees#1(node(@x, @t1, @t2)) ->
    subtrees#2(subtrees(@t1), @t1, @t2, @x)
  , subtrees#2(@l1, @t1, @t2, @x) ->
    subtrees#3(subtrees(@t2), @l1, @t1, @t2, @x)
  , subtrees#3(@l2, @l1, @t1, @t2, @x) ->
    ::(node(@x, @t1, @t2), append(@l1, @l2)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We add the following dependency tuples:

Strict DPs:
  { append^#(@l1, @l2) -> c_1(append#1^#(@l1, @l2))
  , append#1^#(::(@x, @xs), @l2) -> c_2(append^#(@xs, @l2))
  , append#1^#(nil(), @l2) -> c_3()
  , subtrees^#(@t) -> c_4(subtrees#1^#(@t))
  , subtrees#1^#(leaf()) -> c_5()
  , subtrees#1^#(node(@x, @t1, @t2)) ->
    c_6(subtrees#2^#(subtrees(@t1), @t1, @t2, @x), subtrees^#(@t1))
  , subtrees#2^#(@l1, @t1, @t2, @x) ->
    c_7(subtrees#3^#(subtrees(@t2), @l1, @t1, @t2, @x),
        subtrees^#(@t2))
  , subtrees#3^#(@l2, @l1, @t1, @t2, @x) -> c_8(append^#(@l1, @l2)) }

and mark the set of starting terms.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { append^#(@l1, @l2) -> c_1(append#1^#(@l1, @l2))
  , append#1^#(::(@x, @xs), @l2) -> c_2(append^#(@xs, @l2))
  , append#1^#(nil(), @l2) -> c_3()
  , subtrees^#(@t) -> c_4(subtrees#1^#(@t))
  , subtrees#1^#(leaf()) -> c_5()
  , subtrees#1^#(node(@x, @t1, @t2)) ->
    c_6(subtrees#2^#(subtrees(@t1), @t1, @t2, @x), subtrees^#(@t1))
  , subtrees#2^#(@l1, @t1, @t2, @x) ->
    c_7(subtrees#3^#(subtrees(@t2), @l1, @t1, @t2, @x),
        subtrees^#(@t2))
  , subtrees#3^#(@l2, @l1, @t1, @t2, @x) -> c_8(append^#(@l1, @l2)) }
Weak Trs:
  { append(@l1, @l2) -> append#1(@l1, @l2)
  , append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2))
  , append#1(nil(), @l2) -> @l2
  , subtrees(@t) -> subtrees#1(@t)
  , subtrees#1(leaf()) -> nil()
  , subtrees#1(node(@x, @t1, @t2)) ->
    subtrees#2(subtrees(@t1), @t1, @t2, @x)
  , subtrees#2(@l1, @t1, @t2, @x) ->
    subtrees#3(subtrees(@t2), @l1, @t1, @t2, @x)
  , subtrees#3(@l2, @l1, @t1, @t2, @x) ->
    ::(node(@x, @t1, @t2), append(@l1, @l2)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We estimate the number of application of {3,5} by applications of
Pre({3,5}) = {1,4}. Here rules are labeled as follows:

