We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^6)).
Strict Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, splitAndSort(@l) -> sortAll(split(@l))
, sortAll#2(tuple#2(@vals, @key), @xs) ->
::(tuple#2(quicksort(@vals), @key), sortAll(@xs))
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, insert(@x, @l) -> insert#1(@x, @l, @x)
, sortAll(@l) -> sortAll#1(@l)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, sortAll#1(nil()) -> nil()
, sortAll#1(::(@x, @xs)) -> sortAll#2(@x, @xs)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
Weak Trs:
{ #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^6))
We add the following dependency tuples:
Strict DPs:
{ #equal^#(@x, @y) -> c_1(#eq^#(@x, @y))
, splitAndSort^#(@l) -> c_2(sortAll^#(split(@l)), split^#(@l))
, sortAll^#(@l) -> c_9(sortAll#1^#(@l))
, split^#(@l) -> c_5(split#1^#(@l))
, sortAll#2^#(tuple#2(@vals, @key), @xs) ->
c_3(quicksort^#(@vals), sortAll^#(@xs))
, quicksort^#(@l) -> c_25(quicksort#1^#(@l))
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))
, append^#(@l, @ys) -> c_6(append#1^#(@l, @ys))
, split#1^#(nil()) -> c_14()
, split#1^#(::(@x, @xs)) ->
c_15(insert^#(@x, split(@xs)), split^#(@xs))
, append#1^#(nil(), @ys) -> c_22()
, append#1^#(::(@x, @xs), @ys) -> c_23(append^#(@xs, @ys))
, insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
c_7(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x),
#equal^#(@key1, @keyX))
, insert#4^#(#true(), @key1, @ls, @valX, @vals1, @x) -> c_17()
, insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) ->
c_18(insert^#(@x, @ls))
, insert^#(@x, @l) -> c_8(insert#1^#(@x, @l, @x))
, insert#1^#(tuple#2(@valX, @keyX), @l, @x) ->
c_19(insert#2^#(@l, @keyX, @valX, @x))
, sortAll#1^#(nil()) -> c_12()
, sortAll#1^#(::(@x, @xs)) -> c_13(sortAll#2^#(@x, @xs))
, insert#2^#(nil(), @keyX, @valX, @x) -> c_10()
, insert#2^#(::(@l1, @ls), @keyX, @valX, @x) ->
c_11(insert#3^#(@l1, @keyX, @ls, @valX, @x))
, #greater^#(@x, @y) ->
c_16(#ckgt^#(#compare(@x, @y)), #compare^#(@x, @y))
, quicksort#1^#(nil()) -> c_20()
, quicksort#1^#(::(@z, @zs)) ->
c_21(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs))
, splitqs^#(@pivot, @l) -> c_24(splitqs#1^#(@l, @pivot))
, splitqs#1^#(nil(), @pivot) -> c_29()
, splitqs#1^#(::(@x, @xs), @pivot) ->
c_30(splitqs#2^#(splitqs(@pivot, @xs), @pivot, @x),
splitqs^#(@pivot, @xs))
, splitqs#3^#(#true(), @ls, @rs, @x) -> c_26()
, splitqs#3^#(#false(), @ls, @rs, @x) -> c_27()
, splitqs#2^#(tuple#2(@ls, @rs), @pivot, @x) ->
c_28(splitqs#3^#(#greater(@x, @pivot), @ls, @rs, @x),
#greater^#(@x, @pivot)) }
Weak DPs:
{ #eq^#(#pos(@x), #pos(@y)) -> c_31(#eq^#(@x, @y))
, #eq^#(#pos(@x), #0()) -> c_32()
, #eq^#(#pos(@x), #neg(@y)) -> c_33()
, #eq^#(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
c_34(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
#eq^#(@x_1, @y_1),
#eq^#(@x_2, @y_2))
, #eq^#(tuple#2(@x_1, @x_2), nil()) -> c_35()
, #eq^#(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> c_36()
, #eq^#(nil(), tuple#2(@y_1, @y_2)) -> c_37()
, #eq^#(nil(), nil()) -> c_38()
, #eq^#(nil(), ::(@y_1, @y_2)) -> c_39()
, #eq^#(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> c_40()
, #eq^#(::(@x_1, @x_2), nil()) -> c_41()
, #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
c_42(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
#eq^#(@x_1, @y_1),
#eq^#(@x_2, @y_2))
, #eq^#(#0(), #pos(@y)) -> c_43()
, #eq^#(#0(), #0()) -> c_44()
, #eq^#(#0(), #neg(@y)) -> c_45()
, #eq^#(#0(), #s(@y)) -> c_46()
, #eq^#(#neg(@x), #pos(@y)) -> c_47()
, #eq^#(#neg(@x), #0()) -> c_48()
, #eq^#(#neg(@x), #neg(@y)) -> c_49(#eq^#(@x, @y))
, #eq^#(#s(@x), #0()) -> c_50()
, #eq^#(#s(@x), #s(@y)) -> c_51(#eq^#(@x, @y))
, #ckgt^#(#EQ()) -> c_52()
, #ckgt^#(#LT()) -> c_53()
, #ckgt^#(#GT()) -> c_54()
, #compare^#(#pos(@x), #pos(@y)) -> c_59(#compare^#(@x, @y))
, #compare^#(#pos(@x), #0()) -> c_60()
, #compare^#(#pos(@x), #neg(@y)) -> c_61()
, #compare^#(#0(), #pos(@y)) -> c_62()
, #compare^#(#0(), #0()) -> c_63()
, #compare^#(#0(), #neg(@y)) -> c_64()
, #compare^#(#0(), #s(@y)) -> c_65()
, #compare^#(#neg(@x), #pos(@y)) -> c_66()
, #compare^#(#neg(@x), #0()) -> c_67()
, #compare^#(#neg(@x), #neg(@y)) -> c_68(#compare^#(@y, @x))
, #compare^#(#s(@x), #0()) -> c_69()
, #compare^#(#s(@x), #s(@y)) -> c_70(#compare^#(@x, @y))
, #and^#(#true(), #true()) -> c_55()
, #and^#(#true(), #false()) -> c_56()
, #and^#(#false(), #true()) -> c_57()
, #and^#(#false(), #false()) -> c_58() }
and mark the set of starting terms.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^6)).
Strict DPs:
{ #equal^#(@x, @y) -> c_1(#eq^#(@x, @y))
, splitAndSort^#(@l) -> c_2(sortAll^#(split(@l)), split^#(@l))
, sortAll^#(@l) -> c_9(sortAll#1^#(@l))
, split^#(@l) -> c_5(split#1^#(@l))
, sortAll#2^#(tuple#2(@vals, @key), @xs) ->
c_3(quicksort^#(@vals), sortAll^#(@xs))
, quicksort^#(@l) -> c_25(quicksort#1^#(@l))
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))
, append^#(@l, @ys) -> c_6(append#1^#(@l, @ys))
, split#1^#(nil()) -> c_14()
, split#1^#(::(@x, @xs)) ->
c_15(insert^#(@x, split(@xs)), split^#(@xs))
, append#1^#(nil(), @ys) -> c_22()
, append#1^#(::(@x, @xs), @ys) -> c_23(append^#(@xs, @ys))
, insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
c_7(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x),
#equal^#(@key1, @keyX))
, insert#4^#(#true(), @key1, @ls, @valX, @vals1, @x) -> c_17()
, insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) ->
c_18(insert^#(@x, @ls))
, insert^#(@x, @l) -> c_8(insert#1^#(@x, @l, @x))
, insert#1^#(tuple#2(@valX, @keyX), @l, @x) ->
c_19(insert#2^#(@l, @keyX, @valX, @x))
, sortAll#1^#(nil()) -> c_12()
, sortAll#1^#(::(@x, @xs)) -> c_13(sortAll#2^#(@x, @xs))
, insert#2^#(nil(), @keyX, @valX, @x) -> c_10()
, insert#2^#(::(@l1, @ls), @keyX, @valX, @x) ->
c_11(insert#3^#(@l1, @keyX, @ls, @valX, @x))
, #greater^#(@x, @y) ->
c_16(#ckgt^#(#compare(@x, @y)), #compare^#(@x, @y))
, quicksort#1^#(nil()) -> c_20()
, quicksort#1^#(::(@z, @zs)) ->
c_21(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs))
, splitqs^#(@pivot, @l) -> c_24(splitqs#1^#(@l, @pivot))
, splitqs#1^#(nil(), @pivot) -> c_29()
, splitqs#1^#(::(@x, @xs), @pivot) ->
c_30(splitqs#2^#(splitqs(@pivot, @xs), @pivot, @x),
splitqs^#(@pivot, @xs))
, splitqs#3^#(#true(), @ls, @rs, @x) -> c_26()
, splitqs#3^#(#false(), @ls, @rs, @x) -> c_27()
, splitqs#2^#(tuple#2(@ls, @rs), @pivot, @x) ->
c_28(splitqs#3^#(#greater(@x, @pivot), @ls, @rs, @x),
#greater^#(@x, @pivot)) }
Weak DPs:
{ #eq^#(#pos(@x), #pos(@y)) -> c_31(#eq^#(@x, @y))
, #eq^#(#pos(@x), #0()) -> c_32()
, #eq^#(#pos(@x), #neg(@y)) -> c_33()
, #eq^#(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
c_34(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
#eq^#(@x_1, @y_1),
#eq^#(@x_2, @y_2))
, #eq^#(tuple#2(@x_1, @x_2), nil()) -> c_35()
, #eq^#(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> c_36()
, #eq^#(nil(), tuple#2(@y_1, @y_2)) -> c_37()
, #eq^#(nil(), nil()) -> c_38()
, #eq^#(nil(), ::(@y_1, @y_2)) -> c_39()
, #eq^#(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> c_40()
, #eq^#(::(@x_1, @x_2), nil()) -> c_41()
, #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
c_42(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
#eq^#(@x_1, @y_1),
#eq^#(@x_2, @y_2))
, #eq^#(#0(), #pos(@y)) -> c_43()
, #eq^#(#0(), #0()) -> c_44()
, #eq^#(#0(), #neg(@y)) -> c_45()
, #eq^#(#0(), #s(@y)) -> c_46()
, #eq^#(#neg(@x), #pos(@y)) -> c_47()
, #eq^#(#neg(@x), #0()) -> c_48()
, #eq^#(#neg(@x), #neg(@y)) -> c_49(#eq^#(@x, @y))
, #eq^#(#s(@x), #0()) -> c_50()
, #eq^#(#s(@x), #s(@y)) -> c_51(#eq^#(@x, @y))
, #ckgt^#(#EQ()) -> c_52()
, #ckgt^#(#LT()) -> c_53()
, #ckgt^#(#GT()) -> c_54()
, #compare^#(#pos(@x), #pos(@y)) -> c_59(#compare^#(@x, @y))
, #compare^#(#pos(@x), #0()) -> c_60()
, #compare^#(#pos(@x), #neg(@y)) -> c_61()
, #compare^#(#0(), #pos(@y)) -> c_62()
, #compare^#(#0(), #0()) -> c_63()
, #compare^#(#0(), #neg(@y)) -> c_64()
, #compare^#(#0(), #s(@y)) -> c_65()
, #compare^#(#neg(@x), #pos(@y)) -> c_66()
, #compare^#(#neg(@x), #0()) -> c_67()
, #compare^#(#neg(@x), #neg(@y)) -> c_68(#compare^#(@y, @x))
, #compare^#(#s(@x), #0()) -> c_69()
, #compare^#(#s(@x), #s(@y)) -> c_70(#compare^#(@x, @y))
, #and^#(#true(), #true()) -> c_55()
, #and^#(#true(), #false()) -> c_56()
, #and^#(#false(), #true()) -> c_57()
, #and^#(#false(), #false()) -> c_58() }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, splitAndSort(@l) -> sortAll(split(@l))
, sortAll#2(tuple#2(@vals, @key), @xs) ->
::(tuple#2(quicksort(@vals), @key), sortAll(@xs))
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, sortAll(@l) -> sortAll#1(@l)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, sortAll#1(nil()) -> nil()
, sortAll#1(::(@x, @xs)) -> sortAll#2(@x, @xs)
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^6))
We estimate the number of application of
{1,9,11,14,18,20,22,23,26,28,29} by applications of
Pre({1,9,11,14,18,20,22,23,26,28,29}) = {3,4,6,8,13,17,25,30}. Here
rules are labeled as follows:
DPs:
{ 1: #equal^#(@x, @y) -> c_1(#eq^#(@x, @y))
, 2: splitAndSort^#(@l) -> c_2(sortAll^#(split(@l)), split^#(@l))
, 3: sortAll^#(@l) -> c_9(sortAll#1^#(@l))
, 4: split^#(@l) -> c_5(split#1^#(@l))
, 5: sortAll#2^#(tuple#2(@vals, @key), @xs) ->
c_3(quicksort^#(@vals), sortAll^#(@xs))
, 6: quicksort^#(@l) -> c_25(quicksort#1^#(@l))
, 7: quicksort#2^#(tuple#2(@xs, @ys), @z) ->
c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))
, 8: append^#(@l, @ys) -> c_6(append#1^#(@l, @ys))
, 9: split#1^#(nil()) -> c_14()
, 10: split#1^#(::(@x, @xs)) ->
c_15(insert^#(@x, split(@xs)), split^#(@xs))
, 11: append#1^#(nil(), @ys) -> c_22()
, 12: append#1^#(::(@x, @xs), @ys) -> c_23(append^#(@xs, @ys))
, 13: insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
c_7(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x),
#equal^#(@key1, @keyX))
, 14: insert#4^#(#true(), @key1, @ls, @valX, @vals1, @x) -> c_17()
, 15: insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) ->
c_18(insert^#(@x, @ls))
, 16: insert^#(@x, @l) -> c_8(insert#1^#(@x, @l, @x))
, 17: insert#1^#(tuple#2(@valX, @keyX), @l, @x) ->
c_19(insert#2^#(@l, @keyX, @valX, @x))
, 18: sortAll#1^#(nil()) -> c_12()
, 19: sortAll#1^#(::(@x, @xs)) -> c_13(sortAll#2^#(@x, @xs))
, 20: insert#2^#(nil(), @keyX, @valX, @x) -> c_10()
, 21: insert#2^#(::(@l1, @ls), @keyX, @valX, @x) ->
c_11(insert#3^#(@l1, @keyX, @ls, @valX, @x))
, 22: #greater^#(@x, @y) ->
c_16(#ckgt^#(#compare(@x, @y)), #compare^#(@x, @y))
, 23: quicksort#1^#(nil()) -> c_20()
, 24: quicksort#1^#(::(@z, @zs)) ->
c_21(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs))
, 25: splitqs^#(@pivot, @l) -> c_24(splitqs#1^#(@l, @pivot))
, 26: splitqs#1^#(nil(), @pivot) -> c_29()
, 27: splitqs#1^#(::(@x, @xs), @pivot) ->
c_30(splitqs#2^#(splitqs(@pivot, @xs), @pivot, @x),
splitqs^#(@pivot, @xs))
, 28: splitqs#3^#(#true(), @ls, @rs, @x) -> c_26()
, 29: splitqs#3^#(#false(), @ls, @rs, @x) -> c_27()
, 30: splitqs#2^#(tuple#2(@ls, @rs), @pivot, @x) ->
c_28(splitqs#3^#(#greater(@x, @pivot), @ls, @rs, @x),
#greater^#(@x, @pivot))
, 31: #eq^#(#pos(@x), #pos(@y)) -> c_31(#eq^#(@x, @y))
, 32: #eq^#(#pos(@x), #0()) -> c_32()
, 33: #eq^#(#pos(@x), #neg(@y)) -> c_33()
, 34: #eq^#(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
c_34(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
#eq^#(@x_1, @y_1),
#eq^#(@x_2, @y_2))
, 35: #eq^#(tuple#2(@x_1, @x_2), nil()) -> c_35()
, 36: #eq^#(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> c_36()
, 37: #eq^#(nil(), tuple#2(@y_1, @y_2)) -> c_37()
, 38: #eq^#(nil(), nil()) -> c_38()
, 39: #eq^#(nil(), ::(@y_1, @y_2)) -> c_39()
, 40: #eq^#(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> c_40()
, 41: #eq^#(::(@x_1, @x_2), nil()) -> c_41()
, 42: #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
c_42(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
#eq^#(@x_1, @y_1),
#eq^#(@x_2, @y_2))
, 43: #eq^#(#0(), #pos(@y)) -> c_43()
, 44: #eq^#(#0(), #0()) -> c_44()
, 45: #eq^#(#0(), #neg(@y)) -> c_45()
, 46: #eq^#(#0(), #s(@y)) -> c_46()
, 47: #eq^#(#neg(@x), #pos(@y)) -> c_47()
, 48: #eq^#(#neg(@x), #0()) -> c_48()
, 49: #eq^#(#neg(@x), #neg(@y)) -> c_49(#eq^#(@x, @y))
, 50: #eq^#(#s(@x), #0()) -> c_50()
, 51: #eq^#(#s(@x), #s(@y)) -> c_51(#eq^#(@x, @y))
, 52: #ckgt^#(#EQ()) -> c_52()
, 53: #ckgt^#(#LT()) -> c_53()
, 54: #ckgt^#(#GT()) -> c_54()
, 55: #compare^#(#pos(@x), #pos(@y)) -> c_59(#compare^#(@x, @y))
, 56: #compare^#(#pos(@x), #0()) -> c_60()
, 57: #compare^#(#pos(@x), #neg(@y)) -> c_61()
, 58: #compare^#(#0(), #pos(@y)) -> c_62()
, 59: #compare^#(#0(), #0()) -> c_63()
, 60: #compare^#(#0(), #neg(@y)) -> c_64()
, 61: #compare^#(#0(), #s(@y)) -> c_65()
, 62: #compare^#(#neg(@x), #pos(@y)) -> c_66()
, 63: #compare^#(#neg(@x), #0()) -> c_67()
, 64: #compare^#(#neg(@x), #neg(@y)) -> c_68(#compare^#(@y, @x))
, 65: #compare^#(#s(@x), #0()) -> c_69()
, 66: #compare^#(#s(@x), #s(@y)) -> c_70(#compare^#(@x, @y))
, 67: #and^#(#true(), #true()) -> c_55()
, 68: #and^#(#true(), #false()) -> c_56()
, 69: #and^#(#false(), #true()) -> c_57()
, 70: #and^#(#false(), #false()) -> c_58() }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^6)).
