(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
append(@l1, @l2) → append#1(@l1, @l2)
append#1(::(@x, @xs), @l2) → ::(@x, append(@xs, @l2))
append#1(nil, @l2) → @l2
subtrees(@t) → subtrees#1(@t)
subtrees#1(leaf) → nil
subtrees#1(node(@x, @t1, @t2)) → subtrees#2(subtrees(@t1), @t1, @t2, @x)
subtrees#2(@l1, @t1, @t2, @x) → subtrees#3(subtrees(@t2), @l1, @t1, @t2, @x)
subtrees#3(@l2, @l1, @t1, @t2, @x) → ::(node(@x, @t1, @t2), append(@l1, @l2))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
append(@l1, @l2) → append#1(@l1, @l2)
append#1(::(@x, @xs), @l2) → ::(@x, append(@xs, @l2))
append#1(nil, @l2) → @l2
subtrees(@t) → subtrees#1(@t)
subtrees#1(leaf) → nil
subtrees#1(node(@x, @t1, @t2)) → subtrees#2(subtrees(@t1), @t1, @t2, @x)
subtrees#2(@l1, @t1, @t2, @x) → subtrees#3(subtrees(@t2), @l1, @t1, @t2, @x)
subtrees#3(@l2, @l1, @t1, @t2, @x) → ::(node(@x, @t1, @t2), append(@l1, @l2))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
append(@l1, @l2) → append#1(@l1, @l2)
append#1(::(@x, @xs), @l2) → ::(@x, append(@xs, @l2))
append#1(nil, @l2) → @l2
subtrees(@t) → subtrees#1(@t)
subtrees#1(leaf) → nil
subtrees#1(node(@x, @t1, @t2)) → subtrees#2(subtrees(@t1), @t1, @t2, @x)
subtrees#2(@l1, @t1, @t2, @x) → subtrees#3(subtrees(@t2), @l1, @t1, @t2, @x)
subtrees#3(@l2, @l1, @t1, @t2, @x) → ::(node(@x, @t1, @t2), append(@l1, @l2))
Types:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: leaf:node → :::nil → :::nil
nil :: :::nil
subtrees :: leaf:node → :::nil
subtrees#1 :: leaf:node → :::nil
leaf :: leaf:node
node :: a → leaf:node → leaf:node → leaf:node
subtrees#2 :: :::nil → leaf:node → leaf:node → a → :::nil
subtrees#3 :: :::nil → :::nil → leaf:node → leaf:node → a → :::nil
hole_:::nil1_0 :: :::nil
hole_leaf:node2_0 :: leaf:node
hole_a3_0 :: a
gen_:::nil4_0 :: Nat → :::nil
gen_leaf:node5_0 :: Nat → leaf:node
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
append,
append#1,
subtrees,
subtrees#1They will be analysed ascendingly in the following order:
append = append#1
subtrees = subtrees#1
(6) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@x,
@xs),
@l2) →
::(
@x,
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2subtrees(
@t) →
subtrees#1(
@t)
subtrees#1(
leaf) →
nilsubtrees#1(
node(
@x,
@t1,
@t2)) →
subtrees#2(
subtrees(
@t1),
@t1,
@t2,
@x)
subtrees#2(
@l1,
@t1,
@t2,
@x) →
subtrees#3(
subtrees(
@t2),
@l1,
@t1,
@t2,
@x)
subtrees#3(
@l2,
@l1,
@t1,
@t2,
@x) →
::(
node(
@x,
@t1,
@t2),
append(
@l1,
@l2))
Types:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: leaf:node → :::nil → :::nil
nil :: :::nil
subtrees :: leaf:node → :::nil
subtrees#1 :: leaf:node → :::nil
leaf :: leaf:node
node :: a → leaf:node → leaf:node → leaf:node
subtrees#2 :: :::nil → leaf:node → leaf:node → a → :::nil
subtrees#3 :: :::nil → :::nil → leaf:node → leaf:node → a → :::nil
hole_:::nil1_0 :: :::nil
hole_leaf:node2_0 :: leaf:node
hole_a3_0 :: a
gen_:::nil4_0 :: Nat → :::nil
gen_leaf:node5_0 :: Nat → leaf:node
Generator Equations:
gen_:::nil4_0(0) ⇔ nil
gen_:::nil4_0(+(x, 1)) ⇔ ::(leaf, gen_:::nil4_0(x))
gen_leaf:node5_0(0) ⇔ leaf
gen_leaf:node5_0(+(x, 1)) ⇔ node(hole_a3_0, leaf, gen_leaf:node5_0(x))
The following defined symbols remain to be analysed:
subtrees#1, append, append#1, subtrees
They will be analysed ascendingly in the following order:
append = append#1
subtrees = subtrees#1
(7) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol subtrees#1.