  DPs:
    { 1: append^#(@l1, @l2) -> c_1(append#1^#(@l1, @l2))
    , 2: append#1^#(::(@x, @xs), @l2) -> c_2(append^#(@xs, @l2))
    , 3: append#1^#(nil(), @l2) -> c_3()
    , 4: subtrees^#(@t) -> c_4(subtrees#1^#(@t))
    , 5: subtrees#1^#(leaf()) -> c_5()
    , 6: subtrees#1^#(node(@x, @t1, @t2)) ->
         c_6(subtrees#2^#(subtrees(@t1), @t1, @t2, @x), subtrees^#(@t1))
    , 7: subtrees#2^#(@l1, @t1, @t2, @x) ->
         c_7(subtrees#3^#(subtrees(@t2), @l1, @t1, @t2, @x),
             subtrees^#(@t2))
    , 8: subtrees#3^#(@l2, @l1, @t1, @t2, @x) ->
         c_8(append^#(@l1, @l2)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { append^#(@l1, @l2) -> c_1(append#1^#(@l1, @l2))
  , append#1^#(::(@x, @xs), @l2) -> c_2(append^#(@xs, @l2))
  , subtrees^#(@t) -> c_4(subtrees#1^#(@t))
  , subtrees#1^#(node(@x, @t1, @t2)) ->
    c_6(subtrees#2^#(subtrees(@t1), @t1, @t2, @x), subtrees^#(@t1))
  , subtrees#2^#(@l1, @t1, @t2, @x) ->
    c_7(subtrees#3^#(subtrees(@t2), @l1, @t1, @t2, @x),
        subtrees^#(@t2))
  , subtrees#3^#(@l2, @l1, @t1, @t2, @x) -> c_8(append^#(@l1, @l2)) }
Weak DPs:
  { append#1^#(nil(), @l2) -> c_3()
  , subtrees#1^#(leaf()) -> c_5() }
Weak Trs:
  { append(@l1, @l2) -> append#1(@l1, @l2)
  , append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2))
  , append#1(nil(), @l2) -> @l2
  , subtrees(@t) -> subtrees#1(@t)
  , subtrees#1(leaf()) -> nil()
  , subtrees#1(node(@x, @t1, @t2)) ->
    subtrees#2(subtrees(@t1), @t1, @t2, @x)
  , subtrees#2(@l1, @t1, @t2, @x) ->
    subtrees#3(subtrees(@t2), @l1, @t1, @t2, @x)
  , subtrees#3(@l2, @l1, @t1, @t2, @x) ->
    ::(node(@x, @t1, @t2), append(@l1, @l2)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ append#1^#(nil(), @l2) -> c_3()
, subtrees#1^#(leaf()) -> c_5() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { append^#(@l1, @l2) -> c_1(append#1^#(@l1, @l2))
  , append#1^#(::(@x, @xs), @l2) -> c_2(append^#(@xs, @l2))
  , subtrees^#(@t) -> c_4(subtrees#1^#(@t))
  , subtrees#1^#(node(@x, @t1, @t2)) ->
    c_6(subtrees#2^#(subtrees(@t1), @t1, @t2, @x), subtrees^#(@t1))
  , subtrees#2^#(@l1, @t1, @t2, @x) ->
    c_7(subtrees#3^#(subtrees(@t2), @l1, @t1, @t2, @x),
        subtrees^#(@t2))
  , subtrees#3^#(@l2, @l1, @t1, @t2, @x) -> c_8(append^#(@l1, @l2)) }
Weak Trs:
  { append(@l1, @l2) -> append#1(@l1, @l2)
  , append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2))
  , append#1(nil(), @l2) -> @l2
  , subtrees(@t) -> subtrees#1(@t)
  , subtrees#1(leaf()) -> nil()
  , subtrees#1(node(@x, @t1, @t2)) ->
    subtrees#2(subtrees(@t1), @t1, @t2, @x)
  , subtrees#2(@l1, @t1, @t2, @x) ->
    subtrees#3(subtrees(@t2), @l1, @t1, @t2, @x)
  , subtrees#3(@l2, @l1, @t1, @t2, @x) ->
    ::(node(@x, @t1, @t2), append(@l1, @l2)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We decompose the input problem according to the dependency graph
into the upper component

  { subtrees^#(@t) -> c_4(subtrees#1^#(@t))
  , subtrees#1^#(node(@x, @t1, @t2)) ->
    c_6(subtrees#2^#(subtrees(@t1), @t1, @t2, @x), subtrees^#(@t1))
  , subtrees#2^#(@l1, @t1, @t2, @x) ->
    c_7(subtrees#3^#(subtrees(@t2), @l1, @t1, @t2, @x),
        subtrees^#(@t2)) }

and lower component

  { append^#(@l1, @l2) -> c_1(append#1^#(@l1, @l2))
  , append#1^#(::(@x, @xs), @l2) -> c_2(append^#(@xs, @l2))
  , subtrees#3^#(@l2, @l1, @t1, @t2, @x) -> c_8(append^#(@l1, @l2)) }

Further, following extension rules are added to the lower
component.

{ subtrees^#(@t) -> subtrees#1^#(@t)
, subtrees#1^#(node(@x, @t1, @t2)) -> subtrees^#(@t1)
, subtrees#1^#(node(@x, @t1, @t2)) ->
  subtrees#2^#(subtrees(@t1), @t1, @t2, @x)
, subtrees#2^#(@l1, @t1, @t2, @x) -> subtrees^#(@t2)
, subtrees#2^#(@l1, @t1, @t2, @x) ->
  subtrees#3^#(subtrees(@t2), @l1, @t1, @t2, @x) }

TcT solves the upper component with certificate YES(O(1),O(n^1)).

Sub-proof:
----------
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(n^1)).
  