Strict DPs:
{ splitAndSort^#(@l) -> c_2(sortAll^#(split(@l)), split^#(@l))
, sortAll^#(@l) -> c_9(sortAll#1^#(@l))
, split^#(@l) -> c_5(split#1^#(@l))
, sortAll#2^#(tuple#2(@vals, @key), @xs) ->
c_3(quicksort^#(@vals), sortAll^#(@xs))
, quicksort^#(@l) -> c_25(quicksort#1^#(@l))
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))
, append^#(@l, @ys) -> c_6(append#1^#(@l, @ys))
, split#1^#(::(@x, @xs)) ->
c_15(insert^#(@x, split(@xs)), split^#(@xs))
, append#1^#(::(@x, @xs), @ys) -> c_23(append^#(@xs, @ys))
, insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
c_7(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x),
#equal^#(@key1, @keyX))
, insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) ->
c_18(insert^#(@x, @ls))
, insert^#(@x, @l) -> c_8(insert#1^#(@x, @l, @x))
, insert#1^#(tuple#2(@valX, @keyX), @l, @x) ->
c_19(insert#2^#(@l, @keyX, @valX, @x))
, sortAll#1^#(::(@x, @xs)) -> c_13(sortAll#2^#(@x, @xs))
, insert#2^#(::(@l1, @ls), @keyX, @valX, @x) ->
c_11(insert#3^#(@l1, @keyX, @ls, @valX, @x))
, quicksort#1^#(::(@z, @zs)) ->
c_21(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs))
, splitqs^#(@pivot, @l) -> c_24(splitqs#1^#(@l, @pivot))
, splitqs#1^#(::(@x, @xs), @pivot) ->
c_30(splitqs#2^#(splitqs(@pivot, @xs), @pivot, @x),
splitqs^#(@pivot, @xs))
, splitqs#2^#(tuple#2(@ls, @rs), @pivot, @x) ->
c_28(splitqs#3^#(#greater(@x, @pivot), @ls, @rs, @x),
#greater^#(@x, @pivot)) }
Weak DPs:
{ #equal^#(@x, @y) -> c_1(#eq^#(@x, @y))
, #eq^#(#pos(@x), #pos(@y)) -> c_31(#eq^#(@x, @y))
, #eq^#(#pos(@x), #0()) -> c_32()
, #eq^#(#pos(@x), #neg(@y)) -> c_33()
, #eq^#(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
c_34(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
#eq^#(@x_1, @y_1),
#eq^#(@x_2, @y_2))
, #eq^#(tuple#2(@x_1, @x_2), nil()) -> c_35()
, #eq^#(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> c_36()
, #eq^#(nil(), tuple#2(@y_1, @y_2)) -> c_37()
, #eq^#(nil(), nil()) -> c_38()
, #eq^#(nil(), ::(@y_1, @y_2)) -> c_39()
, #eq^#(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> c_40()
, #eq^#(::(@x_1, @x_2), nil()) -> c_41()
, #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
c_42(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
#eq^#(@x_1, @y_1),
#eq^#(@x_2, @y_2))
, #eq^#(#0(), #pos(@y)) -> c_43()
, #eq^#(#0(), #0()) -> c_44()
, #eq^#(#0(), #neg(@y)) -> c_45()
, #eq^#(#0(), #s(@y)) -> c_46()
, #eq^#(#neg(@x), #pos(@y)) -> c_47()
, #eq^#(#neg(@x), #0()) -> c_48()
, #eq^#(#neg(@x), #neg(@y)) -> c_49(#eq^#(@x, @y))
, #eq^#(#s(@x), #0()) -> c_50()
, #eq^#(#s(@x), #s(@y)) -> c_51(#eq^#(@x, @y))
, split#1^#(nil()) -> c_14()
, append#1^#(nil(), @ys) -> c_22()
, insert#4^#(#true(), @key1, @ls, @valX, @vals1, @x) -> c_17()
, sortAll#1^#(nil()) -> c_12()
, insert#2^#(nil(), @keyX, @valX, @x) -> c_10()
, #greater^#(@x, @y) ->
c_16(#ckgt^#(#compare(@x, @y)), #compare^#(@x, @y))
, #ckgt^#(#EQ()) -> c_52()
, #ckgt^#(#LT()) -> c_53()
, #ckgt^#(#GT()) -> c_54()
, #compare^#(#pos(@x), #pos(@y)) -> c_59(#compare^#(@x, @y))
, #compare^#(#pos(@x), #0()) -> c_60()
, #compare^#(#pos(@x), #neg(@y)) -> c_61()
, #compare^#(#0(), #pos(@y)) -> c_62()
, #compare^#(#0(), #0()) -> c_63()
, #compare^#(#0(), #neg(@y)) -> c_64()
, #compare^#(#0(), #s(@y)) -> c_65()
, #compare^#(#neg(@x), #pos(@y)) -> c_66()
, #compare^#(#neg(@x), #0()) -> c_67()
, #compare^#(#neg(@x), #neg(@y)) -> c_68(#compare^#(@y, @x))
, #compare^#(#s(@x), #0()) -> c_69()
, #compare^#(#s(@x), #s(@y)) -> c_70(#compare^#(@x, @y))
, quicksort#1^#(nil()) -> c_20()
, splitqs#1^#(nil(), @pivot) -> c_29()
, splitqs#3^#(#true(), @ls, @rs, @x) -> c_26()
, splitqs#3^#(#false(), @ls, @rs, @x) -> c_27()
, #and^#(#true(), #true()) -> c_55()
, #and^#(#true(), #false()) -> c_56()
, #and^#(#false(), #true()) -> c_57()
, #and^#(#false(), #false()) -> c_58() }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, splitAndSort(@l) -> sortAll(split(@l))
, sortAll#2(tuple#2(@vals, @key), @xs) ->
::(tuple#2(quicksort(@vals), @key), sortAll(@xs))
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, sortAll(@l) -> sortAll#1(@l)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, sortAll#1(nil()) -> nil()
, sortAll#1(::(@x, @xs)) -> sortAll#2(@x, @xs)
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^6))
We estimate the number of application of {19} by applications of
Pre({19}) = {18}. Here rules are labeled as follows:
DPs:
{ 1: splitAndSort^#(@l) -> c_2(sortAll^#(split(@l)), split^#(@l))
, 2: sortAll^#(@l) -> c_9(sortAll#1^#(@l))
, 3: split^#(@l) -> c_5(split#1^#(@l))
, 4: sortAll#2^#(tuple#2(@vals, @key), @xs) ->
c_3(quicksort^#(@vals), sortAll^#(@xs))
, 5: quicksort^#(@l) -> c_25(quicksort#1^#(@l))
, 6: quicksort#2^#(tuple#2(@xs, @ys), @z) ->
c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))
, 7: append^#(@l, @ys) -> c_6(append#1^#(@l, @ys))
, 8: split#1^#(::(@x, @xs)) ->
c_15(insert^#(@x, split(@xs)), split^#(@xs))
, 9: append#1^#(::(@x, @xs), @ys) -> c_23(append^#(@xs, @ys))
, 10: insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
c_7(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x),
#equal^#(@key1, @keyX))
, 11: insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) ->
c_18(insert^#(@x, @ls))
, 12: insert^#(@x, @l) -> c_8(insert#1^#(@x, @l, @x))
, 13: insert#1^#(tuple#2(@valX, @keyX), @l, @x) ->
c_19(insert#2^#(@l, @keyX, @valX, @x))
, 14: sortAll#1^#(::(@x, @xs)) -> c_13(sortAll#2^#(@x, @xs))
, 15: insert#2^#(::(@l1, @ls), @keyX, @valX, @x) ->
c_11(insert#3^#(@l1, @keyX, @ls, @valX, @x))
, 16: quicksort#1^#(::(@z, @zs)) ->
c_21(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs))
, 17: splitqs^#(@pivot, @l) -> c_24(splitqs#1^#(@l, @pivot))
, 18: splitqs#1^#(::(@x, @xs), @pivot) ->
c_30(splitqs#2^#(splitqs(@pivot, @xs), @pivot, @x),
splitqs^#(@pivot, @xs))
, 19: splitqs#2^#(tuple#2(@ls, @rs), @pivot, @x) ->
c_28(splitqs#3^#(#greater(@x, @pivot), @ls, @rs, @x),
#greater^#(@x, @pivot))
, 20: #equal^#(@x, @y) -> c_1(#eq^#(@x, @y))
, 21: #eq^#(#pos(@x), #pos(@y)) -> c_31(#eq^#(@x, @y))
, 22: #eq^#(#pos(@x), #0()) -> c_32()
, 23: #eq^#(#pos(@x), #neg(@y)) -> c_33()
, 24: #eq^#(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
c_34(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
#eq^#(@x_1, @y_1),
#eq^#(@x_2, @y_2))
, 25: #eq^#(tuple#2(@x_1, @x_2), nil()) -> c_35()
, 26: #eq^#(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> c_36()
, 27: #eq^#(nil(), tuple#2(@y_1, @y_2)) -> c_37()
, 28: #eq^#(nil(), nil()) -> c_38()
, 29: #eq^#(nil(), ::(@y_1, @y_2)) -> c_39()
, 30: #eq^#(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> c_40()
, 31: #eq^#(::(@x_1, @x_2), nil()) -> c_41()
, 32: #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
c_42(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
#eq^#(@x_1, @y_1),
#eq^#(@x_2, @y_2))
, 33: #eq^#(#0(), #pos(@y)) -> c_43()
, 34: #eq^#(#0(), #0()) -> c_44()
, 35: #eq^#(#0(), #neg(@y)) -> c_45()
, 36: #eq^#(#0(), #s(@y)) -> c_46()
, 37: #eq^#(#neg(@x), #pos(@y)) -> c_47()
, 38: #eq^#(#neg(@x), #0()) -> c_48()
, 39: #eq^#(#neg(@x), #neg(@y)) -> c_49(#eq^#(@x, @y))
, 40: #eq^#(#s(@x), #0()) -> c_50()
, 41: #eq^#(#s(@x), #s(@y)) -> c_51(#eq^#(@x, @y))
, 42: split#1^#(nil()) -> c_14()
, 43: append#1^#(nil(), @ys) -> c_22()
, 44: insert#4^#(#true(), @key1, @ls, @valX, @vals1, @x) -> c_17()
, 45: sortAll#1^#(nil()) -> c_12()
, 46: insert#2^#(nil(), @keyX, @valX, @x) -> c_10()
, 47: #greater^#(@x, @y) ->
c_16(#ckgt^#(#compare(@x, @y)), #compare^#(@x, @y))
, 48: #ckgt^#(#EQ()) -> c_52()
, 49: #ckgt^#(#LT()) -> c_53()
, 50: #ckgt^#(#GT()) -> c_54()
, 51: #compare^#(#pos(@x), #pos(@y)) -> c_59(#compare^#(@x, @y))
, 52: #compare^#(#pos(@x), #0()) -> c_60()
, 53: #compare^#(#pos(@x), #neg(@y)) -> c_61()
, 54: #compare^#(#0(), #pos(@y)) -> c_62()
, 55: #compare^#(#0(), #0()) -> c_63()
, 56: #compare^#(#0(), #neg(@y)) -> c_64()
, 57: #compare^#(#0(), #s(@y)) -> c_65()
, 58: #compare^#(#neg(@x), #pos(@y)) -> c_66()
, 59: #compare^#(#neg(@x), #0()) -> c_67()
, 60: #compare^#(#neg(@x), #neg(@y)) -> c_68(#compare^#(@y, @x))
, 61: #compare^#(#s(@x), #0()) -> c_69()
, 62: #compare^#(#s(@x), #s(@y)) -> c_70(#compare^#(@x, @y))
, 63: quicksort#1^#(nil()) -> c_20()
, 64: splitqs#1^#(nil(), @pivot) -> c_29()
, 65: splitqs#3^#(#true(), @ls, @rs, @x) -> c_26()
, 66: splitqs#3^#(#false(), @ls, @rs, @x) -> c_27()
, 67: #and^#(#true(), #true()) -> c_55()
, 68: #and^#(#true(), #false()) -> c_56()
, 69: #and^#(#false(), #true()) -> c_57()
, 70: #and^#(#false(), #false()) -> c_58() }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^6)).
Strict DPs:
{ splitAndSort^#(@l) -> c_2(sortAll^#(split(@l)), split^#(@l))
, sortAll^#(@l) -> c_9(sortAll#1^#(@l))
, split^#(@l) -> c_5(split#1^#(@l))
, sortAll#2^#(tuple#2(@vals, @key), @xs) ->
c_3(quicksort^#(@vals), sortAll^#(@xs))
, quicksort^#(@l) -> c_25(quicksort#1^#(@l))
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))
, append^#(@l, @ys) -> c_6(append#1^#(@l, @ys))
, split#1^#(::(@x, @xs)) ->
c_15(insert^#(@x, split(@xs)), split^#(@xs))
, append#1^#(::(@x, @xs), @ys) -> c_23(append^#(@xs, @ys))
, insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
c_7(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x),
#equal^#(@key1, @keyX))
, insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) ->
c_18(insert^#(@x, @ls))
, insert^#(@x, @l) -> c_8(insert#1^#(@x, @l, @x))
, insert#1^#(tuple#2(@valX, @keyX), @l, @x) ->
c_19(insert#2^#(@l, @keyX, @valX, @x))
, sortAll#1^#(::(@x, @xs)) -> c_13(sortAll#2^#(@x, @xs))
, insert#2^#(::(@l1, @ls), @keyX, @valX, @x) ->
c_11(insert#3^#(@l1, @keyX, @ls, @valX, @x))
, quicksort#1^#(::(@z, @zs)) ->
c_21(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs))
, splitqs^#(@pivot, @l) -> c_24(splitqs#1^#(@l, @pivot))
, splitqs#1^#(::(@x, @xs), @pivot) ->
c_30(splitqs#2^#(splitqs(@pivot, @xs), @pivot, @x),
splitqs^#(@pivot, @xs)) }
Weak DPs:
{ #equal^#(@x, @y) -> c_1(#eq^#(@x, @y))
, #eq^#(#pos(@x), #pos(@y)) -> c_31(#eq^#(@x, @y))
, #eq^#(#pos(@x), #0()) -> c_32()
, #eq^#(#pos(@x), #neg(@y)) -> c_33()
, #eq^#(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
c_34(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
#eq^#(@x_1, @y_1),
#eq^#(@x_2, @y_2))
, #eq^#(tuple#2(@x_1, @x_2), nil()) -> c_35()
, #eq^#(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> c_36()
, #eq^#(nil(), tuple#2(@y_1, @y_2)) -> c_37()
, #eq^#(nil(), nil()) -> c_38()
, #eq^#(nil(), ::(@y_1, @y_2)) -> c_39()
, #eq^#(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> c_40()
, #eq^#(::(@x_1, @x_2), nil()) -> c_41()
, #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
c_42(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
#eq^#(@x_1, @y_1),
#eq^#(@x_2, @y_2))
, #eq^#(#0(), #pos(@y)) -> c_43()
, #eq^#(#0(), #0()) -> c_44()
, #eq^#(#0(), #neg(@y)) -> c_45()
, #eq^#(#0(), #s(@y)) -> c_46()
, #eq^#(#neg(@x), #pos(@y)) -> c_47()
, #eq^#(#neg(@x), #0()) -> c_48()
, #eq^#(#neg(@x), #neg(@y)) -> c_49(#eq^#(@x, @y))
, #eq^#(#s(@x), #0()) -> c_50()
, #eq^#(#s(@x), #s(@y)) -> c_51(#eq^#(@x, @y))
, split#1^#(nil()) -> c_14()
, append#1^#(nil(), @ys) -> c_22()
, insert#4^#(#true(), @key1, @ls, @valX, @vals1, @x) -> c_17()
, sortAll#1^#(nil()) -> c_12()
, insert#2^#(nil(), @keyX, @valX, @x) -> c_10()
, #greater^#(@x, @y) ->
c_16(#ckgt^#(#compare(@x, @y)), #compare^#(@x, @y))
, #ckgt^#(#EQ()) -> c_52()
, #ckgt^#(#LT()) -> c_53()
, #ckgt^#(#GT()) -> c_54()
, #compare^#(#pos(@x), #pos(@y)) -> c_59(#compare^#(@x, @y))
, #compare^#(#pos(@x), #0()) -> c_60()
, #compare^#(#pos(@x), #neg(@y)) -> c_61()
, #compare^#(#0(), #pos(@y)) -> c_62()
, #compare^#(#0(), #0()) -> c_63()
, #compare^#(#0(), #neg(@y)) -> c_64()
, #compare^#(#0(), #s(@y)) -> c_65()
, #compare^#(#neg(@x), #pos(@y)) -> c_66()
, #compare^#(#neg(@x), #0()) -> c_67()
, #compare^#(#neg(@x), #neg(@y)) -> c_68(#compare^#(@y, @x))
, #compare^#(#s(@x), #0()) -> c_69()
, #compare^#(#s(@x), #s(@y)) -> c_70(#compare^#(@x, @y))
, quicksort#1^#(nil()) -> c_20()
, splitqs#1^#(nil(), @pivot) -> c_29()
, splitqs#3^#(#true(), @ls, @rs, @x) -> c_26()
, splitqs#3^#(#false(), @ls, @rs, @x) -> c_27()
, splitqs#2^#(tuple#2(@ls, @rs), @pivot, @x) ->
c_28(splitqs#3^#(#greater(@x, @pivot), @ls, @rs, @x),
#greater^#(@x, @pivot))
, #and^#(#true(), #true()) -> c_55()
, #and^#(#true(), #false()) -> c_56()
, #and^#(#false(), #true()) -> c_57()
, #and^#(#false(), #false()) -> c_58() }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, splitAndSort(@l) -> sortAll(split(@l))
, sortAll#2(tuple#2(@vals, @key), @xs) ->
::(tuple#2(quicksort(@vals), @key), sortAll(@xs))
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, sortAll(@l) -> sortAll#1(@l)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, sortAll#1(nil()) -> nil()
, sortAll#1(::(@x, @xs)) -> sortAll#2(@x, @xs)
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^6))
The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.