(8) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@x,
@xs),
@l2) →
::(
@x,
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2subtrees(
@t) →
subtrees#1(
@t)
subtrees#1(
leaf) →
nilsubtrees#1(
node(
@x,
@t1,
@t2)) →
subtrees#2(
subtrees(
@t1),
@t1,
@t2,
@x)
subtrees#2(
@l1,
@t1,
@t2,
@x) →
subtrees#3(
subtrees(
@t2),
@l1,
@t1,
@t2,
@x)
subtrees#3(
@l2,
@l1,
@t1,
@t2,
@x) →
::(
node(
@x,
@t1,
@t2),
append(
@l1,
@l2))
Types:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: leaf:node → :::nil → :::nil
nil :: :::nil
subtrees :: leaf:node → :::nil
subtrees#1 :: leaf:node → :::nil
leaf :: leaf:node
node :: a → leaf:node → leaf:node → leaf:node
subtrees#2 :: :::nil → leaf:node → leaf:node → a → :::nil
subtrees#3 :: :::nil → :::nil → leaf:node → leaf:node → a → :::nil
hole_:::nil1_0 :: :::nil
hole_leaf:node2_0 :: leaf:node
hole_a3_0 :: a
gen_:::nil4_0 :: Nat → :::nil
gen_leaf:node5_0 :: Nat → leaf:node
Generator Equations:
gen_:::nil4_0(0) ⇔ nil
gen_:::nil4_0(+(x, 1)) ⇔ ::(leaf, gen_:::nil4_0(x))
gen_leaf:node5_0(0) ⇔ leaf
gen_leaf:node5_0(+(x, 1)) ⇔ node(hole_a3_0, leaf, gen_leaf:node5_0(x))
The following defined symbols remain to be analysed:
subtrees, append, append#1
They will be analysed ascendingly in the following order:
append = append#1
subtrees = subtrees#1
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol subtrees.