  Strict DPs:
    { subtrees^#(@t) -> c_4(subtrees#1^#(@t))
    , subtrees#1^#(node(@x, @t1, @t2)) ->
      c_6(subtrees#2^#(subtrees(@t1), @t1, @t2, @x), subtrees^#(@t1))
    , subtrees#2^#(@l1, @t1, @t2, @x) ->
      c_7(subtrees#3^#(subtrees(@t2), @l1, @t1, @t2, @x),
          subtrees^#(@t2)) }
  Weak Trs:
    { append(@l1, @l2) -> append#1(@l1, @l2)
    , append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2))
    , append#1(nil(), @l2) -> @l2
    , subtrees(@t) -> subtrees#1(@t)
    , subtrees#1(leaf()) -> nil()
    , subtrees#1(node(@x, @t1, @t2)) ->
      subtrees#2(subtrees(@t1), @t1, @t2, @x)
    , subtrees#2(@l1, @t1, @t2, @x) ->
      subtrees#3(subtrees(@t2), @l1, @t1, @t2, @x)
    , subtrees#3(@l2, @l1, @t1, @t2, @x) ->
      ::(node(@x, @t1, @t2), append(@l1, @l2)) }
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(n^1))
  
  We use the processor 'matrix interpretation of dimension 1' to
  orient following rules strictly.
  
  DPs:
    { 3: subtrees#2^#(@l1, @t1, @t2, @x) ->
         c_7(subtrees#3^#(subtrees(@t2), @l1, @t1, @t2, @x),
             subtrees^#(@t2)) }
  Trs:
    { append(@l1, @l2) -> append#1(@l1, @l2)
    , subtrees(@t) -> subtrees#1(@t) }
  
  Sub-proof:
  ----------
    The following argument positions are usable:
      Uargs(c_4) = {1}, Uargs(c_6) = {1, 2}, Uargs(c_7) = {1, 2}
    
    TcT has computed the following constructor-based matrix
    interpretation satisfying not(EDA).
    
                        [append](x1, x2) = [7] x1 + [7] x2 + [7]         
                                                                         
                      [append#1](x1, x2) = [7] x2 + [0]                  
                                                                         
                            [::](x1, x2) = [0]                           
                                                                         
                                   [nil] = [0]                           
                                                                         
                          [subtrees](x1) = [1]                           
                                                                         
                        [subtrees#1](x1) = [0]                           
                                                                         
                                  [leaf] = [0]                           
                                                                         
                      [node](x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                                                                         
            [subtrees#2](x1, x2, x3, x4) = [0]                           
                                                                         
        [subtrees#3](x1, x2, x3, x4, x5) = [0]                           
                                                                         
                        [subtrees^#](x1) = [2] x1 + [0]                  
                                                                         
                               [c_4](x1) = [1] x1 + [0]                  
                                                                         
                      [subtrees#1^#](x1) = [2] x1 + [0]                  
                                                                         
                           [c_6](x1, x2) = [1] x1 + [1] x2 + [1]         
                                                                         
          [subtrees#2^#](x1, x2, x3, x4) = [2] x3 + [1]                  
                                                                         
                           [c_7](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                                         
      [subtrees#3^#](x1, x2, x3, x4, x5) = [0]                           
    
    The order satisfies the following ordering constraints:
    
                        [append(@l1, @l2)] =  [7] @l1 + [7] @l2 + [7]                                          
                                           >  [7] @l2 + [0]                                                    
                                           =  [append#1(@l1, @l2)]                                             
                                                                                                               
              [append#1(::(@x, @xs), @l2)] =  [7] @l2 + [0]                                                    
                                           >= [0]                                                              
                                           =  [::(@x, append(@xs, @l2))]                                       
                                                                                                               
                    [append#1(nil(), @l2)] =  [7] @l2 + [0]                                                    
                                           >= [1] @l2 + [0]                                                    
                                           =  [@l2]                                                            
                                                                                                               
                            [subtrees(@t)] =  [1]                                                              
                                           >  [0]                                                              
                                           =  [subtrees#1(@t)]                                                 
                                                                                                               
                      [subtrees#1(leaf())] =  [0]                                                              
                                           >= [0]                                                              
                                           =  [nil()]                                                          
                                                                                                               
          [subtrees#1(node(@x, @t1, @t2))] =  [0]                                                              
                                           >= [0]                                                              
                                           =  [subtrees#2(subtrees(@t1), @t1, @t2, @x)]                        
                                                                                                               
           [subtrees#2(@l1, @t1, @t2, @x)] =  [0]                                                              
                                           >= [0]                                                              
                                           =  [subtrees#3(subtrees(@t2), @l1, @t1, @t2, @x)]                   
                                                                                                               
      [subtrees#3(@l2, @l1, @t1, @t2, @x)] =  [0]                                                              
                                           >= [0]                                                              
                                           =  [::(node(@x, @t1, @t2), append(@l1, @l2))]                       
                                                                                                               