{ #equal^#(@x, @y) -> c_1(#eq^#(@x, @y))
, #eq^#(#pos(@x), #pos(@y)) -> c_31(#eq^#(@x, @y))
, #eq^#(#pos(@x), #0()) -> c_32()
, #eq^#(#pos(@x), #neg(@y)) -> c_33()
, #eq^#(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
c_34(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
#eq^#(@x_1, @y_1),
#eq^#(@x_2, @y_2))
, #eq^#(tuple#2(@x_1, @x_2), nil()) -> c_35()
, #eq^#(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> c_36()
, #eq^#(nil(), tuple#2(@y_1, @y_2)) -> c_37()
, #eq^#(nil(), nil()) -> c_38()
, #eq^#(nil(), ::(@y_1, @y_2)) -> c_39()
, #eq^#(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> c_40()
, #eq^#(::(@x_1, @x_2), nil()) -> c_41()
, #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
c_42(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
#eq^#(@x_1, @y_1),
#eq^#(@x_2, @y_2))
, #eq^#(#0(), #pos(@y)) -> c_43()
, #eq^#(#0(), #0()) -> c_44()
, #eq^#(#0(), #neg(@y)) -> c_45()
, #eq^#(#0(), #s(@y)) -> c_46()
, #eq^#(#neg(@x), #pos(@y)) -> c_47()
, #eq^#(#neg(@x), #0()) -> c_48()
, #eq^#(#neg(@x), #neg(@y)) -> c_49(#eq^#(@x, @y))
, #eq^#(#s(@x), #0()) -> c_50()
, #eq^#(#s(@x), #s(@y)) -> c_51(#eq^#(@x, @y))
, split#1^#(nil()) -> c_14()
, append#1^#(nil(), @ys) -> c_22()
, insert#4^#(#true(), @key1, @ls, @valX, @vals1, @x) -> c_17()
, sortAll#1^#(nil()) -> c_12()
, insert#2^#(nil(), @keyX, @valX, @x) -> c_10()
, #greater^#(@x, @y) ->
c_16(#ckgt^#(#compare(@x, @y)), #compare^#(@x, @y))
, #ckgt^#(#EQ()) -> c_52()
, #ckgt^#(#LT()) -> c_53()
, #ckgt^#(#GT()) -> c_54()
, #compare^#(#pos(@x), #pos(@y)) -> c_59(#compare^#(@x, @y))
, #compare^#(#pos(@x), #0()) -> c_60()
, #compare^#(#pos(@x), #neg(@y)) -> c_61()
, #compare^#(#0(), #pos(@y)) -> c_62()
, #compare^#(#0(), #0()) -> c_63()
, #compare^#(#0(), #neg(@y)) -> c_64()
, #compare^#(#0(), #s(@y)) -> c_65()
, #compare^#(#neg(@x), #pos(@y)) -> c_66()
, #compare^#(#neg(@x), #0()) -> c_67()
, #compare^#(#neg(@x), #neg(@y)) -> c_68(#compare^#(@y, @x))
, #compare^#(#s(@x), #0()) -> c_69()
, #compare^#(#s(@x), #s(@y)) -> c_70(#compare^#(@x, @y))
, quicksort#1^#(nil()) -> c_20()
, splitqs#1^#(nil(), @pivot) -> c_29()
, splitqs#3^#(#true(), @ls, @rs, @x) -> c_26()
, splitqs#3^#(#false(), @ls, @rs, @x) -> c_27()
, splitqs#2^#(tuple#2(@ls, @rs), @pivot, @x) ->
c_28(splitqs#3^#(#greater(@x, @pivot), @ls, @rs, @x),
#greater^#(@x, @pivot))
, #and^#(#true(), #true()) -> c_55()
, #and^#(#true(), #false()) -> c_56()
, #and^#(#false(), #true()) -> c_57()
, #and^#(#false(), #false()) -> c_58() }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^6)).
Strict DPs:
{ splitAndSort^#(@l) -> c_2(sortAll^#(split(@l)), split^#(@l))
, sortAll^#(@l) -> c_9(sortAll#1^#(@l))
, split^#(@l) -> c_5(split#1^#(@l))
, sortAll#2^#(tuple#2(@vals, @key), @xs) ->
c_3(quicksort^#(@vals), sortAll^#(@xs))
, quicksort^#(@l) -> c_25(quicksort#1^#(@l))
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))
, append^#(@l, @ys) -> c_6(append#1^#(@l, @ys))
, split#1^#(::(@x, @xs)) ->
c_15(insert^#(@x, split(@xs)), split^#(@xs))
, append#1^#(::(@x, @xs), @ys) -> c_23(append^#(@xs, @ys))
, insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
c_7(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x),
#equal^#(@key1, @keyX))
, insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) ->
c_18(insert^#(@x, @ls))
, insert^#(@x, @l) -> c_8(insert#1^#(@x, @l, @x))
, insert#1^#(tuple#2(@valX, @keyX), @l, @x) ->
c_19(insert#2^#(@l, @keyX, @valX, @x))
, sortAll#1^#(::(@x, @xs)) -> c_13(sortAll#2^#(@x, @xs))
, insert#2^#(::(@l1, @ls), @keyX, @valX, @x) ->
c_11(insert#3^#(@l1, @keyX, @ls, @valX, @x))
, quicksort#1^#(::(@z, @zs)) ->
c_21(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs))
, splitqs^#(@pivot, @l) -> c_24(splitqs#1^#(@l, @pivot))
, splitqs#1^#(::(@x, @xs), @pivot) ->
c_30(splitqs#2^#(splitqs(@pivot, @xs), @pivot, @x),
splitqs^#(@pivot, @xs)) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, splitAndSort(@l) -> sortAll(split(@l))
, sortAll#2(tuple#2(@vals, @key), @xs) ->
::(tuple#2(quicksort(@vals), @key), sortAll(@xs))
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, sortAll(@l) -> sortAll#1(@l)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, sortAll#1(nil()) -> nil()
, sortAll#1(::(@x, @xs)) -> sortAll#2(@x, @xs)
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^6))
Due to missing edges in the dependency-graph, the right-hand sides
of following rules could be simplified:
{ insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
c_7(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x),
#equal^#(@key1, @keyX))
, splitqs#1^#(::(@x, @xs), @pivot) ->
c_30(splitqs#2^#(splitqs(@pivot, @xs), @pivot, @x),
splitqs^#(@pivot, @xs)) }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^6)).
Strict DPs:
{ splitAndSort^#(@l) -> c_1(sortAll^#(split(@l)), split^#(@l))
, sortAll^#(@l) -> c_2(sortAll#1^#(@l))
, split^#(@l) -> c_3(split#1^#(@l))
, sortAll#2^#(tuple#2(@vals, @key), @xs) ->
c_4(quicksort^#(@vals), sortAll^#(@xs))
, quicksort^#(@l) -> c_5(quicksort#1^#(@l))
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
c_6(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))
, append^#(@l, @ys) -> c_7(append#1^#(@l, @ys))
, split#1^#(::(@x, @xs)) ->
c_8(insert^#(@x, split(@xs)), split^#(@xs))
, append#1^#(::(@x, @xs), @ys) -> c_9(append^#(@xs, @ys))
, insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
c_10(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x))
, insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) ->
c_11(insert^#(@x, @ls))
, insert^#(@x, @l) -> c_12(insert#1^#(@x, @l, @x))
, insert#1^#(tuple#2(@valX, @keyX), @l, @x) ->
c_13(insert#2^#(@l, @keyX, @valX, @x))
, sortAll#1^#(::(@x, @xs)) -> c_14(sortAll#2^#(@x, @xs))
, insert#2^#(::(@l1, @ls), @keyX, @valX, @x) ->
c_15(insert#3^#(@l1, @keyX, @ls, @valX, @x))
, quicksort#1^#(::(@z, @zs)) ->
c_16(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs))
, splitqs^#(@pivot, @l) -> c_17(splitqs#1^#(@l, @pivot))
, splitqs#1^#(::(@x, @xs), @pivot) ->
c_18(splitqs^#(@pivot, @xs)) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, splitAndSort(@l) -> sortAll(split(@l))
, sortAll#2(tuple#2(@vals, @key), @xs) ->
::(tuple#2(quicksort(@vals), @key), sortAll(@xs))
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, sortAll(@l) -> sortAll#1(@l)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, sortAll#1(nil()) -> nil()
, sortAll#1(::(@x, @xs)) -> sortAll#2(@x, @xs)
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^6))
We replace rewrite rules by usable rules:
Weak Usable Rules:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^6)).
Strict DPs:
{ splitAndSort^#(@l) -> c_1(sortAll^#(split(@l)), split^#(@l))
, sortAll^#(@l) -> c_2(sortAll#1^#(@l))
, split^#(@l) -> c_3(split#1^#(@l))
, sortAll#2^#(tuple#2(@vals, @key), @xs) ->
c_4(quicksort^#(@vals), sortAll^#(@xs))
, quicksort^#(@l) -> c_5(quicksort#1^#(@l))
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
c_6(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))
, append^#(@l, @ys) -> c_7(append#1^#(@l, @ys))
, split#1^#(::(@x, @xs)) ->
c_8(insert^#(@x, split(@xs)), split^#(@xs))
, append#1^#(::(@x, @xs), @ys) -> c_9(append^#(@xs, @ys))
, insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
c_10(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x))
, insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) ->
c_11(insert^#(@x, @ls))
, insert^#(@x, @l) -> c_12(insert#1^#(@x, @l, @x))
, insert#1^#(tuple#2(@valX, @keyX), @l, @x) ->
c_13(insert#2^#(@l, @keyX, @valX, @x))
, sortAll#1^#(::(@x, @xs)) -> c_14(sortAll#2^#(@x, @xs))
, insert#2^#(::(@l1, @ls), @keyX, @valX, @x) ->
c_15(insert#3^#(@l1, @keyX, @ls, @valX, @x))
, quicksort#1^#(::(@z, @zs)) ->
c_16(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs))
, splitqs^#(@pivot, @l) -> c_17(splitqs#1^#(@l, @pivot))
, splitqs#1^#(::(@x, @xs), @pivot) ->
c_18(splitqs^#(@pivot, @xs)) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^6))
We analyse the complexity of following sub-problems (R) and (S).
Problem (S) is obtained from the input problem by shifting strict
rules from (R) into the weak component:
Problem (R):
------------
Strict DPs:
{ splitAndSort^#(@l) -> c_1(sortAll^#(split(@l)), split^#(@l))
, split^#(@l) -> c_3(split#1^#(@l))
, split#1^#(::(@x, @xs)) ->
c_8(insert^#(@x, split(@xs)), split^#(@xs))
, insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
c_10(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x))
, insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) ->
c_11(insert^#(@x, @ls))
, insert^#(@x, @l) -> c_12(insert#1^#(@x, @l, @x))
, insert#1^#(tuple#2(@valX, @keyX), @l, @x) ->
c_13(insert#2^#(@l, @keyX, @valX, @x))
, insert#2^#(::(@l1, @ls), @keyX, @valX, @x) ->
c_15(insert#3^#(@l1, @keyX, @ls, @valX, @x)) }
Weak DPs:
{ sortAll^#(@l) -> c_2(sortAll#1^#(@l))
, sortAll#2^#(tuple#2(@vals, @key), @xs) ->
c_4(quicksort^#(@vals), sortAll^#(@xs))
, quicksort^#(@l) -> c_5(quicksort#1^#(@l))
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
c_6(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))
, append^#(@l, @ys) -> c_7(append#1^#(@l, @ys))
, append#1^#(::(@x, @xs), @ys) -> c_9(append^#(@xs, @ys))
, sortAll#1^#(::(@x, @xs)) -> c_14(sortAll#2^#(@x, @xs))
, quicksort#1^#(::(@z, @zs)) ->
c_16(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs))
, splitqs^#(@pivot, @l) -> c_17(splitqs#1^#(@l, @pivot))
, splitqs#1^#(::(@x, @xs), @pivot) ->
c_18(splitqs^#(@pivot, @xs)) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
StartTerms: basic terms
Strategy: innermost
Problem (S):
------------
Strict DPs:
{ sortAll^#(@l) -> c_2(sortAll#1^#(@l))
, sortAll#2^#(tuple#2(@vals, @key), @xs) ->
c_4(quicksort^#(@vals), sortAll^#(@xs))
, quicksort^#(@l) -> c_5(quicksort#1^#(@l))
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
c_6(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))
, append^#(@l, @ys) -> c_7(append#1^#(@l, @ys))
, append#1^#(::(@x, @xs), @ys) -> c_9(append^#(@xs, @ys))
, sortAll#1^#(::(@x, @xs)) -> c_14(sortAll#2^#(@x, @xs))
, quicksort#1^#(::(@z, @zs)) ->
c_16(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs))
, splitqs^#(@pivot, @l) -> c_17(splitqs#1^#(@l, @pivot))
, splitqs#1^#(::(@x, @xs), @pivot) ->
c_18(splitqs^#(@pivot, @xs)) }
Weak DPs:
{ splitAndSort^#(@l) -> c_1(sortAll^#(split(@l)), split^#(@l))
, split^#(@l) -> c_3(split#1^#(@l))
, split#1^#(::(@x, @xs)) ->
c_8(insert^#(@x, split(@xs)), split^#(@xs))
, insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
c_10(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x))
, insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) ->
c_11(insert^#(@x, @ls))
, insert^#(@x, @l) -> c_12(insert#1^#(@x, @l, @x))
, insert#1^#(tuple#2(@valX, @keyX), @l, @x) ->
c_13(insert#2^#(@l, @keyX, @valX, @x))
, insert#2^#(::(@l1, @ls), @keyX, @valX, @x) ->
c_15(insert#3^#(@l1, @keyX, @ls, @valX, @x)) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
StartTerms: basic terms
Strategy: innermost
Overall, the transformation results in the following sub-problem(s):
Generated new problems:
-----------------------
R) Strict DPs:
{ splitAndSort^#(@l) -> c_1(sortAll^#(split(@l)), split^#(@l))
, split^#(@l) -> c_3(split#1^#(@l))
, split#1^#(::(@x, @xs)) ->
c_8(insert^#(@x, split(@xs)), split^#(@xs))
, insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
c_10(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x))
, insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) ->
c_11(insert^#(@x, @ls))
, insert^#(@x, @l) -> c_12(insert#1^#(@x, @l, @x))
, insert#1^#(tuple#2(@valX, @keyX), @l, @x) ->
c_13(insert#2^#(@l, @keyX, @valX, @x))
, insert#2^#(::(@l1, @ls), @keyX, @valX, @x) ->
c_15(insert#3^#(@l1, @keyX, @ls, @valX, @x)) }
Weak DPs:
{ sortAll^#(@l) -> c_2(sortAll#1^#(@l))
, sortAll#2^#(tuple#2(@vals, @key), @xs) ->
c_4(quicksort^#(@vals), sortAll^#(@xs))
, quicksort^#(@l) -> c_5(quicksort#1^#(@l))
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
c_6(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))
, append^#(@l, @ys) -> c_7(append#1^#(@l, @ys))
, append#1^#(::(@x, @xs), @ys) -> c_9(append^#(@xs, @ys))
, sortAll#1^#(::(@x, @xs)) -> c_14(sortAll#2^#(@x, @xs))
, quicksort#1^#(::(@z, @zs)) ->
c_16(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs))
, splitqs^#(@pivot, @l) -> c_17(splitqs#1^#(@l, @pivot))
, splitqs#1^#(::(@x, @xs), @pivot) ->
c_18(splitqs^#(@pivot, @xs)) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
StartTerms: basic terms
Strategy: innermost
This problem was proven YES(O(1),O(n^2)).