(10) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@x,
@xs),
@l2) →
::(
@x,
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2subtrees(
@t) →
subtrees#1(
@t)
subtrees#1(
leaf) →
nilsubtrees#1(
node(
@x,
@t1,
@t2)) →
subtrees#2(
subtrees(
@t1),
@t1,
@t2,
@x)
subtrees#2(
@l1,
@t1,
@t2,
@x) →
subtrees#3(
subtrees(
@t2),
@l1,
@t1,
@t2,
@x)
subtrees#3(
@l2,
@l1,
@t1,
@t2,
@x) →
::(
node(
@x,
@t1,
@t2),
append(
@l1,
@l2))
Types:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: leaf:node → :::nil → :::nil
nil :: :::nil
subtrees :: leaf:node → :::nil
subtrees#1 :: leaf:node → :::nil
leaf :: leaf:node
node :: a → leaf:node → leaf:node → leaf:node
subtrees#2 :: :::nil → leaf:node → leaf:node → a → :::nil
subtrees#3 :: :::nil → :::nil → leaf:node → leaf:node → a → :::nil
hole_:::nil1_0 :: :::nil
hole_leaf:node2_0 :: leaf:node
hole_a3_0 :: a
gen_:::nil4_0 :: Nat → :::nil
gen_leaf:node5_0 :: Nat → leaf:node
Generator Equations:
gen_:::nil4_0(0) ⇔ nil
gen_:::nil4_0(+(x, 1)) ⇔ ::(leaf, gen_:::nil4_0(x))
gen_leaf:node5_0(0) ⇔ leaf
gen_leaf:node5_0(+(x, 1)) ⇔ node(hole_a3_0, leaf, gen_leaf:node5_0(x))
The following defined symbols remain to be analysed:
append#1, append
They will be analysed ascendingly in the following order:
append = append#1
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
append#1(
gen_:::nil4_0(
n6995_0),
gen_:::nil4_0(
b)) →
gen_:::nil4_0(
+(
n6995_0,
b)), rt ∈ Ω(1 + n6995
0)
Induction Base:
append#1(gen_:::nil4_0(0), gen_:::nil4_0(b)) →RΩ(1)
gen_:::nil4_0(b)
Induction Step:
append#1(gen_:::nil4_0(+(n6995_0, 1)), gen_:::nil4_0(b)) →RΩ(1)
::(leaf, append(gen_:::nil4_0(n6995_0), gen_:::nil4_0(b))) →RΩ(1)
::(leaf, append#1(gen_:::nil4_0(n6995_0), gen_:::nil4_0(b))) →IH
::(leaf, gen_:::nil4_0(+(b, c6996_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@x,
@xs),
@l2) →
::(
@x,
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2subtrees(
@t) →
subtrees#1(
@t)
subtrees#1(
leaf) →
nilsubtrees#1(
node(
@x,
@t1,
@t2)) →
subtrees#2(
subtrees(
@t1),
@t1,
@t2,
@x)
subtrees#2(
@l1,
@t1,
@t2,
@x) →
subtrees#3(
subtrees(
@t2),
@l1,
@t1,
@t2,
@x)
subtrees#3(
@l2,
@l1,
@t1,
@t2,
@x) →
::(
node(
@x,
@t1,
@t2),
append(
@l1,
@l2))
Types:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: leaf:node → :::nil → :::nil
nil :: :::nil
subtrees :: leaf:node → :::nil
subtrees#1 :: leaf:node → :::nil
leaf :: leaf:node
node :: a → leaf:node → leaf:node → leaf:node
subtrees#2 :: :::nil → leaf:node → leaf:node → a → :::nil
subtrees#3 :: :::nil → :::nil → leaf:node → leaf:node → a → :::nil
hole_:::nil1_0 :: :::nil
hole_leaf:node2_0 :: leaf:node
hole_a3_0 :: a
gen_:::nil4_0 :: Nat → :::nil
gen_leaf:node5_0 :: Nat → leaf:node
Lemmas:
append#1(gen_:::nil4_0(n6995_0), gen_:::nil4_0(b)) → gen_:::nil4_0(+(n6995_0, b)), rt ∈ Ω(1 + n69950)
Generator Equations:
gen_:::nil4_0(0) ⇔ nil
gen_:::nil4_0(+(x, 1)) ⇔ ::(leaf, gen_:::nil4_0(x))
gen_leaf:node5_0(0) ⇔ leaf
gen_leaf:node5_0(+(x, 1)) ⇔ node(hole_a3_0, leaf, gen_leaf:node5_0(x))
The following defined symbols remain to be analysed:
append
They will be analysed ascendingly in the following order:
append = append#1
(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol append.