                          [subtrees^#(@t)] =  [2] @t + [0]                                                     
                                           >= [2] @t + [0]                                                     
                                           =  [c_4(subtrees#1^#(@t))]                                          
                                                                                                               
        [subtrees#1^#(node(@x, @t1, @t2))] =  [2] @x + [2] @t1 + [2] @t2 + [2]                                 
                                           >= [2] @t1 + [2] @t2 + [2]                                          
                                           =  [c_6(subtrees#2^#(subtrees(@t1), @t1, @t2, @x), subtrees^#(@t1))]
                                                                                                               
         [subtrees#2^#(@l1, @t1, @t2, @x)] =  [2] @t2 + [1]                                                    
                                           >  [2] @t2 + [0]                                                    
                                           =  [c_7(subtrees#3^#(subtrees(@t2), @l1, @t1, @t2, @x),             
                                                   subtrees^#(@t2))]                                           
                                                                                                               
  
  The strictly oriented rules are moved into the weak component.
  
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(n^1)).
  
  Strict DPs:
    { subtrees^#(@t) -> c_4(subtrees#1^#(@t))
    , subtrees#1^#(node(@x, @t1, @t2)) ->
      c_6(subtrees#2^#(subtrees(@t1), @t1, @t2, @x), subtrees^#(@t1)) }
  Weak DPs:
    { subtrees#2^#(@l1, @t1, @t2, @x) ->
      c_7(subtrees#3^#(subtrees(@t2), @l1, @t1, @t2, @x),
          subtrees^#(@t2)) }
  Weak Trs:
    { append(@l1, @l2) -> append#1(@l1, @l2)
    , append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2))
    , append#1(nil(), @l2) -> @l2
    , subtrees(@t) -> subtrees#1(@t)
    , subtrees#1(leaf()) -> nil()
    , subtrees#1(node(@x, @t1, @t2)) ->
      subtrees#2(subtrees(@t1), @t1, @t2, @x)
    , subtrees#2(@l1, @t1, @t2, @x) ->
      subtrees#3(subtrees(@t2), @l1, @t1, @t2, @x)
    , subtrees#3(@l2, @l1, @t1, @t2, @x) ->
      ::(node(@x, @t1, @t2), append(@l1, @l2)) }
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(n^1))
  
  We use the processor 'matrix interpretation of dimension 1' to
  orient following rules strictly.
  
  DPs:
    { 2: subtrees#1^#(node(@x, @t1, @t2)) ->
         c_6(subtrees#2^#(subtrees(@t1), @t1, @t2, @x), subtrees^#(@t1))
    , 3: subtrees#2^#(@l1, @t1, @t2, @x) ->
         c_7(subtrees#3^#(subtrees(@t2), @l1, @t1, @t2, @x),
             subtrees^#(@t2)) }
  Trs:
    { append(@l1, @l2) -> append#1(@l1, @l2)
    , subtrees(@t) -> subtrees#1(@t) }
  
  Sub-proof:
  ----------
    The following argument positions are usable:
      Uargs(c_4) = {1}, Uargs(c_6) = {1, 2}, Uargs(c_7) = {1, 2}
    
    TcT has computed the following constructor-based matrix
    interpretation satisfying not(EDA).
    
                        [append](x1, x2) = [7] x1 + [7] x2 + [7]         
                                                                         
                      [append#1](x1, x2) = [7] x2 + [0]                  
                                                                         
                            [::](x1, x2) = [0]                           
                                                                         
                                   [nil] = [0]                           
                                                                         
                          [subtrees](x1) = [1]                           
                                                                         
                        [subtrees#1](x1) = [0]                           
                                                                         
                                  [leaf] = [0]                           
                                                                         
                      [node](x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [3]
                                                                         
            [subtrees#2](x1, x2, x3, x4) = [0]                           
                                                                         
        [subtrees#3](x1, x2, x3, x4, x5) = [0]                           
                                                                         
                        [subtrees^#](x1) = [3] x1 + [1]                  
                                                                         
                               [c_4](x1) = [1] x1 + [0]                  
                                                                         
                      [subtrees#1^#](x1) = [3] x1 + [1]                  
                                                                         
                           [c_6](x1, x2) = [1] x1 + [1] x2 + [5]         
                                                                         
          [subtrees#2^#](x1, x2, x3, x4) = [3] x3 + [3]                  
                                                                         
                           [c_7](x1, x2) = [4] x1 + [1] x2 + [0]         
                                                                         
      [subtrees#3^#](x1, x2, x3, x4, x5) = [0]                           
    
    The order satisfies the following ordering constraints:
    