S) Strict DPs:
{ sortAll^#(@l) -> c_2(sortAll#1^#(@l))
, sortAll#2^#(tuple#2(@vals, @key), @xs) ->
c_4(quicksort^#(@vals), sortAll^#(@xs))
, quicksort^#(@l) -> c_5(quicksort#1^#(@l))
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
c_6(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))
, append^#(@l, @ys) -> c_7(append#1^#(@l, @ys))
, append#1^#(::(@x, @xs), @ys) -> c_9(append^#(@xs, @ys))
, sortAll#1^#(::(@x, @xs)) -> c_14(sortAll#2^#(@x, @xs))
, quicksort#1^#(::(@z, @zs)) ->
c_16(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs))
, splitqs^#(@pivot, @l) -> c_17(splitqs#1^#(@l, @pivot))
, splitqs#1^#(::(@x, @xs), @pivot) ->
c_18(splitqs^#(@pivot, @xs)) }
Weak DPs:
{ splitAndSort^#(@l) -> c_1(sortAll^#(split(@l)), split^#(@l))
, split^#(@l) -> c_3(split#1^#(@l))
, split#1^#(::(@x, @xs)) ->
c_8(insert^#(@x, split(@xs)), split^#(@xs))
, insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
c_10(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x))
, insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) ->
c_11(insert^#(@x, @ls))
, insert^#(@x, @l) -> c_12(insert#1^#(@x, @l, @x))
, insert#1^#(tuple#2(@valX, @keyX), @l, @x) ->
c_13(insert#2^#(@l, @keyX, @valX, @x))
, insert#2^#(::(@l1, @ls), @keyX, @valX, @x) ->
c_15(insert#3^#(@l1, @keyX, @ls, @valX, @x)) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
StartTerms: basic terms
Strategy: innermost
This problem was proven YES(O(1),O(n^6)).
Proofs for generated problems:
------------------------------
R) We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).
Strict DPs:
{ splitAndSort^#(@l) -> c_1(sortAll^#(split(@l)), split^#(@l))
, split^#(@l) -> c_3(split#1^#(@l))
, split#1^#(::(@x, @xs)) ->
c_8(insert^#(@x, split(@xs)), split^#(@xs))
, insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
c_10(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x))
, insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) ->
c_11(insert^#(@x, @ls))
, insert^#(@x, @l) -> c_12(insert#1^#(@x, @l, @x))
, insert#1^#(tuple#2(@valX, @keyX), @l, @x) ->
c_13(insert#2^#(@l, @keyX, @valX, @x))
, insert#2^#(::(@l1, @ls), @keyX, @valX, @x) ->
c_15(insert#3^#(@l1, @keyX, @ls, @valX, @x)) }
Weak DPs:
{ sortAll^#(@l) -> c_2(sortAll#1^#(@l))
, sortAll#2^#(tuple#2(@vals, @key), @xs) ->
c_4(quicksort^#(@vals), sortAll^#(@xs))
, quicksort^#(@l) -> c_5(quicksort#1^#(@l))
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
c_6(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))
, append^#(@l, @ys) -> c_7(append#1^#(@l, @ys))
, append#1^#(::(@x, @xs), @ys) -> c_9(append^#(@xs, @ys))
, sortAll#1^#(::(@x, @xs)) -> c_14(sortAll#2^#(@x, @xs))
, quicksort#1^#(::(@z, @zs)) ->
c_16(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs))
, splitqs^#(@pivot, @l) -> c_17(splitqs#1^#(@l, @pivot))
, splitqs#1^#(::(@x, @xs), @pivot) ->
c_18(splitqs^#(@pivot, @xs)) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^2))
The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.
{ sortAll^#(@l) -> c_2(sortAll#1^#(@l))
, sortAll#2^#(tuple#2(@vals, @key), @xs) ->
c_4(quicksort^#(@vals), sortAll^#(@xs))
, quicksort^#(@l) -> c_5(quicksort#1^#(@l))
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
c_6(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))
, append^#(@l, @ys) -> c_7(append#1^#(@l, @ys))
, append#1^#(::(@x, @xs), @ys) -> c_9(append^#(@xs, @ys))
, sortAll#1^#(::(@x, @xs)) -> c_14(sortAll#2^#(@x, @xs))
, quicksort#1^#(::(@z, @zs)) ->
c_16(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs))
, splitqs^#(@pivot, @l) -> c_17(splitqs#1^#(@l, @pivot))
, splitqs#1^#(::(@x, @xs), @pivot) ->
c_18(splitqs^#(@pivot, @xs)) }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).
Strict DPs:
{ splitAndSort^#(@l) -> c_1(sortAll^#(split(@l)), split^#(@l))
, split^#(@l) -> c_3(split#1^#(@l))
, split#1^#(::(@x, @xs)) ->
c_8(insert^#(@x, split(@xs)), split^#(@xs))
, insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
c_10(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x))
, insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) ->
c_11(insert^#(@x, @ls))
, insert^#(@x, @l) -> c_12(insert#1^#(@x, @l, @x))
, insert#1^#(tuple#2(@valX, @keyX), @l, @x) ->
c_13(insert#2^#(@l, @keyX, @valX, @x))
, insert#2^#(::(@l1, @ls), @keyX, @valX, @x) ->
c_15(insert#3^#(@l1, @keyX, @ls, @valX, @x)) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^2))
Due to missing edges in the dependency-graph, the right-hand sides
of following rules could be simplified:
{ splitAndSort^#(@l) -> c_1(sortAll^#(split(@l)), split^#(@l)) }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).
Strict DPs:
{ splitAndSort^#(@l) -> c_1(split^#(@l))
, split^#(@l) -> c_2(split#1^#(@l))
, split#1^#(::(@x, @xs)) ->
c_3(insert^#(@x, split(@xs)), split^#(@xs))
, insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
c_4(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x))
, insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) ->
c_5(insert^#(@x, @ls))
, insert^#(@x, @l) -> c_6(insert#1^#(@x, @l, @x))
, insert#1^#(tuple#2(@valX, @keyX), @l, @x) ->
c_7(insert#2^#(@l, @keyX, @valX, @x))
, insert#2^#(::(@l1, @ls), @keyX, @valX, @x) ->
c_8(insert#3^#(@l1, @keyX, @ls, @valX, @x)) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^2))
We replace rewrite rules by usable rules:
Weak Usable Rules:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, split(@l) -> split#1(@l)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x) }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).
Strict DPs:
{ splitAndSort^#(@l) -> c_1(split^#(@l))
, split^#(@l) -> c_2(split#1^#(@l))
, split#1^#(::(@x, @xs)) ->
c_3(insert^#(@x, split(@xs)), split^#(@xs))
, insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
c_4(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x))
, insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) ->
c_5(insert^#(@x, @ls))
, insert^#(@x, @l) -> c_6(insert#1^#(@x, @l, @x))
, insert#1^#(tuple#2(@valX, @keyX), @l, @x) ->
c_7(insert#2^#(@l, @keyX, @valX, @x))
, insert#2^#(::(@l1, @ls), @keyX, @valX, @x) ->
c_8(insert#3^#(@l1, @keyX, @ls, @valX, @x)) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, split(@l) -> split#1(@l)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^2))
We decompose the input problem according to the dependency graph
into the upper component
{ splitAndSort^#(@l) -> c_1(split^#(@l))
, split^#(@l) -> c_2(split#1^#(@l))
, split#1^#(::(@x, @xs)) ->
c_3(insert^#(@x, split(@xs)), split^#(@xs)) }
and lower component
{ insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
c_4(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x))
, insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) ->
c_5(insert^#(@x, @ls))
, insert^#(@x, @l) -> c_6(insert#1^#(@x, @l, @x))
, insert#1^#(tuple#2(@valX, @keyX), @l, @x) ->
c_7(insert#2^#(@l, @keyX, @valX, @x))
, insert#2^#(::(@l1, @ls), @keyX, @valX, @x) ->
c_8(insert#3^#(@l1, @keyX, @ls, @valX, @x)) }
Further, following extension rules are added to the lower
component.
{ splitAndSort^#(@l) -> split^#(@l)
, split^#(@l) -> split#1^#(@l)
, split#1^#(::(@x, @xs)) -> split^#(@xs)
, split#1^#(::(@x, @xs)) -> insert^#(@x, split(@xs)) }
TcT solves the upper component with certificate YES(O(1),O(n^1)).
Sub-proof:
----------
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).
Strict DPs:
{ splitAndSort^#(@l) -> c_1(split^#(@l))
, split^#(@l) -> c_2(split#1^#(@l))
, split#1^#(::(@x, @xs)) ->
c_3(insert^#(@x, split(@xs)), split^#(@xs)) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, split(@l) -> split#1(@l)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^1))
We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.
DPs:
{ 1: splitAndSort^#(@l) -> c_1(split^#(@l))
, 3: split#1^#(::(@x, @xs)) ->
c_3(insert^#(@x, split(@xs)), split^#(@xs)) }
Trs: { split(@l) -> split#1(@l) }
Sub-proof:
----------
The following argument positions are usable:
Uargs(c_1) = {1}, Uargs(c_2) = {1}, Uargs(c_3) = {1, 2}
TcT has computed the following constructor-based matrix
interpretation satisfying not(EDA).
[#equal](x1, x2) = [0]
[#eq](x1, x2) = [0]
[split](x1) = [1]
[#true] = [0]
[insert#3](x1, x2, x3, x4, x5) = [4] x5 + [0]
[insert](x1, x2) = [0]
[#pos](x1) = [1] x1 + [0]
[insert#2](x1, x2, x3, x4) = [2] x2 + [6] x3 + [0]
[#and](x1, x2) = [0]
[tuple#2](x1, x2) = [1] x1 + [0]
[nil] = [0]
[split#1](x1) = [0]
[insert#4](x1, x2, x3, x4, x5, x6) = [1] x2 + [5] x5 + [0]
[insert#1](x1, x2, x3) = [1] x3 + [0]
[#false] = [0]
[::](x1, x2) = [1] x1 + [1] x2 + [4]
[#0] = [0]
[#neg](x1) = [1] x1 + [0]
[#s](x1) = [1] x1 + [0]
[splitAndSort^#](x1) = [7] x1 + [7]
[split^#](x1) = [1] x1 + [0]
[split#1^#](x1) = [1] x1 + [0]
[insert^#](x1, x2) = [0]
[c_1](x1) = [4] x1 + [4]
[c_2](x1) = [1] x1 + [0]
[c_3](x1, x2) = [5] x1 + [1] x2 + [1]
The order satisfies the following ordering constraints:
[#equal(@x, @y)] = [0]
>= [0]
= [#eq(@x, @y)]
[#eq(#pos(@x), #pos(@y))] = [0]
>= [0]
= [#eq(@x, @y)]
[#eq(#pos(@x), #0())] = [0]
>= [0]
= [#false()]
[#eq(#pos(@x), #neg(@y))] = [0]
>= [0]
= [#false()]
[#eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [0]
>= [0]
= [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))]
[#eq(tuple#2(@x_1, @x_2), nil())] = [0]
>= [0]
= [#false()]
[#eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2))] = [0]
>= [0]
= [#false()]
[#eq(nil(), tuple#2(@y_1, @y_2))] = [0]
>= [0]
= [#false()]
[#eq(nil(), nil())] = [0]
>= [0]
= [#true()]
[#eq(nil(), ::(@y_1, @y_2))] = [0]
>= [0]
= [#false()]
[#eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [0]
>= [0]
= [#false()]
[#eq(::(@x_1, @x_2), nil())] = [0]
>= [0]
= [#false()]
[#eq(::(@x_1, @x_2), ::(@y_1, @y_2))] = [0]
>= [0]
= [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))]
[#eq(#0(), #pos(@y))] = [0]
>= [0]
= [#false()]
[#eq(#0(), #0())] = [0]
>= [0]
= [#true()]
[#eq(#0(), #neg(@y))] = [0]
>= [0]
= [#false()]
[#eq(#0(), #s(@y))] = [0]
>= [0]
= [#false()]
[#eq(#neg(@x), #pos(@y))] = [0]
>= [0]
= [#false()]
[#eq(#neg(@x), #0())] = [0]
>= [0]
= [#false()]
[#eq(#neg(@x), #neg(@y))] = [0]
>= [0]
= [#eq(@x, @y)]
[#eq(#s(@x), #0())] = [0]
>= [0]
= [#false()]
[#eq(#s(@x), #s(@y))] = [0]
>= [0]
= [#eq(@x, @y)]
[split(@l)] = [1]
> [0]
= [split#1(@l)]
[insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x)] = [4] @x + [0]
? [5] @vals1 + [1] @key1 + [0]
= [insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)]
[insert(@x, @l)] = [0]
? [1] @x + [0]
= [insert#1(@x, @l, @x)]
[insert#2(nil(), @keyX, @valX, @x)] = [6] @valX + [2] @keyX + [0]
? [1] @valX + [8]
= [::(tuple#2(::(@valX, nil()), @keyX), nil())]
[insert#2(::(@l1, @ls), @keyX, @valX, @x)] = [6] @valX + [2] @keyX + [0]
? [4] @x + [0]
= [insert#3(@l1, @keyX, @ls, @valX, @x)]
[#and(#true(), #true())] = [0]
>= [0]
= [#true()]
[#and(#true(), #false())] = [0]
>= [0]
= [#false()]
[#and(#false(), #true())] = [0]
>= [0]
= [#false()]
[#and(#false(), #false())] = [0]
>= [0]
= [#false()]
[split#1(nil())] = [0]
>= [0]
= [nil()]
[split#1(::(@x, @xs))] = [0]
>= [0]
= [insert(@x, split(@xs))]
[insert#4(#true(), @key1, @ls, @valX, @vals1, @x)] = [5] @vals1 + [1] @key1 + [0]
? [1] @valX + [1] @ls + [1] @vals1 + [8]
= [::(tuple#2(::(@valX, @vals1), @key1), @ls)]
[insert#4(#false(), @key1, @ls, @valX, @vals1, @x)] = [5] @vals1 + [1] @key1 + [0]
? [1] @vals1 + [4]
= [::(tuple#2(@vals1, @key1), insert(@x, @ls))]
[insert#1(tuple#2(@valX, @keyX), @l, @x)] = [1] @x + [0]
? [6] @valX + [2] @keyX + [0]
= [insert#2(@l, @keyX, @valX, @x)]
[splitAndSort^#(@l)] = [7] @l + [7]
> [4] @l + [4]
= [c_1(split^#(@l))]
[split^#(@l)] = [1] @l + [0]
>= [1] @l + [0]
= [c_2(split#1^#(@l))]
[split#1^#(::(@x, @xs))] = [1] @x + [1] @xs + [4]
> [1] @xs + [1]
= [c_3(insert^#(@x, split(@xs)), split^#(@xs))]
We return to the main proof. Consider the set of all dependency
pairs
:
{ 1: splitAndSort^#(@l) -> c_1(split^#(@l))
, 2: split^#(@l) -> c_2(split#1^#(@l))
, 3: split#1^#(::(@x, @xs)) ->
c_3(insert^#(@x, split(@xs)), split^#(@xs)) }
Processor 'matrix interpretation of dimension 1' induces the
complexity certificate YES(?,O(n^1)) on application of dependency
pairs {1,3}. These cover all (indirect) predecessors of dependency
pairs {1,2,3}, their number of application is equally bounded. The
dependency pairs are shifted into the weak component.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).
Weak DPs:
{ splitAndSort^#(@l) -> c_1(split^#(@l))
, split^#(@l) -> c_2(split#1^#(@l))
, split#1^#(::(@x, @xs)) ->
c_3(insert^#(@x, split(@xs)), split^#(@xs)) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, split(@l) -> split#1(@l)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(1))
The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.
{ splitAndSort^#(@l) -> c_1(split^#(@l))
, split^#(@l) -> c_2(split#1^#(@l))
, split#1^#(::(@x, @xs)) ->
c_3(insert^#(@x, split(@xs)), split^#(@xs)) }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, split(@l) -> split#1(@l)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(1))
No rule is usable, rules are removed from the input problem.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).
Rules: Empty
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(1))
Empty rules are trivially bounded
We return to the main proof.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).