(15) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@x,
@xs),
@l2) →
::(
@x,
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2subtrees(
@t) →
subtrees#1(
@t)
subtrees#1(
leaf) →
nilsubtrees#1(
node(
@x,
@t1,
@t2)) →
subtrees#2(
subtrees(
@t1),
@t1,
@t2,
@x)
subtrees#2(
@l1,
@t1,
@t2,
@x) →
subtrees#3(
subtrees(
@t2),
@l1,
@t1,
@t2,
@x)
subtrees#3(
@l2,
@l1,
@t1,
@t2,
@x) →
::(
node(
@x,
@t1,
@t2),
append(
@l1,
@l2))
Types:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: leaf:node → :::nil → :::nil
nil :: :::nil
subtrees :: leaf:node → :::nil
subtrees#1 :: leaf:node → :::nil
leaf :: leaf:node
node :: a → leaf:node → leaf:node → leaf:node
subtrees#2 :: :::nil → leaf:node → leaf:node → a → :::nil
subtrees#3 :: :::nil → :::nil → leaf:node → leaf:node → a → :::nil
hole_:::nil1_0 :: :::nil
hole_leaf:node2_0 :: leaf:node
hole_a3_0 :: a
gen_:::nil4_0 :: Nat → :::nil
gen_leaf:node5_0 :: Nat → leaf:node
Lemmas:
append#1(gen_:::nil4_0(n6995_0), gen_:::nil4_0(b)) → gen_:::nil4_0(+(n6995_0, b)), rt ∈ Ω(1 + n69950)
Generator Equations:
gen_:::nil4_0(0) ⇔ nil
gen_:::nil4_0(+(x, 1)) ⇔ ::(leaf, gen_:::nil4_0(x))
gen_leaf:node5_0(0) ⇔ leaf
gen_leaf:node5_0(+(x, 1)) ⇔ node(hole_a3_0, leaf, gen_leaf:node5_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
append#1(gen_:::nil4_0(n6995_0), gen_:::nil4_0(b)) → gen_:::nil4_0(+(n6995_0, b)), rt ∈ Ω(1 + n69950)
(17) BOUNDS(n^1, INF)
(18) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@x,
@xs),
@l2) →
::(
@x,
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2subtrees(
@t) →
subtrees#1(
@t)
subtrees#1(
leaf) →
nilsubtrees#1(
node(
@x,
@t1,
@t2)) →
subtrees#2(
subtrees(
@t1),
@t1,
@t2,
@x)
subtrees#2(
@l1,
@t1,
@t2,
@x) →
subtrees#3(
subtrees(
@t2),
@l1,
@t1,
@t2,
@x)
subtrees#3(
@l2,
@l1,
@t1,
@t2,
@x) →
::(
node(
@x,
@t1,
@t2),
append(
@l1,
@l2))
Types:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: leaf:node → :::nil → :::nil
nil :: :::nil
subtrees :: leaf:node → :::nil
subtrees#1 :: leaf:node → :::nil
leaf :: leaf:node
node :: a → leaf:node → leaf:node → leaf:node
subtrees#2 :: :::nil → leaf:node → leaf:node → a → :::nil
subtrees#3 :: :::nil → :::nil → leaf:node → leaf:node → a → :::nil
hole_:::nil1_0 :: :::nil
hole_leaf:node2_0 :: leaf:node
hole_a3_0 :: a
gen_:::nil4_0 :: Nat → :::nil
gen_leaf:node5_0 :: Nat → leaf:node
Lemmas:
append#1(gen_:::nil4_0(n6995_0), gen_:::nil4_0(b)) → gen_:::nil4_0(+(n6995_0, b)), rt ∈ Ω(1 + n69950)
Generator Equations:
gen_:::nil4_0(0) ⇔ nil
gen_:::nil4_0(+(x, 1)) ⇔ ::(leaf, gen_:::nil4_0(x))
gen_leaf:node5_0(0) ⇔ leaf
gen_leaf:node5_0(+(x, 1)) ⇔ node(hole_a3_0, leaf, gen_leaf:node5_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
append#1(gen_:::nil4_0(n6995_0), gen_:::nil4_0(b)) → gen_:::nil4_0(+(n6995_0, b)), rt ∈ Ω(1 + n69950)
(20) BOUNDS(n^1, INF)