                        [append(@l1, @l2)] =  [7] @l1 + [7] @l2 + [7]                                          
                                           >  [7] @l2 + [0]                                                    
                                           =  [append#1(@l1, @l2)]                                             
                                                                                                               
              [append#1(::(@x, @xs), @l2)] =  [7] @l2 + [0]                                                    
                                           >= [0]                                                              
                                           =  [::(@x, append(@xs, @l2))]                                       
                                                                                                               
                    [append#1(nil(), @l2)] =  [7] @l2 + [0]                                                    
                                           >= [1] @l2 + [0]                                                    
                                           =  [@l2]                                                            
                                                                                                               
                            [subtrees(@t)] =  [1]                                                              
                                           >  [0]                                                              
                                           =  [subtrees#1(@t)]                                                 
                                                                                                               
                      [subtrees#1(leaf())] =  [0]                                                              
                                           >= [0]                                                              
                                           =  [nil()]                                                          
                                                                                                               
          [subtrees#1(node(@x, @t1, @t2))] =  [0]                                                              
                                           >= [0]                                                              
                                           =  [subtrees#2(subtrees(@t1), @t1, @t2, @x)]                        
                                                                                                               
           [subtrees#2(@l1, @t1, @t2, @x)] =  [0]                                                              
                                           >= [0]                                                              
                                           =  [subtrees#3(subtrees(@t2), @l1, @t1, @t2, @x)]                   
                                                                                                               
      [subtrees#3(@l2, @l1, @t1, @t2, @x)] =  [0]                                                              
                                           >= [0]                                                              
                                           =  [::(node(@x, @t1, @t2), append(@l1, @l2))]                       
                                                                                                               
                          [subtrees^#(@t)] =  [3] @t + [1]                                                     
                                           >= [3] @t + [1]                                                     
                                           =  [c_4(subtrees#1^#(@t))]                                          
                                                                                                               
        [subtrees#1^#(node(@x, @t1, @t2))] =  [3] @x + [3] @t1 + [3] @t2 + [10]                                
                                           >  [3] @t1 + [3] @t2 + [9]                                          
                                           =  [c_6(subtrees#2^#(subtrees(@t1), @t1, @t2, @x), subtrees^#(@t1))]
                                                                                                               
         [subtrees#2^#(@l1, @t1, @t2, @x)] =  [3] @t2 + [3]                                                    
                                           >  [3] @t2 + [1]                                                    
                                           =  [c_7(subtrees#3^#(subtrees(@t2), @l1, @t1, @t2, @x),             
                                                   subtrees^#(@t2))]                                           
                                                                                                               
  
  We return to the main proof. Consider the set of all dependency
  pairs
  
  :
    { 1: subtrees^#(@t) -> c_4(subtrees#1^#(@t))
    , 2: subtrees#1^#(node(@x, @t1, @t2)) ->
         c_6(subtrees#2^#(subtrees(@t1), @t1, @t2, @x), subtrees^#(@t1))
    , 3: subtrees#2^#(@l1, @t1, @t2, @x) ->
         c_7(subtrees#3^#(subtrees(@t2), @l1, @t1, @t2, @x),
             subtrees^#(@t2)) }
  
  Processor 'matrix interpretation of dimension 1' induces the
  complexity certificate YES(?,O(n^1)) on application of dependency
  pairs {2,3}. These cover all (indirect) predecessors of dependency
  pairs {1,2,3}, their number of application is equally bounded. The
  dependency pairs are shifted into the weak component.
  
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(1)).
  
  Weak DPs:
    { subtrees^#(@t) -> c_4(subtrees#1^#(@t))
    , subtrees#1^#(node(@x, @t1, @t2)) ->
      c_6(subtrees#2^#(subtrees(@t1), @t1, @t2, @x), subtrees^#(@t1))
    , subtrees#2^#(@l1, @t1, @t2, @x) ->
      c_7(subtrees#3^#(subtrees(@t2), @l1, @t1, @t2, @x),
          subtrees^#(@t2)) }
  Weak Trs:
    { append(@l1, @l2) -> append#1(@l1, @l2)
    , append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2))
    , append#1(nil(), @l2) -> @l2
    , subtrees(@t) -> subtrees#1(@t)
    , subtrees#1(leaf()) -> nil()
    , subtrees#1(node(@x, @t1, @t2)) ->
      subtrees#2(subtrees(@t1), @t1, @t2, @x)
    , subtrees#2(@l1, @t1, @t2, @x) ->
      subtrees#3(subtrees(@t2), @l1, @t1, @t2, @x)
    , subtrees#3(@l2, @l1, @t1, @t2, @x) ->
      ::(node(@x, @t1, @t2), append(@l1, @l2)) }
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(1))
  
  The following weak DPs constitute a sub-graph of the DG that is
  closed under successors. The DPs are removed.
  