Strict DPs:
{ insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
c_4(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x))
, insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) ->
c_5(insert^#(@x, @ls))
, insert^#(@x, @l) -> c_6(insert#1^#(@x, @l, @x))
, insert#1^#(tuple#2(@valX, @keyX), @l, @x) ->
c_7(insert#2^#(@l, @keyX, @valX, @x))
, insert#2^#(::(@l1, @ls), @keyX, @valX, @x) ->
c_8(insert#3^#(@l1, @keyX, @ls, @valX, @x)) }
Weak DPs:
{ splitAndSort^#(@l) -> split^#(@l)
, split^#(@l) -> split#1^#(@l)
, split#1^#(::(@x, @xs)) -> split^#(@xs)
, split#1^#(::(@x, @xs)) -> insert^#(@x, split(@xs)) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, split(@l) -> split#1(@l)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^1))
We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.
DPs:
{ 5: insert#2^#(::(@l1, @ls), @keyX, @valX, @x) ->
c_8(insert#3^#(@l1, @keyX, @ls, @valX, @x))
, 8: split#1^#(::(@x, @xs)) -> split^#(@xs)
, 9: split#1^#(::(@x, @xs)) -> insert^#(@x, split(@xs)) }
Trs:
{ split#1(nil()) -> nil()
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls) }
Sub-proof:
----------
The following argument positions are usable:
Uargs(c_4) = {1}, Uargs(c_5) = {1}, Uargs(c_6) = {1},
Uargs(c_7) = {1}, Uargs(c_8) = {1}
TcT has computed the following constructor-based matrix
interpretation satisfying not(EDA).
[#equal](x1, x2) = [0]
[#eq](x1, x2) = [0]
[split](x1) = [1] x1 + [4]
[#true] = [0]
[insert#3](x1, x2, x3, x4, x5) = [1] x3 + [2]
[insert](x1, x2) = [1] x2 + [1]
[#pos](x1) = [1] x1 + [6]
[insert#2](x1, x2, x3, x4) = [1] x1 + [1]
[#and](x1, x2) = [0]
[tuple#2](x1, x2) = [1] x1 + [0]
[nil] = [4]
[split#1](x1) = [1] x1 + [4]
[insert#4](x1, x2, x3, x4, x5, x6) = [1] x1 + [1] x3 + [2]
[insert#1](x1, x2, x3) = [1] x2 + [1]
[#false] = [0]
[::](x1, x2) = [1] x2 + [1]
[#0] = [1]
[#neg](x1) = [1] x1 + [6]
[#s](x1) = [1] x1 + [6]
[splitAndSort^#](x1) = [7] x1 + [7]
[split^#](x1) = [6] x1 + [7]
[split#1^#](x1) = [6] x1 + [7]
[insert#3^#](x1, x2, x3, x4, x5) = [3] x3 + [0]
[insert#4^#](x1, x2, x3, x4, x5, x6) = [3] x3 + [0]
[insert^#](x1, x2) = [3] x2 + [0]
[insert#1^#](x1, x2, x3) = [3] x2 + [0]
[insert#2^#](x1, x2, x3, x4) = [3] x1 + [0]
[c_4](x1) = [1] x1 + [0]
[c_5](x1) = [1] x1 + [0]
[c_6](x1) = [1] x1 + [0]
[c_7](x1) = [1] x1 + [0]
[c_8](x1) = [1] x1 + [1]
The order satisfies the following ordering constraints:
[#equal(@x, @y)] = [0]
>= [0]
= [#eq(@x, @y)]
[#eq(#pos(@x), #pos(@y))] = [0]
>= [0]
= [#eq(@x, @y)]
[#eq(#pos(@x), #0())] = [0]
>= [0]
= [#false()]
[#eq(#pos(@x), #neg(@y))] = [0]
>= [0]
= [#false()]
[#eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [0]
>= [0]
= [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))]
[#eq(tuple#2(@x_1, @x_2), nil())] = [0]
>= [0]
= [#false()]
[#eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2))] = [0]
>= [0]
= [#false()]
[#eq(nil(), tuple#2(@y_1, @y_2))] = [0]
>= [0]
= [#false()]
[#eq(nil(), nil())] = [0]
>= [0]
= [#true()]
[#eq(nil(), ::(@y_1, @y_2))] = [0]
>= [0]
= [#false()]
[#eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [0]
>= [0]
= [#false()]
[#eq(::(@x_1, @x_2), nil())] = [0]
>= [0]
= [#false()]
[#eq(::(@x_1, @x_2), ::(@y_1, @y_2))] = [0]
>= [0]
= [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))]
[#eq(#0(), #pos(@y))] = [0]
>= [0]
= [#false()]
[#eq(#0(), #0())] = [0]
>= [0]
= [#true()]
[#eq(#0(), #neg(@y))] = [0]
>= [0]
= [#false()]
[#eq(#0(), #s(@y))] = [0]
>= [0]
= [#false()]
[#eq(#neg(@x), #pos(@y))] = [0]
>= [0]
= [#false()]
[#eq(#neg(@x), #0())] = [0]
>= [0]
= [#false()]
[#eq(#neg(@x), #neg(@y))] = [0]
>= [0]
= [#eq(@x, @y)]
[#eq(#s(@x), #0())] = [0]
>= [0]
= [#false()]
[#eq(#s(@x), #s(@y))] = [0]
>= [0]
= [#eq(@x, @y)]
[split(@l)] = [1] @l + [4]
>= [1] @l + [4]
= [split#1(@l)]
[insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x)] = [1] @ls + [2]
>= [1] @ls + [2]
= [insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)]
[insert(@x, @l)] = [1] @l + [1]
>= [1] @l + [1]
= [insert#1(@x, @l, @x)]
[insert#2(nil(), @keyX, @valX, @x)] = [5]
>= [5]
= [::(tuple#2(::(@valX, nil()), @keyX), nil())]
[insert#2(::(@l1, @ls), @keyX, @valX, @x)] = [1] @ls + [2]
>= [1] @ls + [2]
= [insert#3(@l1, @keyX, @ls, @valX, @x)]
[#and(#true(), #true())] = [0]
>= [0]
= [#true()]
[#and(#true(), #false())] = [0]
>= [0]
= [#false()]
[#and(#false(), #true())] = [0]
>= [0]
= [#false()]
[#and(#false(), #false())] = [0]
>= [0]
= [#false()]
[split#1(nil())] = [8]
> [4]
= [nil()]
[split#1(::(@x, @xs))] = [1] @xs + [5]
>= [1] @xs + [5]
= [insert(@x, split(@xs))]
[insert#4(#true(), @key1, @ls, @valX, @vals1, @x)] = [1] @ls + [2]
> [1] @ls + [1]
= [::(tuple#2(::(@valX, @vals1), @key1), @ls)]
[insert#4(#false(), @key1, @ls, @valX, @vals1, @x)] = [1] @ls + [2]
>= [1] @ls + [2]
= [::(tuple#2(@vals1, @key1), insert(@x, @ls))]
[insert#1(tuple#2(@valX, @keyX), @l, @x)] = [1] @l + [1]
>= [1] @l + [1]
= [insert#2(@l, @keyX, @valX, @x)]
[splitAndSort^#(@l)] = [7] @l + [7]
>= [6] @l + [7]
= [split^#(@l)]
[split^#(@l)] = [6] @l + [7]
>= [6] @l + [7]
= [split#1^#(@l)]
[split#1^#(::(@x, @xs))] = [6] @xs + [13]
> [6] @xs + [7]
= [split^#(@xs)]
[split#1^#(::(@x, @xs))] = [6] @xs + [13]
> [3] @xs + [12]
= [insert^#(@x, split(@xs))]
[insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x)] = [3] @ls + [0]
>= [3] @ls + [0]
= [c_4(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x))]
[insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x)] = [3] @ls + [0]
>= [3] @ls + [0]
= [c_5(insert^#(@x, @ls))]
[insert^#(@x, @l)] = [3] @l + [0]
>= [3] @l + [0]
= [c_6(insert#1^#(@x, @l, @x))]
[insert#1^#(tuple#2(@valX, @keyX), @l, @x)] = [3] @l + [0]
>= [3] @l + [0]
= [c_7(insert#2^#(@l, @keyX, @valX, @x))]
[insert#2^#(::(@l1, @ls), @keyX, @valX, @x)] = [3] @ls + [3]
> [3] @ls + [1]
= [c_8(insert#3^#(@l1, @keyX, @ls, @valX, @x))]
We return to the main proof. Consider the set of all dependency
pairs
:
{ 1: insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
c_4(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x))
, 2: insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) ->
c_5(insert^#(@x, @ls))
, 3: insert^#(@x, @l) -> c_6(insert#1^#(@x, @l, @x))
, 4: insert#1^#(tuple#2(@valX, @keyX), @l, @x) ->
c_7(insert#2^#(@l, @keyX, @valX, @x))
, 5: insert#2^#(::(@l1, @ls), @keyX, @valX, @x) ->
c_8(insert#3^#(@l1, @keyX, @ls, @valX, @x))
, 6: splitAndSort^#(@l) -> split^#(@l)
, 7: split^#(@l) -> split#1^#(@l)
, 8: split#1^#(::(@x, @xs)) -> split^#(@xs)
, 9: split#1^#(::(@x, @xs)) -> insert^#(@x, split(@xs)) }
Processor 'matrix interpretation of dimension 1' induces the
complexity certificate YES(?,O(n^1)) on application of dependency
pairs {5,8,9}. These cover all (indirect) predecessors of
dependency pairs {1,2,3,4,5,6,7,8,9}, their number of application
is equally bounded. The dependency pairs are shifted into the weak
component.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).
Weak DPs:
{ splitAndSort^#(@l) -> split^#(@l)
, split^#(@l) -> split#1^#(@l)
, split#1^#(::(@x, @xs)) -> split^#(@xs)
, split#1^#(::(@x, @xs)) -> insert^#(@x, split(@xs))
, insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
c_4(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x))
, insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) ->
c_5(insert^#(@x, @ls))
, insert^#(@x, @l) -> c_6(insert#1^#(@x, @l, @x))
, insert#1^#(tuple#2(@valX, @keyX), @l, @x) ->
c_7(insert#2^#(@l, @keyX, @valX, @x))
, insert#2^#(::(@l1, @ls), @keyX, @valX, @x) ->
c_8(insert#3^#(@l1, @keyX, @ls, @valX, @x)) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, split(@l) -> split#1(@l)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(1))
The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.
{ splitAndSort^#(@l) -> split^#(@l)
, split^#(@l) -> split#1^#(@l)
, split#1^#(::(@x, @xs)) -> split^#(@xs)
, split#1^#(::(@x, @xs)) -> insert^#(@x, split(@xs))
, insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
c_4(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x))
, insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) ->
c_5(insert^#(@x, @ls))
, insert^#(@x, @l) -> c_6(insert#1^#(@x, @l, @x))
, insert#1^#(tuple#2(@valX, @keyX), @l, @x) ->
c_7(insert#2^#(@l, @keyX, @valX, @x))
, insert#2^#(::(@l1, @ls), @keyX, @valX, @x) ->
c_8(insert#3^#(@l1, @keyX, @ls, @valX, @x)) }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, split(@l) -> split#1(@l)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(1))
No rule is usable, rules are removed from the input problem.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).
Rules: Empty
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(1))
Empty rules are trivially bounded
S) We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^6)).
Strict DPs:
{ sortAll^#(@l) -> c_2(sortAll#1^#(@l))
, sortAll#2^#(tuple#2(@vals, @key), @xs) ->
c_4(quicksort^#(@vals), sortAll^#(@xs))
, quicksort^#(@l) -> c_5(quicksort#1^#(@l))
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
c_6(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))
, append^#(@l, @ys) -> c_7(append#1^#(@l, @ys))
, append#1^#(::(@x, @xs), @ys) -> c_9(append^#(@xs, @ys))
, sortAll#1^#(::(@x, @xs)) -> c_14(sortAll#2^#(@x, @xs))
, quicksort#1^#(::(@z, @zs)) ->
c_16(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs))
, splitqs^#(@pivot, @l) -> c_17(splitqs#1^#(@l, @pivot))
, splitqs#1^#(::(@x, @xs), @pivot) ->
c_18(splitqs^#(@pivot, @xs)) }
Weak DPs:
{ splitAndSort^#(@l) -> c_1(sortAll^#(split(@l)), split^#(@l))
, split^#(@l) -> c_3(split#1^#(@l))
, split#1^#(::(@x, @xs)) ->
c_8(insert^#(@x, split(@xs)), split^#(@xs))
, insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
c_10(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x))
, insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) ->
c_11(insert^#(@x, @ls))
, insert^#(@x, @l) -> c_12(insert#1^#(@x, @l, @x))
, insert#1^#(tuple#2(@valX, @keyX), @l, @x) ->
c_13(insert#2^#(@l, @keyX, @valX, @x))
, insert#2^#(::(@l1, @ls), @keyX, @valX, @x) ->
c_15(insert#3^#(@l1, @keyX, @ls, @valX, @x)) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^6))
The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.
{ split^#(@l) -> c_3(split#1^#(@l))
, split#1^#(::(@x, @xs)) ->
c_8(insert^#(@x, split(@xs)), split^#(@xs))
, insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
c_10(insert#4^#(#equal(@key1, @keyX),
@key1,
@ls,
@valX,
@vals1,
@x))
, insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) ->
c_11(insert^#(@x, @ls))
, insert^#(@x, @l) -> c_12(insert#1^#(@x, @l, @x))
, insert#1^#(tuple#2(@valX, @keyX), @l, @x) ->
c_13(insert#2^#(@l, @keyX, @valX, @x))
, insert#2^#(::(@l1, @ls), @keyX, @valX, @x) ->
c_15(insert#3^#(@l1, @keyX, @ls, @valX, @x)) }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^6)).
Strict DPs:
{ sortAll^#(@l) -> c_2(sortAll#1^#(@l))
, sortAll#2^#(tuple#2(@vals, @key), @xs) ->
c_4(quicksort^#(@vals), sortAll^#(@xs))
, quicksort^#(@l) -> c_5(quicksort#1^#(@l))
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
c_6(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))
, append^#(@l, @ys) -> c_7(append#1^#(@l, @ys))
, append#1^#(::(@x, @xs), @ys) -> c_9(append^#(@xs, @ys))
, sortAll#1^#(::(@x, @xs)) -> c_14(sortAll#2^#(@x, @xs))
, quicksort#1^#(::(@z, @zs)) ->
c_16(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs))
, splitqs^#(@pivot, @l) -> c_17(splitqs#1^#(@l, @pivot))
, splitqs#1^#(::(@x, @xs), @pivot) ->
c_18(splitqs^#(@pivot, @xs)) }
Weak DPs:
{ splitAndSort^#(@l) -> c_1(sortAll^#(split(@l)), split^#(@l)) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^6))
Due to missing edges in the dependency-graph, the right-hand sides
of following rules could be simplified:
{ splitAndSort^#(@l) -> c_1(sortAll^#(split(@l)), split^#(@l)) }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^6)).
Strict DPs:
{ sortAll^#(@l) -> c_1(sortAll#1^#(@l))
, sortAll#2^#(tuple#2(@vals, @key), @xs) ->
c_2(quicksort^#(@vals), sortAll^#(@xs))
, quicksort^#(@l) -> c_3(quicksort#1^#(@l))
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))
, append^#(@l, @ys) -> c_5(append#1^#(@l, @ys))
, append#1^#(::(@x, @xs), @ys) -> c_6(append^#(@xs, @ys))
, sortAll#1^#(::(@x, @xs)) -> c_7(sortAll#2^#(@x, @xs))
, quicksort#1^#(::(@z, @zs)) ->
c_8(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs))
, splitqs^#(@pivot, @l) -> c_9(splitqs#1^#(@l, @pivot))
, splitqs#1^#(::(@x, @xs), @pivot) ->
c_10(splitqs^#(@pivot, @xs)) }
Weak DPs: { splitAndSort^#(@l) -> c_11(sortAll^#(split(@l))) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^6))
We decompose the input problem according to the dependency graph
into the upper component
{ splitAndSort^#(@l) -> c_11(sortAll^#(split(@l)))
, sortAll^#(@l) -> c_1(sortAll#1^#(@l))
, sortAll#2^#(tuple#2(@vals, @key), @xs) ->
c_2(quicksort^#(@vals), sortAll^#(@xs))
, sortAll#1^#(::(@x, @xs)) -> c_7(sortAll#2^#(@x, @xs)) }
and lower component
{ quicksort^#(@l) -> c_3(quicksort#1^#(@l))
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))
, append^#(@l, @ys) -> c_5(append#1^#(@l, @ys))
, append#1^#(::(@x, @xs), @ys) -> c_6(append^#(@xs, @ys))
, quicksort#1^#(::(@z, @zs)) ->
c_8(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs))
, splitqs^#(@pivot, @l) -> c_9(splitqs#1^#(@l, @pivot))
, splitqs#1^#(::(@x, @xs), @pivot) ->
c_10(splitqs^#(@pivot, @xs)) }
Further, following extension rules are added to the lower
component.
{ splitAndSort^#(@l) -> sortAll^#(split(@l))
, sortAll^#(@l) -> sortAll#1^#(@l)
, sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs)
, sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals)
, sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs) }
TcT solves the upper component with certificate YES(O(1),O(n^1)).
Sub-proof:
----------
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).