  { subtrees^#(@t) -> c_4(subtrees#1^#(@t))
  , subtrees#1^#(node(@x, @t1, @t2)) ->
    c_6(subtrees#2^#(subtrees(@t1), @t1, @t2, @x), subtrees^#(@t1))
  , subtrees#2^#(@l1, @t1, @t2, @x) ->
    c_7(subtrees#3^#(subtrees(@t2), @l1, @t1, @t2, @x),
        subtrees^#(@t2)) }
  
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(1)).
  
  Weak Trs:
    { append(@l1, @l2) -> append#1(@l1, @l2)
    , append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2))
    , append#1(nil(), @l2) -> @l2
    , subtrees(@t) -> subtrees#1(@t)
    , subtrees#1(leaf()) -> nil()
    , subtrees#1(node(@x, @t1, @t2)) ->
      subtrees#2(subtrees(@t1), @t1, @t2, @x)
    , subtrees#2(@l1, @t1, @t2, @x) ->
      subtrees#3(subtrees(@t2), @l1, @t1, @t2, @x)
    , subtrees#3(@l2, @l1, @t1, @t2, @x) ->
      ::(node(@x, @t1, @t2), append(@l1, @l2)) }
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(1))
  
  No rule is usable, rules are removed from the input problem.
  
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(1)).
  
  Rules: Empty
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(1))
  
  Empty rules are trivially bounded

We return to the main proof.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { append^#(@l1, @l2) -> c_1(append#1^#(@l1, @l2))
  , append#1^#(::(@x, @xs), @l2) -> c_2(append^#(@xs, @l2))
  , subtrees#3^#(@l2, @l1, @t1, @t2, @x) -> c_8(append^#(@l1, @l2)) }
Weak DPs:
  { subtrees^#(@t) -> subtrees#1^#(@t)
  , subtrees#1^#(node(@x, @t1, @t2)) -> subtrees^#(@t1)
  , subtrees#1^#(node(@x, @t1, @t2)) ->
    subtrees#2^#(subtrees(@t1), @t1, @t2, @x)
  , subtrees#2^#(@l1, @t1, @t2, @x) -> subtrees^#(@t2)
  , subtrees#2^#(@l1, @t1, @t2, @x) ->
    subtrees#3^#(subtrees(@t2), @l1, @t1, @t2, @x) }
Weak Trs:
  { append(@l1, @l2) -> append#1(@l1, @l2)
  , append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2))
  , append#1(nil(), @l2) -> @l2
  , subtrees(@t) -> subtrees#1(@t)
  , subtrees#1(leaf()) -> nil()
  , subtrees#1(node(@x, @t1, @t2)) ->
    subtrees#2(subtrees(@t1), @t1, @t2, @x)
  , subtrees#2(@l1, @t1, @t2, @x) ->
    subtrees#3(subtrees(@t2), @l1, @t1, @t2, @x)
  , subtrees#3(@l2, @l1, @t1, @t2, @x) ->
    ::(node(@x, @t1, @t2), append(@l1, @l2)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 1: append^#(@l1, @l2) -> c_1(append#1^#(@l1, @l2))
  , 2: append#1^#(::(@x, @xs), @l2) -> c_2(append^#(@xs, @l2))
  , 4: subtrees^#(@t) -> subtrees#1^#(@t)
  , 5: subtrees#1^#(node(@x, @t1, @t2)) -> subtrees^#(@t1)
  , 6: subtrees#1^#(node(@x, @t1, @t2)) ->
       subtrees#2^#(subtrees(@t1), @t1, @t2, @x) }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_1) = {1}, Uargs(c_2) = {1}, Uargs(c_8) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
                      [append](x1, x2) = [1] x1 + [1] x2 + [0]
                                                              
                    [append#1](x1, x2) = [1] x1 + [1] x2 + [0]
                                                              
                          [::](x1, x2) = [1] x2 + [2]         
                                                              
                                 [nil] = [0]                  
                                                              
                        [subtrees](x1) = [1] x1 + [0]         
                                                              
                      [subtrees#1](x1) = [1] x1 + [0]         
                                                              
                                [leaf] = [0]                  
                                                              
                    [node](x1, x2, x3) = [1] x2 + [1] x3 + [2]
                                                              
          [subtrees#2](x1, x2, x3, x4) = [1] x1 + [1] x3 + [2]
                                                              
      [subtrees#3](x1, x2, x3, x4, x5) = [1] x1 + [1] x2 + [2]
                                                              
                    [append^#](x1, x2) = [5] x1 + [2]         
                                                              
                             [c_1](x1) = [1] x1 + [0]         
                                                              
                  [append#1^#](x1, x2) = [5] x1 + [1]         
                                                              
                             [c_2](x1) = [1] x1 + [0]         
                                                              
                      [subtrees^#](x1) = [5] x1 + [2]         
                                                              
                    [subtrees#1^#](x1) = [5] x1 + [0]         
                                                              
        [subtrees#2^#](x1, x2, x3, x4) = [5] x1 + [5] x3 + [2]
                                                              
    [subtrees#3^#](x1, x2, x3, x4, x5) = [5] x2 + [2]         
                                                              
                             [c_8](x1) = [1] x1 + [0]         
  
  The order satisfies the following ordering constraints:
  
                        [append(@l1, @l2)] =  [1] @l1 + [1] @l2 + [0]                         
                                           >= [1] @l1 + [1] @l2 + [0]                         
                                           =  [append#1(@l1, @l2)]                            
                                                                                              
              [append#1(::(@x, @xs), @l2)] =  [1] @l2 + [1] @xs + [2]                         
                                           >= [1] @l2 + [1] @xs + [2]                         
                                           =  [::(@x, append(@xs, @l2))]                      
                                                                                              
                    [append#1(nil(), @l2)] =  [1] @l2 + [0]                                   
                                           >= [1] @l2 + [0]                                   
                                           =  [@l2]                                           
                                                                                              
                            [subtrees(@t)] =  [1] @t + [0]                                    
                                           >= [1] @t + [0]                                    
                                           =  [subtrees#1(@t)]                                
                                                                                              
                      [subtrees#1(leaf())] =  [0]                                             
                                           >= [0]                                             
                                           =  [nil()]                                         
                                                                                              
          [subtrees#1(node(@x, @t1, @t2))] =  [1] @t1 + [1] @t2 + [2]                         
                                           >= [1] @t1 + [1] @t2 + [2]                         
                                           =  [subtrees#2(subtrees(@t1), @t1, @t2, @x)]       
                                                                                              
           [subtrees#2(@l1, @t1, @t2, @x)] =  [1] @l1 + [1] @t2 + [2]                         
                                           >= [1] @l1 + [1] @t2 + [2]                         
                                           =  [subtrees#3(subtrees(@t2), @l1, @t1, @t2, @x)]  
                                                                                              
      [subtrees#3(@l2, @l1, @t1, @t2, @x)] =  [1] @l1 + [1] @l2 + [2]                         
                                           >= [1] @l1 + [1] @l2 + [2]                         
                                           =  [::(node(@x, @t1, @t2), append(@l1, @l2))]      
                                                                                              
                      [append^#(@l1, @l2)] =  [5] @l1 + [2]                                   
                                           >  [5] @l1 + [1]                                   
                                           =  [c_1(append#1^#(@l1, @l2))]                     
                                                                                              
            [append#1^#(::(@x, @xs), @l2)] =  [5] @xs + [11]                                  
                                           >  [5] @xs + [2]                                   
                                           =  [c_2(append^#(@xs, @l2))]                       
                                                                                              
                          [subtrees^#(@t)] =  [5] @t + [2]                                    
                                           >  [5] @t + [0]                                    
                                           =  [subtrees#1^#(@t)]                              
                                                                                              
        [subtrees#1^#(node(@x, @t1, @t2))] =  [5] @t1 + [5] @t2 + [10]                        
                                           >  [5] @t1 + [2]                                   
                                           =  [subtrees^#(@t1)]                               
                                                                                              
        [subtrees#1^#(node(@x, @t1, @t2))] =  [5] @t1 + [5] @t2 + [10]                        
                                           >  [5] @t1 + [5] @t2 + [2]                         
                                           =  [subtrees#2^#(subtrees(@t1), @t1, @t2, @x)]     
                                                                                              
         [subtrees#2^#(@l1, @t1, @t2, @x)] =  [5] @l1 + [5] @t2 + [2]                         
                                           >= [5] @t2 + [2]                                   
                                           =  [subtrees^#(@t2)]                               
                                                                                              
         [subtrees#2^#(@l1, @t1, @t2, @x)] =  [5] @l1 + [5] @t2 + [2]                         
                                           >= [5] @l1 + [2]                                   
                                           =  [subtrees#3^#(subtrees(@t2), @l1, @t1, @t2, @x)]
                                                                                              
    [subtrees#3^#(@l2, @l1, @t1, @t2, @x)] =  [5] @l1 + [2]                                   
                                           >= [5] @l1 + [2]                                   
                                           =  [c_8(append^#(@l1, @l2))]                       
                                                                                              