Strict DPs:
{ sortAll^#(@l) -> c_1(sortAll#1^#(@l))
, sortAll#2^#(tuple#2(@vals, @key), @xs) ->
c_2(quicksort^#(@vals), sortAll^#(@xs))
, sortAll#1^#(::(@x, @xs)) -> c_7(sortAll#2^#(@x, @xs)) }
Weak DPs: { splitAndSort^#(@l) -> c_11(sortAll^#(split(@l))) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^1))
We replace rewrite rules by usable rules:
Weak Usable Rules:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, split(@l) -> split#1(@l)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x) }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).
Strict DPs:
{ sortAll^#(@l) -> c_1(sortAll#1^#(@l))
, sortAll#2^#(tuple#2(@vals, @key), @xs) ->
c_2(quicksort^#(@vals), sortAll^#(@xs))
, sortAll#1^#(::(@x, @xs)) -> c_7(sortAll#2^#(@x, @xs)) }
Weak DPs: { splitAndSort^#(@l) -> c_11(sortAll^#(split(@l))) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, split(@l) -> split#1(@l)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^1))
We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.
DPs:
{ 2: sortAll#2^#(tuple#2(@vals, @key), @xs) ->
c_2(quicksort^#(@vals), sortAll^#(@xs)) }
Trs:
{ split(@l) -> split#1(@l)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls) }
Sub-proof:
----------
The following argument positions are usable:
Uargs(c_1) = {1}, Uargs(c_2) = {2}, Uargs(c_7) = {1},
Uargs(c_11) = {1}
TcT has computed the following constructor-based matrix
interpretation satisfying not(EDA).
[#equal](x1, x2) = [1]
[#eq](x1, x2) = [1]
[quicksort#2](x1, x2) = [0]
[split](x1) = [5] x1 + [3]
[#true] = [1]
[append](x1, x2) = [0]
[insert#3](x1, x2, x3, x4, x5) = [1] x3 + [3]
[#ckgt](x1) = [0]
[insert](x1, x2) = [1] x2 + [2]
[#pos](x1) = [1] x1 + [0]
[#EQ] = [0]
[insert#2](x1, x2, x3, x4) = [1] x1 + [2]
[#and](x1, x2) = [1] x1 + [0]
[#compare](x1, x2) = [0]
[tuple#2](x1, x2) = [0]
[nil] = [2]
[split#1](x1) = [5] x1 + [1]
[#greater](x1, x2) = [0]
[insert#4](x1, x2, x3, x4, x5, x6) = [1] x3 + [3]
[insert#1](x1, x2, x3) = [1] x2 + [2]
[quicksort#1](x1) = [0]
[append#1](x1, x2) = [0]
[splitqs](x1, x2) = [0]
[#false] = [1]
[quicksort](x1) = [0]
[::](x1, x2) = [1] x1 + [1] x2 + [1]
[#LT] = [0]
[splitqs#3](x1, x2, x3, x4) = [0]
[splitqs#2](x1, x2, x3) = [0]
[#0] = [0]
[#neg](x1) = [1] x1 + [0]
[#s](x1) = [1] x1 + [0]
[#GT] = [0]
[splitqs#1](x1, x2) = [0]
[splitAndSort^#](x1) = [7] x1 + [7]
[sortAll^#](x1) = [1] x1 + [0]
[sortAll#2^#](x1, x2) = [1] x2 + [1]
[quicksort^#](x1) = [0]
[sortAll#1^#](x1) = [1] x1 + [0]
[c_1](x1) = [1] x1 + [0]
[c_2](x1, x2) = [1] x1 + [1] x2 + [0]
[c_7](x1) = [1] x1 + [0]
[c_11](x1) = [1] x1 + [4]
The order satisfies the following ordering constraints:
[#equal(@x, @y)] = [1]
>= [1]
= [#eq(@x, @y)]
[#eq(#pos(@x), #pos(@y))] = [1]
>= [1]
= [#eq(@x, @y)]
[#eq(#pos(@x), #0())] = [1]
>= [1]
= [#false()]
[#eq(#pos(@x), #neg(@y))] = [1]
>= [1]
= [#false()]
[#eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [1]
>= [1]
= [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))]
[#eq(tuple#2(@x_1, @x_2), nil())] = [1]
>= [1]
= [#false()]
[#eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2))] = [1]
>= [1]
= [#false()]
[#eq(nil(), tuple#2(@y_1, @y_2))] = [1]
>= [1]
= [#false()]
[#eq(nil(), nil())] = [1]
>= [1]
= [#true()]
[#eq(nil(), ::(@y_1, @y_2))] = [1]
>= [1]
= [#false()]
[#eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [1]
>= [1]
= [#false()]
[#eq(::(@x_1, @x_2), nil())] = [1]
>= [1]
= [#false()]
[#eq(::(@x_1, @x_2), ::(@y_1, @y_2))] = [1]
>= [1]
= [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))]
[#eq(#0(), #pos(@y))] = [1]
>= [1]
= [#false()]
[#eq(#0(), #0())] = [1]
>= [1]
= [#true()]
[#eq(#0(), #neg(@y))] = [1]
>= [1]
= [#false()]
[#eq(#0(), #s(@y))] = [1]
>= [1]
= [#false()]
[#eq(#neg(@x), #pos(@y))] = [1]
>= [1]
= [#false()]
[#eq(#neg(@x), #0())] = [1]
>= [1]
= [#false()]
[#eq(#neg(@x), #neg(@y))] = [1]
>= [1]
= [#eq(@x, @y)]
[#eq(#s(@x), #0())] = [1]
>= [1]
= [#false()]
[#eq(#s(@x), #s(@y))] = [1]
>= [1]
= [#eq(@x, @y)]
[split(@l)] = [5] @l + [3]
> [5] @l + [1]
= [split#1(@l)]
[insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x)] = [1] @ls + [3]
>= [1] @ls + [3]
= [insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)]
[insert(@x, @l)] = [1] @l + [2]
>= [1] @l + [2]
= [insert#1(@x, @l, @x)]
[insert#2(nil(), @keyX, @valX, @x)] = [4]
> [3]
= [::(tuple#2(::(@valX, nil()), @keyX), nil())]
[insert#2(::(@l1, @ls), @keyX, @valX, @x)] = [1] @l1 + [1] @ls + [3]
>= [1] @ls + [3]
= [insert#3(@l1, @keyX, @ls, @valX, @x)]
[#and(#true(), #true())] = [1]
>= [1]
= [#true()]
[#and(#true(), #false())] = [1]
>= [1]
= [#false()]
[#and(#false(), #true())] = [1]
>= [1]
= [#false()]
[#and(#false(), #false())] = [1]
>= [1]
= [#false()]
[split#1(nil())] = [11]
> [2]
= [nil()]
[split#1(::(@x, @xs))] = [5] @x + [5] @xs + [6]
> [5] @xs + [5]
= [insert(@x, split(@xs))]
[insert#4(#true(), @key1, @ls, @valX, @vals1, @x)] = [1] @ls + [3]
> [1] @ls + [1]
= [::(tuple#2(::(@valX, @vals1), @key1), @ls)]
[insert#4(#false(), @key1, @ls, @valX, @vals1, @x)] = [1] @ls + [3]
>= [1] @ls + [3]
= [::(tuple#2(@vals1, @key1), insert(@x, @ls))]
[insert#1(tuple#2(@valX, @keyX), @l, @x)] = [1] @l + [2]
>= [1] @l + [2]
= [insert#2(@l, @keyX, @valX, @x)]
[splitAndSort^#(@l)] = [7] @l + [7]
>= [5] @l + [7]
= [c_11(sortAll^#(split(@l)))]
[sortAll^#(@l)] = [1] @l + [0]
>= [1] @l + [0]
= [c_1(sortAll#1^#(@l))]
[sortAll#2^#(tuple#2(@vals, @key), @xs)] = [1] @xs + [1]
> [1] @xs + [0]
= [c_2(quicksort^#(@vals), sortAll^#(@xs))]
[sortAll#1^#(::(@x, @xs))] = [1] @x + [1] @xs + [1]
>= [1] @xs + [1]
= [c_7(sortAll#2^#(@x, @xs))]
We return to the main proof. Consider the set of all dependency
pairs
:
{ 1: sortAll^#(@l) -> c_1(sortAll#1^#(@l))
, 2: sortAll#2^#(tuple#2(@vals, @key), @xs) ->
c_2(quicksort^#(@vals), sortAll^#(@xs))
, 3: sortAll#1^#(::(@x, @xs)) -> c_7(sortAll#2^#(@x, @xs))
, 4: splitAndSort^#(@l) -> c_11(sortAll^#(split(@l))) }
Processor 'matrix interpretation of dimension 1' induces the
complexity certificate YES(?,O(n^1)) on application of dependency
pairs {2}. These cover all (indirect) predecessors of dependency
pairs {1,2,3,4}, their number of application is equally bounded.
The dependency pairs are shifted into the weak component.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).
Weak DPs:
{ splitAndSort^#(@l) -> c_11(sortAll^#(split(@l)))
, sortAll^#(@l) -> c_1(sortAll#1^#(@l))
, sortAll#2^#(tuple#2(@vals, @key), @xs) ->
c_2(quicksort^#(@vals), sortAll^#(@xs))
, sortAll#1^#(::(@x, @xs)) -> c_7(sortAll#2^#(@x, @xs)) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, split(@l) -> split#1(@l)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(1))
The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.
{ splitAndSort^#(@l) -> c_11(sortAll^#(split(@l)))
, sortAll^#(@l) -> c_1(sortAll#1^#(@l))
, sortAll#2^#(tuple#2(@vals, @key), @xs) ->
c_2(quicksort^#(@vals), sortAll^#(@xs))
, sortAll#1^#(::(@x, @xs)) -> c_7(sortAll#2^#(@x, @xs)) }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, split(@l) -> split#1(@l)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(1))
No rule is usable, rules are removed from the input problem.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).
Rules: Empty
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(1))
Empty rules are trivially bounded
We return to the main proof.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^5)).
Strict DPs:
{ quicksort^#(@l) -> c_3(quicksort#1^#(@l))
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))
, append^#(@l, @ys) -> c_5(append#1^#(@l, @ys))
, append#1^#(::(@x, @xs), @ys) -> c_6(append^#(@xs, @ys))
, quicksort#1^#(::(@z, @zs)) ->
c_8(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs))
, splitqs^#(@pivot, @l) -> c_9(splitqs#1^#(@l, @pivot))
, splitqs#1^#(::(@x, @xs), @pivot) ->
c_10(splitqs^#(@pivot, @xs)) }
Weak DPs:
{ splitAndSort^#(@l) -> sortAll^#(split(@l))
, sortAll^#(@l) -> sortAll#1^#(@l)
, sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs)
, sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals)
, sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^5))
We decompose the input problem according to the dependency graph
into the upper component
{ splitAndSort^#(@l) -> sortAll^#(split(@l))
, sortAll^#(@l) -> sortAll#1^#(@l)
, sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs)
, sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals)
, quicksort^#(@l) -> c_3(quicksort#1^#(@l))
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))
, sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs)
, quicksort#1^#(::(@z, @zs)) ->
c_8(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) }
and lower component
{ append^#(@l, @ys) -> c_5(append#1^#(@l, @ys))
, append#1^#(::(@x, @xs), @ys) -> c_6(append^#(@xs, @ys))
, splitqs^#(@pivot, @l) -> c_9(splitqs#1^#(@l, @pivot))
, splitqs#1^#(::(@x, @xs), @pivot) ->
c_10(splitqs^#(@pivot, @xs)) }
Further, following extension rules are added to the lower
component.
{ splitAndSort^#(@l) -> sortAll^#(split(@l))
, sortAll^#(@l) -> sortAll#1^#(@l)
, sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs)
, sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals)
, quicksort^#(@l) -> quicksort#1^#(@l)
, quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@xs)
, quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@ys)
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
append^#(quicksort(@xs), ::(@z, quicksort(@ys)))
, sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs)
, quicksort#1^#(::(@z, @zs)) -> quicksort#2^#(splitqs(@z, @zs), @z)
, quicksort#1^#(::(@z, @zs)) -> splitqs^#(@z, @zs) }
TcT solves the upper component with certificate YES(O(1),O(n^1)).
Sub-proof:
----------
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).
Strict DPs:
{ quicksort^#(@l) -> c_3(quicksort#1^#(@l))
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))
, quicksort#1^#(::(@z, @zs)) ->
c_8(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) }
Weak DPs:
{ splitAndSort^#(@l) -> sortAll^#(split(@l))
, sortAll^#(@l) -> sortAll#1^#(@l)
, sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs)
, sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals)
, sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^1))
We use the processor 'matrix interpretation of dimension 2' to
orient following rules strictly.
DPs:
{ 3: quicksort#1^#(::(@z, @zs)) ->
c_8(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs))
, 4: splitAndSort^#(@l) -> sortAll^#(split(@l))
, 5: sortAll^#(@l) -> sortAll#1^#(@l)
, 6: sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs)
, 7: sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals)
, 8: sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs) }
Trs:
{ insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, quicksort#1(nil()) -> nil()
, append#1(nil(), @ys) -> @ys }
Sub-proof:
----------
The following argument positions are usable:
Uargs(c_3) = {1}, Uargs(c_4) = {1, 2, 3}, Uargs(c_8) = {1}
TcT has computed the following constructor-based matrix
interpretation satisfying not(EDA) and not(IDA(1)).