We return to the main proof. Consider the set of all dependency
pairs

:
  { 1: append^#(@l1, @l2) -> c_1(append#1^#(@l1, @l2))
  , 2: append#1^#(::(@x, @xs), @l2) -> c_2(append^#(@xs, @l2))
  , 3: subtrees#3^#(@l2, @l1, @t1, @t2, @x) ->
       c_8(append^#(@l1, @l2))
  , 4: subtrees^#(@t) -> subtrees#1^#(@t)
  , 5: subtrees#1^#(node(@x, @t1, @t2)) -> subtrees^#(@t1)
  , 6: subtrees#1^#(node(@x, @t1, @t2)) ->
       subtrees#2^#(subtrees(@t1), @t1, @t2, @x)
  , 7: subtrees#2^#(@l1, @t1, @t2, @x) -> subtrees^#(@t2)
  , 8: subtrees#2^#(@l1, @t1, @t2, @x) ->
       subtrees#3^#(subtrees(@t2), @l1, @t1, @t2, @x) }

Processor 'matrix interpretation of dimension 1' induces the
complexity certificate YES(?,O(n^1)) on application of dependency
pairs {1,2,4,5,6}. These cover all (indirect) predecessors of
dependency pairs {1,2,3,4,5,6,7,8}, their number of application is
equally bounded. The dependency pairs are shifted into the weak
component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak DPs:
  { append^#(@l1, @l2) -> c_1(append#1^#(@l1, @l2))
  , append#1^#(::(@x, @xs), @l2) -> c_2(append^#(@xs, @l2))
  , subtrees^#(@t) -> subtrees#1^#(@t)
  , subtrees#1^#(node(@x, @t1, @t2)) -> subtrees^#(@t1)
  , subtrees#1^#(node(@x, @t1, @t2)) ->
    subtrees#2^#(subtrees(@t1), @t1, @t2, @x)
  , subtrees#2^#(@l1, @t1, @t2, @x) -> subtrees^#(@t2)
  , subtrees#2^#(@l1, @t1, @t2, @x) ->
    subtrees#3^#(subtrees(@t2), @l1, @t1, @t2, @x)
  , subtrees#3^#(@l2, @l1, @t1, @t2, @x) -> c_8(append^#(@l1, @l2)) }
Weak Trs:
  { append(@l1, @l2) -> append#1(@l1, @l2)
  , append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2))
  , append#1(nil(), @l2) -> @l2
  , subtrees(@t) -> subtrees#1(@t)
  , subtrees#1(leaf()) -> nil()
  , subtrees#1(node(@x, @t1, @t2)) ->
    subtrees#2(subtrees(@t1), @t1, @t2, @x)
  , subtrees#2(@l1, @t1, @t2, @x) ->
    subtrees#3(subtrees(@t2), @l1, @t1, @t2, @x)
  , subtrees#3(@l2, @l1, @t1, @t2, @x) ->
    ::(node(@x, @t1, @t2), append(@l1, @l2)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ append^#(@l1, @l2) -> c_1(append#1^#(@l1, @l2))
, append#1^#(::(@x, @xs), @l2) -> c_2(append^#(@xs, @l2))
, subtrees^#(@t) -> subtrees#1^#(@t)
, subtrees#1^#(node(@x, @t1, @t2)) -> subtrees^#(@t1)
, subtrees#1^#(node(@x, @t1, @t2)) ->
  subtrees#2^#(subtrees(@t1), @t1, @t2, @x)
, subtrees#2^#(@l1, @t1, @t2, @x) -> subtrees^#(@t2)
, subtrees#2^#(@l1, @t1, @t2, @x) ->
  subtrees#3^#(subtrees(@t2), @l1, @t1, @t2, @x)
, subtrees#3^#(@l2, @l1, @t1, @t2, @x) -> c_8(append^#(@l1, @l2)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak Trs:
  { append(@l1, @l2) -> append#1(@l1, @l2)
  , append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2))
  , append#1(nil(), @l2) -> @l2
  , subtrees(@t) -> subtrees#1(@t)
  , subtrees#1(leaf()) -> nil()
  , subtrees#1(node(@x, @t1, @t2)) ->
    subtrees#2(subtrees(@t1), @t1, @t2, @x)
  , subtrees#2(@l1, @t1, @t2, @x) ->
    subtrees#3(subtrees(@t2), @l1, @t1, @t2, @x)
  , subtrees#3(@l2, @l1, @t1, @t2, @x) ->
    ::(node(@x, @t1, @t2), append(@l1, @l2)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

No rule is usable, rules are removed from the input problem.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Rules: Empty
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(n^2))