[#equal](x1, x2) = [1]
[5]
[#eq](x1, x2) = [1]
[5]
[quicksort#2](x1, x2) = [0 0] x2 + [7]
[0 1] [0]
[split](x1) = [7 0] x1 + [1]
[0 3] [1]
[#true] = [1]
[1]
[append](x1, x2) = [0 0] x1 + [3 0] x2 + [0]
[7 0] [2 1] [0]
[insert#3](x1, x2, x3, x4, x5) = [0 0] x1 + [1 0] x3 + [7]
[0 1] [0 1] [7]
[#ckgt](x1) = [0 0] x1 + [1]
[1 0] [3]
[insert](x1, x2) = [1 0] x2 + [6]
[0 1] [5]
[#pos](x1) = [1 0] x1 + [0]
[0 1] [2]
[#EQ] = [3]
[0]
[insert#2](x1, x2, x3, x4) = [1 0] x1 + [6]
[0 1] [5]
[#and](x1, x2) = [1]
[5]
[#compare](x1, x2) = [2 1] x1 + [1 2] x2 + [4]
[6 1] [1 6] [0]
[tuple#2](x1, x2) = [1 0] x1 + [1 0] x2 + [1]
[1 0] [0 0] [2]
[nil] = [0]
[5]
[split#1](x1) = [7 0] x1 + [1]
[0 3] [0]
[#greater](x1, x2) = [0 0] x1 + [0 0] x2 + [1]
[2 1] [1 2] [7]
[insert#4](x1, x2, x3, x4, x5, x6) = [2 1] x1 + [1 0] x3 + [0
0] x5 + [0]
[7 0] [0 1] [1
0] [2]
[insert#1](x1, x2, x3) = [1 0] x2 + [6]
[0 1] [5]
[quicksort#1](x1) = [0 0] x1 + [7]
[0 1] [2]
[append#1](x1, x2) = [7 0] x2 + [1]
[1 5] [0]
[splitqs](x1, x2) = [1 0] x2 + [1]
[4 0] [2]
[#false] = [1]
[5]
[quicksort](x1) = [0 0] x1 + [1]
[0 1] [0]
[::](x1, x2) = [0 0] x1 + [1 0] x2 + [1]
[0 1] [0 1] [2]
[#LT] = [2]
[0]
[splitqs#3](x1, x2, x3, x4) = [0 0] x1 + [1 0] x2 + [1
0] x3 + [2]
[2 0] [1 0] [0
0] [1]
[splitqs#2](x1, x2, x3) = [1 0] x1 + [1]
[0 1] [1]
[#0] = [0]
[0]
[#neg](x1) = [0 1] x1 + [0]
[1 0] [2]
[#s](x1) = [1 0] x1 + [2]
[0 1] [0]
[#GT] = [0]
[0]
[splitqs#1](x1, x2) = [1 0] x1 + [1]
[4 0] [2]
[splitAndSort^#](x1) = [7 7] x1 + [7]
[7 7] [7]
[sortAll^#](x1) = [0 2] x1 + [4]
[0 0] [4]
[sortAll#2^#](x1, x2) = [0 2] x1 + [0 2] x2 + [3]
[0 0] [0 0] [4]
[quicksort^#](x1) = [2 0] x1 + [1]
[0 0] [0]
[quicksort#2^#](x1, x2) = [2 0] x1 + [0]
[1 0] [0]
[append^#](x1, x2) = [0]
[1]
[sortAll#1^#](x1) = [0 2] x1 + [2]
[0 0] [4]
[quicksort#1^#](x1) = [2 0] x1 + [1]
[0 0] [0]
[splitqs^#](x1, x2) = [1]
[1]
[c_3](x1) = [1 1] x1 + [0]
[0 0] [0]
[c_4](x1, x2, x3) = [5 0] x1 + [1 0] x2 + [1
0] x3 + [0]
[0 0] [0 0] [0
0] [0]
[c_8](x1, x2) = [1 0] x1 + [0]
[0 0] [0]
The order satisfies the following ordering constraints:
[#equal(@x, @y)] = [1]
[5]
>= [1]
[5]
= [#eq(@x, @y)]
[#eq(#pos(@x), #pos(@y))] = [1]
[5]
>= [1]
[5]
= [#eq(@x, @y)]
[#eq(#pos(@x), #0())] = [1]
[5]
>= [1]
[5]
= [#false()]
[#eq(#pos(@x), #neg(@y))] = [1]
[5]
>= [1]
[5]
= [#false()]
[#eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [1]
[5]
>= [1]
[5]
= [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))]
[#eq(tuple#2(@x_1, @x_2), nil())] = [1]
[5]
>= [1]
[5]
= [#false()]
[#eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2))] = [1]
[5]
>= [1]
[5]
= [#false()]
[#eq(nil(), tuple#2(@y_1, @y_2))] = [1]
[5]
>= [1]
[5]
= [#false()]
[#eq(nil(), nil())] = [1]
[5]
>= [1]
[1]
= [#true()]
[#eq(nil(), ::(@y_1, @y_2))] = [1]
[5]
>= [1]
[5]
= [#false()]
[#eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [1]
[5]
>= [1]
[5]
= [#false()]
[#eq(::(@x_1, @x_2), nil())] = [1]
[5]
>= [1]
[5]
= [#false()]
[#eq(::(@x_1, @x_2), ::(@y_1, @y_2))] = [1]
[5]
>= [1]
[5]
= [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))]
[#eq(#0(), #pos(@y))] = [1]
[5]
>= [1]
[5]
= [#false()]
[#eq(#0(), #0())] = [1]
[5]
>= [1]
[1]
= [#true()]
[#eq(#0(), #neg(@y))] = [1]
[5]
>= [1]
[5]
= [#false()]
[#eq(#0(), #s(@y))] = [1]
[5]
>= [1]
[5]
= [#false()]
[#eq(#neg(@x), #pos(@y))] = [1]
[5]
>= [1]
[5]
= [#false()]
[#eq(#neg(@x), #0())] = [1]
[5]
>= [1]
[5]
= [#false()]
[#eq(#neg(@x), #neg(@y))] = [1]
[5]
>= [1]
[5]
= [#eq(@x, @y)]
[#eq(#s(@x), #0())] = [1]
[5]
>= [1]
[5]
= [#false()]
[#eq(#s(@x), #s(@y))] = [1]
[5]
>= [1]
[5]
= [#eq(@x, @y)]
[quicksort#2(tuple#2(@xs, @ys), @z)] = [0 0] @z + [7]
[0 1] [0]
? [0 0] @ys + [0 0] @z + [6]
[0 1] [0 1] [13]
= [append(quicksort(@xs), ::(@z, quicksort(@ys)))]
[split(@l)] = [7 0] @l + [1]
[0 3] [1]
>= [7 0] @l + [1]
[0 3] [0]
= [split#1(@l)]
[append(@l, @ys)] = [0 0] @l + [3 0] @ys + [0]
[7 0] [2 1] [0]
? [7 0] @ys + [1]
[1 5] [0]
= [append#1(@l, @ys)]
[insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x)] = [1 0] @ls + [0 0] @vals1 + [7]
[0 1] [1 0] [9]
>= [1 0] @ls + [0 0] @vals1 + [7]
[0 1] [1 0] [9]
= [insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)]
[#ckgt(#EQ())] = [1]
[6]
>= [1]
[5]
= [#false()]
[#ckgt(#LT())] = [1]
[5]
>= [1]
[5]
= [#false()]
[#ckgt(#GT())] = [1]
[3]
>= [1]
[1]
= [#true()]
[insert(@x, @l)] = [1 0] @l + [6]
[0 1] [5]
>= [1 0] @l + [6]
[0 1] [5]
= [insert#1(@x, @l, @x)]
[insert#2(nil(), @keyX, @valX, @x)] = [6]
[10]
> [1]
[10]
= [::(tuple#2(::(@valX, nil()), @keyX), nil())]
[insert#2(::(@l1, @ls), @keyX, @valX, @x)] = [0 0] @l1 + [1 0] @ls + [7]
[0 1] [0 1] [7]
>= [0 0] @l1 + [1 0] @ls + [7]
[0 1] [0 1] [7]
= [insert#3(@l1, @keyX, @ls, @valX, @x)]
[#and(#true(), #true())] = [1]
[5]
>= [1]
[1]
= [#true()]
[#and(#true(), #false())] = [1]
[5]
>= [1]
[5]
= [#false()]
[#and(#false(), #true())] = [1]
[5]
>= [1]
[5]
= [#false()]
[#and(#false(), #false())] = [1]
[5]
>= [1]
[5]
= [#false()]
[#compare(#pos(@x), #pos(@y))] = [2 1] @x + [1 2] @y + [10]
[6 1] [1 6] [14]
> [2 1] @x + [1 2] @y + [4]
[6 1] [1 6] [0]
= [#compare(@x, @y)]
[#compare(#pos(@x), #0())] = [2 1] @x + [6]
[6 1] [2]
> [0]
[0]
= [#GT()]
[#compare(#pos(@x), #neg(@y))] = [2 1] @x + [2 1] @y + [10]
[6 1] [6 1] [14]
> [0]
[0]
= [#GT()]
[#compare(#0(), #pos(@y))] = [1 2] @y + [8]
[1 6] [12]
> [2]
[0]
= [#LT()]
[#compare(#0(), #0())] = [4]
[0]
> [3]
[0]
= [#EQ()]
[#compare(#0(), #neg(@y))] = [2 1] @y + [8]
[6 1] [12]
> [0]
[0]
= [#GT()]
[#compare(#0(), #s(@y))] = [1 2] @y + [6]
[1 6] [2]
> [2]
[0]
= [#LT()]
[#compare(#neg(@x), #pos(@y))] = [1 2] @x + [1 2] @y + [10]
[1 6] [1 6] [14]
> [2]
[0]
= [#LT()]
[#compare(#neg(@x), #0())] = [1 2] @x + [6]
[1 6] [2]
> [2]
[0]
= [#LT()]
[#compare(#neg(@x), #neg(@y))] = [1 2] @x + [2 1] @y + [10]
[1 6] [6 1] [14]
> [1 2] @x + [2 1] @y + [4]
[1 6] [6 1] [0]
= [#compare(@y, @x)]
[#compare(#s(@x), #0())] = [2 1] @x + [8]
[6 1] [12]
> [0]
[0]
= [#GT()]
[#compare(#s(@x), #s(@y))] = [2 1] @x + [1 2] @y + [10]
[6 1] [1 6] [14]
> [2 1] @x + [1 2] @y + [4]
[6 1] [1 6] [0]
= [#compare(@x, @y)]
[split#1(nil())] = [1]
[15]
> [0]
[5]
= [nil()]
[split#1(::(@x, @xs))] = [0 0] @x + [7 0] @xs + [8]
[0 3] [0 3] [6]
> [7 0] @xs + [7]
[0 3] [6]
= [insert(@x, split(@xs))]
[#greater(@x, @y)] = [0 0] @x + [0 0] @y + [1]
[2 1] [1 2] [7]
>= [0 0] @x + [0 0] @y + [1]
[2 1] [1 2] [7]
= [#ckgt(#compare(@x, @y))]
[insert#4(#true(), @key1, @ls, @valX, @vals1, @x)] = [1 0] @ls + [0 0] @vals1 + [3]
[0 1] [1 0] [9]
> [1 0] @ls + [0 0] @vals1 + [1]
[0 1] [1 0] [5]
= [::(tuple#2(::(@valX, @vals1), @key1), @ls)]
[insert#4(#false(), @key1, @ls, @valX, @vals1, @x)] = [1 0] @ls + [0 0] @vals1 + [7]
[0 1] [1 0] [9]
>= [1 0] @ls + [0 0] @vals1 + [7]
[0 1] [1 0] [9]
= [::(tuple#2(@vals1, @key1), insert(@x, @ls))]
[insert#1(tuple#2(@valX, @keyX), @l, @x)] = [1 0] @l + [6]
[0 1] [5]
>= [1 0] @l + [6]
[0 1] [5]
= [insert#2(@l, @keyX, @valX, @x)]
[quicksort#1(nil())] = [7]
[7]
> [0]
[5]
= [nil()]
[quicksort#1(::(@z, @zs))] = [0 0] @z + [0 0] @zs + [7]
[0 1] [0 1] [4]
>= [0 0] @z + [7]
[0 1] [0]
= [quicksort#2(splitqs(@z, @zs), @z)]
[append#1(nil(), @ys)] = [7 0] @ys + [1]
[1 5] [0]
> [1 0] @ys + [0]
[0 1] [0]
= [@ys]
[append#1(::(@x, @xs), @ys)] = [7 0] @ys + [1]
[1 5] [0]
? [0 0] @x + [3 0] @ys + [0 0] @xs + [1]
[0 1] [2 1] [7 0] [2]
= [::(@x, append(@xs, @ys))]
[splitqs(@pivot, @l)] = [1 0] @l + [1]
[4 0] [2]
>= [1 0] @l + [1]
[4 0] [2]
= [splitqs#1(@l, @pivot)]
[quicksort(@l)] = [0 0] @l + [1]
[0 1] [0]
? [0 0] @l + [7]
[0 1] [2]
= [quicksort#1(@l)]
[splitqs#3(#true(), @ls, @rs, @x)] = [1 0] @ls + [1 0] @rs + [2]
[1 0] [0 0] [3]
>= [1 0] @ls + [1 0] @rs + [2]
[1 0] [0 0] [2]
= [tuple#2(@ls, ::(@x, @rs))]
[splitqs#3(#false(), @ls, @rs, @x)] = [1 0] @ls + [1 0] @rs + [2]
[1 0] [0 0] [3]
>= [1 0] @ls + [1 0] @rs + [2]
[1 0] [0 0] [3]
= [tuple#2(::(@x, @ls), @rs)]
[splitqs#2(tuple#2(@ls, @rs), @pivot, @x)] = [1 0] @ls + [1 0] @rs + [2]
[1 0] [0 0] [3]
>= [1 0] @ls + [1 0] @rs + [2]
[1 0] [0 0] [3]
= [splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)]
[splitqs#1(nil(), @pivot)] = [1]
[2]
>= [1]
[2]
= [tuple#2(nil(), nil())]
[splitqs#1(::(@x, @xs), @pivot)] = [1 0] @xs + [2]
[4 0] [6]
>= [1 0] @xs + [2]
[4 0] [3]
= [splitqs#2(splitqs(@pivot, @xs), @pivot, @x)]
[splitAndSort^#(@l)] = [7 7] @l + [7]
[7 7] [7]
> [0 6] @l + [6]
[0 0] [4]
= [sortAll^#(split(@l))]
[sortAll^#(@l)] = [0 2] @l + [4]
[0 0] [4]
> [0 2] @l + [2]
[0 0] [4]
= [sortAll#1^#(@l)]
[sortAll#2^#(tuple#2(@vals, @key), @xs)] = [0 2] @xs + [2 0] @vals + [7]
[0 0] [0 0] [4]
> [0 2] @xs + [4]
[0 0] [4]
= [sortAll^#(@xs)]
[sortAll#2^#(tuple#2(@vals, @key), @xs)] = [0 2] @xs + [2 0] @vals + [7]
[0 0] [0 0] [4]
> [2 0] @vals + [1]
[0 0] [0]
= [quicksort^#(@vals)]
[quicksort^#(@l)] = [2 0] @l + [1]
[0 0] [0]
>= [2 0] @l + [1]
[0 0] [0]
= [c_3(quicksort#1^#(@l))]
[quicksort#2^#(tuple#2(@xs, @ys), @z)] = [2 0] @ys + [2 0] @xs + [2]
[1 0] [1 0] [1]
>= [2 0] @ys + [2 0] @xs + [2]
[0 0] [0 0] [0]
= [c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))]
[sortAll#1^#(::(@x, @xs))] = [0 2] @x + [0 2] @xs + [6]
[0 0] [0 0] [4]
> [0 2] @x + [0 2] @xs + [3]
[0 0] [0 0] [4]
= [sortAll#2^#(@x, @xs)]
[quicksort#1^#(::(@z, @zs))] = [2 0] @zs + [3]
[0 0] [0]
> [2 0] @zs + [2]
[0 0] [0]
= [c_8(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs))]
We return to the main proof. Consider the set of all dependency
pairs
:
{ 1: quicksort^#(@l) -> c_3(quicksort#1^#(@l))
, 2: quicksort#2^#(tuple#2(@xs, @ys), @z) ->
c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))
, 3: quicksort#1^#(::(@z, @zs)) ->
c_8(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs))
, 4: splitAndSort^#(@l) -> sortAll^#(split(@l))
, 5: sortAll^#(@l) -> sortAll#1^#(@l)
, 6: sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs)
, 7: sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals)
, 8: sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs) }
Processor 'matrix interpretation of dimension 2' induces the
complexity certificate YES(?,O(n^1)) on application of dependency
pairs {3,4,5,6,7,8}. These cover all (indirect) predecessors of
dependency pairs {1,2,3,4,5,6,7,8}, their number of application is
equally bounded. The dependency pairs are shifted into the weak
component.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).
Weak DPs:
{ splitAndSort^#(@l) -> sortAll^#(split(@l))
, sortAll^#(@l) -> sortAll#1^#(@l)
, sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs)
, sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals)
, quicksort^#(@l) -> c_3(quicksort#1^#(@l))
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))
, sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs)
, quicksort#1^#(::(@z, @zs)) ->
c_8(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(1))
The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.
{ splitAndSort^#(@l) -> sortAll^#(split(@l))
, sortAll^#(@l) -> sortAll#1^#(@l)
, sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs)
, sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals)
, quicksort^#(@l) -> c_3(quicksort#1^#(@l))
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))),
quicksort^#(@xs),
quicksort^#(@ys))
, sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs)
, quicksort#1^#(::(@z, @zs)) ->
c_8(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(1))
No rule is usable, rules are removed from the input problem.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).
Rules: Empty
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(1))
Empty rules are trivially bounded
We return to the main proof.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^4)).
Strict DPs:
{ append^#(@l, @ys) -> c_5(append#1^#(@l, @ys))
, append#1^#(::(@x, @xs), @ys) -> c_6(append^#(@xs, @ys))
, splitqs^#(@pivot, @l) -> c_9(splitqs#1^#(@l, @pivot))
, splitqs#1^#(::(@x, @xs), @pivot) ->
c_10(splitqs^#(@pivot, @xs)) }
Weak DPs:
{ splitAndSort^#(@l) -> sortAll^#(split(@l))
, sortAll^#(@l) -> sortAll#1^#(@l)
, sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs)
, sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals)
, quicksort^#(@l) -> quicksort#1^#(@l)
, quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@xs)
, quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@ys)
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
append^#(quicksort(@xs), ::(@z, quicksort(@ys)))
, sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs)
, quicksort#1^#(::(@z, @zs)) -> quicksort#2^#(splitqs(@z, @zs), @z)
, quicksort#1^#(::(@z, @zs)) -> splitqs^#(@z, @zs) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^4))
We use the processor 'matrix interpretation of dimension 2' to
orient following rules strictly.
DPs:
{ 4: splitqs#1^#(::(@x, @xs), @pivot) ->
c_10(splitqs^#(@pivot, @xs))
, 5: splitAndSort^#(@l) -> sortAll^#(split(@l))
, 7: sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs)
, 12: quicksort#2^#(tuple#2(@xs, @ys), @z) ->
append^#(quicksort(@xs), ::(@z, quicksort(@ys)))
, 14: quicksort#1^#(::(@z, @zs)) ->
quicksort#2^#(splitqs(@z, @zs), @z)
, 15: quicksort#1^#(::(@z, @zs)) -> splitqs^#(@z, @zs) }
Trs:
{ #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#s(@x), #0()) -> #false()
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, #and(#true(), #true()) -> #true()
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
Sub-proof:
----------
The following argument positions are usable:
Uargs(c_5) = {1}, Uargs(c_6) = {1}, Uargs(c_9) = {1},
Uargs(c_10) = {1}
TcT has computed the following constructor-based matrix
interpretation satisfying not(EDA) and not(IDA(1)).
[#equal](x1, x2) = [0 3] x2 + [6]
[0 0] [0]
[#eq](x1, x2) = [6]
[0]
[quicksort#2](x1, x2) = [1]
[0]
[split](x1) = [3 0] x1 + [7]
[2 3] [2]
[#true] = [4]
[0]
[append](x1, x2) = [0 0] x1 + [0]
[0 3] [0]
[insert#3](x1, x2, x3, x4, x5) = [0 0] x1 + [1 0] x3 + [6]
[1 0] [0 1] [5]
[#ckgt](x1) = [2 3] x1 + [0]
[1 0] [0]
[insert](x1, x2) = [1 0] x2 + [3]
[0 1] [5]
[#pos](x1) = [1 0] x1 + [4]
[0 1] [0]
[#EQ] = [0]
[2]
[insert#2](x1, x2, x3, x4) = [1 0] x1 + [3]
[0 1] [5]
[#and](x1, x2) = [5]
[0]
[#compare](x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[1 0] [0 1] [0]
[tuple#2](x1, x2) = [1 0] x1 + [0 0] x2 + [1]
[1 0] [1 0] [0]
[nil] = [1]
[2]
[split#1](x1) = [3 0] x1 + [6]
[2 3] [2]
[#greater](x1, x2) = [3 0] x1 + [0 3] x2 + [0]
[0 0] [0 1] [0]
[insert#4](x1, x2, x3, x4, x5, x6) = [0 0] x1 + [1 0] x3 + [0
0] x5 + [6]
[0 1] [0 1] [1
0] [6]
[insert#1](x1, x2, x3) = [1 0] x2 + [3]
[0 1] [5]
[quicksort#1](x1) = [3]
[4]
[append#1](x1, x2) = [0 0] x1 + [7 0] x2 + [3]
[0 1] [0 7] [0]
[splitqs](x1, x2) = [0 4] x1 + [4 5] x2 + [3]
[0 0] [1 0] [1]
[#false] = [5]
[0]
[quicksort](x1) = [0 2] x1 + [5]
[0 0] [0]
[::](x1, x2) = [0 0] x1 + [1 0] x2 + [3]
[1 0] [0 1] [0]
[#LT] = [0]
[2]
[splitqs#3](x1, x2, x3, x4) = [1 1] x1 + [1 0] x2 + [0
0] x3 + [1 0] x4 + [0]
[0 0] [1 0] [1
0] [0 0] [3]
[splitqs#2](x1, x2, x3) = [0 1] x1 + [0 4] x2 + [4
0] x3 + [0]
[0 1] [0 0] [0
0] [3]
[#0] = [4]
[0]
[#neg](x1) = [0 1] x1 + [4]
[1 0] [0]
[#s](x1) = [1 0] x1 + [5]
[0 1] [1]
[#GT] = [0]
[3]
[splitqs#1](x1, x2) = [1 4] x1 + [0 4] x2 + [2]
[1 0] [0 0] [1]
[splitAndSort^#](x1) = [7 7] x1 + [7]
[7 7] [7]
[sortAll^#](x1) = [0 2] x1 + [1]
[0 0] [5]
[sortAll#2^#](x1, x2) = [2 0] x1 + [0 2] x2 + [1]
[0 0] [0 0] [5]
[quicksort^#](x1) = [2 0] x1 + [3]
[0 0] [5]
[quicksort#2^#](x1, x2) = [0 2] x1 + [3]
[0 0] [5]
[append^#](x1, x2) = [0]
[1]
[append#1^#](x1, x2) = [0]
[1]
[sortAll#1^#](x1) = [0 2] x1 + [1]
[0 0] [5]
[quicksort#1^#](x1) = [2 0] x1 + [3]
[0 0] [5]
[splitqs^#](x1, x2) = [2 0] x2 + [2]
[0 0] [0]
[splitqs#1^#](x1, x2) = [2 0] x1 + [0]
[0 0] [1]
[c_5](x1) = [1 0] x1 + [0]
[0 0] [0]
[c_6](x1) = [1 0] x1 + [0]
[0 0] [0]
[c_9](x1) = [1 2] x1 + [0]
[0 0] [0]
[c_10](x1) = [1 0] x1 + [0]
[0 0] [0]
The order satisfies the following ordering constraints:
[#equal(@x, @y)] = [0 3] @y + [6]
[0 0] [0]
>= [6]
[0]
= [#eq(@x, @y)]
[#eq(#pos(@x), #pos(@y))] = [6]
[0]
>= [6]
[0]
= [#eq(@x, @y)]
[#eq(#pos(@x), #0())] = [6]
[0]
> [5]
[0]
= [#false()]
[#eq(#pos(@x), #neg(@y))] = [6]
[0]
> [5]
[0]
= [#false()]
[#eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [6]
[0]
> [5]
[0]
= [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))]
[#eq(tuple#2(@x_1, @x_2), nil())] = [6]
[0]
> [5]
[0]
= [#false()]
[#eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2))] = [6]
[0]
> [5]
[0]
= [#false()]
[#eq(nil(), tuple#2(@y_1, @y_2))] = [6]
[0]
> [5]
[0]
= [#false()]
[#eq(nil(), nil())] = [6]
[0]
> [4]
[0]
= [#true()]
[#eq(nil(), ::(@y_1, @y_2))] = [6]
[0]
> [5]
[0]
= [#false()]
[#eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [6]
[0]
> [5]
[0]
= [#false()]
[#eq(::(@x_1, @x_2), nil())] = [6]
[0]
> [5]
[0]
= [#false()]
[#eq(::(@x_1, @x_2), ::(@y_1, @y_2))] = [6]
[0]
> [5]
[0]
= [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))]
[#eq(#0(), #pos(@y))] = [6]
[0]
> [5]
[0]
= [#false()]
[#eq(#0(), #0())] = [6]
[0]
> [4]
[0]
= [#true()]
[#eq(#0(), #neg(@y))] = [6]
[0]
> [5]
[0]
= [#false()]
[#eq(#0(), #s(@y))] = [6]
[0]
> [5]
[0]
= [#false()]
[#eq(#neg(@x), #pos(@y))] = [6]
[0]
> [5]
[0]
= [#false()]
[#eq(#neg(@x), #0())] = [6]
[0]
> [5]
[0]
= [#false()]
[#eq(#neg(@x), #neg(@y))] = [6]
[0]
>= [6]
[0]
= [#eq(@x, @y)]
[#eq(#s(@x), #0())] = [6]
[0]
> [5]
[0]
= [#false()]
[#eq(#s(@x), #s(@y))] = [6]
[0]
>= [6]
[0]
= [#eq(@x, @y)]
[quicksort#2(tuple#2(@xs, @ys), @z)] = [1]
[0]
> [0]
[0]
= [append(quicksort(@xs), ::(@z, quicksort(@ys)))]
[split(@l)] = [3 0] @l + [7]
[2 3] [2]
> [3 0] @l + [6]
[2 3] [2]
= [split#1(@l)]
[append(@l, @ys)] = [0 0] @l + [0]
[0 3] [0]
? [0 0] @l + [7 0] @ys + [3]
[0 1] [0 7] [0]
= [append#1(@l, @ys)]
[insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x)] = [1 0] @ls + [0 0] @vals1 + [6]
[0 1] [1 0] [6]
>= [1 0] @ls + [0 0] @vals1 + [6]
[0 1] [1 0] [6]
= [insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)]
[#ckgt(#EQ())] = [6]
[0]
> [5]
[0]
= [#false()]
[#ckgt(#LT())] = [6]
[0]
> [5]
[0]
= [#false()]
[#ckgt(#GT())] = [9]
[0]
> [4]
[0]
= [#true()]
[insert(@x, @l)] = [1 0] @l + [3]
[0 1] [5]
>= [1 0] @l + [3]
[0 1] [5]
= [insert#1(@x, @l, @x)]
[insert#2(nil(), @keyX, @valX, @x)] = [4]
[7]
>= [4]
[7]
= [::(tuple#2(::(@valX, nil()), @keyX), nil())]
[insert#2(::(@l1, @ls), @keyX, @valX, @x)] = [0 0] @l1 + [1 0] @ls + [6]
[1 0] [0 1] [5]
>= [0 0] @l1 + [1 0] @ls + [6]
[1 0] [0 1] [5]
= [insert#3(@l1, @keyX, @ls, @valX, @x)]
[#and(#true(), #true())] = [5]
[0]
> [4]
[0]
= [#true()]
[#and(#true(), #false())] = [5]
[0]
>= [5]
[0]
= [#false()]
[#and(#false(), #true())] = [5]
[0]
>= [5]
[0]
= [#false()]
[#and(#false(), #false())] = [5]
[0]
>= [5]
[0]
= [#false()]
[#compare(#pos(@x), #pos(@y))] = [0 0] @x + [0 0] @y + [0]
[1 0] [0 1] [4]
>= [0 0] @x + [0 0] @y + [0]
[1 0] [0 1] [0]
= [#compare(@x, @y)]
[#compare(#pos(@x), #0())] = [0 0] @x + [0]
[1 0] [4]
>= [0]
[3]
= [#GT()]
[#compare(#pos(@x), #neg(@y))] = [0 0] @x + [0 0] @y + [0]
[1 0] [1 0] [4]
>= [0]
[3]
= [#GT()]
[#compare(#0(), #pos(@y))] = [0 0] @y + [0]
[0 1] [4]
>= [0]
[2]
= [#LT()]
[#compare(#0(), #0())] = [0]
[4]
>= [0]
[2]
= [#EQ()]
[#compare(#0(), #neg(@y))] = [0 0] @y + [0]
[1 0] [4]
>= [0]
[3]
= [#GT()]
[#compare(#0(), #s(@y))] = [0 0] @y + [0]
[0 1] [5]
>= [0]
[2]
= [#LT()]
[#compare(#neg(@x), #pos(@y))] = [0 0] @x + [0 0] @y + [0]
[0 1] [0 1] [4]
>= [0]
[2]
= [#LT()]
[#compare(#neg(@x), #0())] = [0 0] @x + [0]
[0 1] [4]
>= [0]
[2]
= [#LT()]
[#compare(#neg(@x), #neg(@y))] = [0 0] @x + [0 0] @y + [0]
[0 1] [1 0] [4]
>= [0 0] @x + [0 0] @y + [0]
[0 1] [1 0] [0]
= [#compare(@y, @x)]
[#compare(#s(@x), #0())] = [0 0] @x + [0]
[1 0] [5]
>= [0]
[3]
= [#GT()]
[#compare(#s(@x), #s(@y))] = [0 0] @x + [0 0] @y + [0]
[1 0] [0 1] [6]
>= [0 0] @x + [0 0] @y + [0]
[1 0] [0 1] [0]
= [#compare(@x, @y)]
[split#1(nil())] = [9]
[10]
> [1]
[2]
= [nil()]
[split#1(::(@x, @xs))] = [0 0] @x + [3 0] @xs + [15]
[3 0] [2 3] [8]
> [3 0] @xs + [10]
[2 3] [7]
= [insert(@x, split(@xs))]
[#greater(@x, @y)] = [3 0] @x + [0 3] @y + [0]
[0 0] [0 1] [0]
>= [3 0] @x + [0 3] @y + [0]
[0 0] [0 0] [0]
= [#ckgt(#compare(@x, @y))]
[insert#4(#true(), @key1, @ls, @valX, @vals1, @x)] = [1 0] @ls + [0 0] @vals1 + [6]
[0 1] [1 0] [6]
> [1 0] @ls + [0 0] @vals1 + [3]
[0 1] [1 0] [4]
= [::(tuple#2(::(@valX, @vals1), @key1), @ls)]
[insert#4(#false(), @key1, @ls, @valX, @vals1, @x)] = [1 0] @ls + [0 0] @vals1 + [6]
[0 1] [1 0] [6]
>= [1 0] @ls + [0 0] @vals1 + [6]
[0 1] [1 0] [6]
= [::(tuple#2(@vals1, @key1), insert(@x, @ls))]
[insert#1(tuple#2(@valX, @keyX), @l, @x)] = [1 0] @l + [3]
[0 1] [5]
>= [1 0] @l + [3]
[0 1] [5]
= [insert#2(@l, @keyX, @valX, @x)]
[quicksort#1(nil())] = [3]
[4]
> [1]
[2]
= [nil()]
[quicksort#1(::(@z, @zs))] = [3]
[4]
> [1]
[0]
= [quicksort#2(splitqs(@z, @zs), @z)]
[append#1(nil(), @ys)] = [7 0] @ys + [3]
[0 7] [2]
> [1 0] @ys + [0]
[0 1] [0]
= [@ys]
[append#1(::(@x, @xs), @ys)] = [0 0] @x + [7 0] @ys + [0 0] @xs + [3]
[1 0] [0 7] [0 1] [0]
? [0 0] @x + [0 0] @xs + [3]
[1 0] [0 3] [0]
= [::(@x, append(@xs, @ys))]
[splitqs(@pivot, @l)] = [4 5] @l + [0 4] @pivot + [3]
[1 0] [0 0] [1]
> [1 4] @l + [0 4] @pivot + [2]
[1 0] [0 0] [1]
= [splitqs#1(@l, @pivot)]
[quicksort(@l)] = [0 2] @l + [5]
[0 0] [0]
? [3]
[4]
= [quicksort#1(@l)]
[splitqs#3(#true(), @ls, @rs, @x)] = [1 0] @x + [1 0] @ls + [0 0] @rs + [4]
[0 0] [1 0] [1 0] [3]
> [1 0] @ls + [0 0] @rs + [1]
[1 0] [1 0] [3]
= [tuple#2(@ls, ::(@x, @rs))]
[splitqs#3(#false(), @ls, @rs, @x)] = [1 0] @x + [1 0] @ls + [0 0] @rs + [5]
[0 0] [1 0] [1 0] [3]
> [1 0] @ls + [0 0] @rs + [4]
[1 0] [1 0] [3]
= [tuple#2(::(@x, @ls), @rs)]
[splitqs#2(tuple#2(@ls, @rs), @pivot, @x)] = [4 0] @x + [1 0] @ls + [0 4] @pivot + [1 0] @rs + [0]
[0 0] [1 0] [0 0] [1 0] [3]
>= [4 0] @x + [1 0] @ls + [0 4] @pivot + [0 0] @rs + [0]
[0 0] [1 0] [0 0] [1 0] [3]
= [splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)]
[splitqs#1(nil(), @pivot)] = [0 4] @pivot + [11]
[0 0] [2]
> [2]
[2]
= [tuple#2(nil(), nil())]
[splitqs#1(::(@x, @xs), @pivot)] = [4 0] @x + [1 4] @xs + [0 4] @pivot + [5]
[0 0] [1 0] [0 0] [4]
> [4 0] @x + [1 0] @xs + [0 4] @pivot + [1]
[0 0] [1 0] [0 0] [4]
= [splitqs#2(splitqs(@pivot, @xs), @pivot, @x)]
[splitAndSort^#(@l)] = [7 7] @l + [7]
[7 7] [7]
> [4 6] @l + [5]
[0 0] [5]
= [sortAll^#(split(@l))]
[sortAll^#(@l)] = [0 2] @l + [1]
[0 0] [5]
>= [0 2] @l + [1]
[0 0] [5]
= [sortAll#1^#(@l)]
[sortAll#2^#(tuple#2(@vals, @key), @xs)] = [0 2] @xs + [2 0] @vals + [3]
[0 0] [0 0] [5]
> [0 2] @xs + [1]
[0 0] [5]
= [sortAll^#(@xs)]
[sortAll#2^#(tuple#2(@vals, @key), @xs)] = [0 2] @xs + [2 0] @vals + [3]
[0 0] [0 0] [5]
>= [2 0] @vals + [3]
[0 0] [5]
= [quicksort^#(@vals)]
[quicksort^#(@l)] = [2 0] @l + [3]
[0 0] [5]
>= [2 0] @l + [3]
[0 0] [5]
= [quicksort#1^#(@l)]
[quicksort#2^#(tuple#2(@xs, @ys), @z)] = [2 0] @ys + [2 0] @xs + [3]
[0 0] [0 0] [5]
>= [2 0] @xs + [3]
[0 0] [5]
= [quicksort^#(@xs)]
[quicksort#2^#(tuple#2(@xs, @ys), @z)] = [2 0] @ys + [2 0] @xs + [3]
[0 0] [0 0] [5]
>= [2 0] @ys + [3]
[0 0] [5]
= [quicksort^#(@ys)]
[quicksort#2^#(tuple#2(@xs, @ys), @z)] = [2 0] @ys + [2 0] @xs + [3]
[0 0] [0 0] [5]
> [0]
[1]
= [append^#(quicksort(@xs), ::(@z, quicksort(@ys)))]
[append^#(@l, @ys)] = [0]
[1]
>= [0]
[0]
= [c_5(append#1^#(@l, @ys))]
[append#1^#(::(@x, @xs), @ys)] = [0]
[1]
>= [0]
[0]
= [c_6(append^#(@xs, @ys))]
[sortAll#1^#(::(@x, @xs))] = [2 0] @x + [0 2] @xs + [1]
[0 0] [0 0] [5]
>= [2 0] @x + [0 2] @xs + [1]
[0 0] [0 0] [5]
= [sortAll#2^#(@x, @xs)]
[quicksort#1^#(::(@z, @zs))] = [2 0] @zs + [9]
[0 0] [5]
> [2 0] @zs + [5]
[0 0] [5]
= [quicksort#2^#(splitqs(@z, @zs), @z)]
[quicksort#1^#(::(@z, @zs))] = [2 0] @zs + [9]
[0 0] [5]
> [2 0] @zs + [2]
[0 0] [0]
= [splitqs^#(@z, @zs)]
[splitqs^#(@pivot, @l)] = [2 0] @l + [2]
[0 0] [0]
>= [2 0] @l + [2]
[0 0] [0]
= [c_9(splitqs#1^#(@l, @pivot))]
[splitqs#1^#(::(@x, @xs), @pivot)] = [2 0] @xs + [6]
[0 0] [1]
> [2 0] @xs + [2]
[0 0] [0]
= [c_10(splitqs^#(@pivot, @xs))]
We return to the main proof. Consider the set of all dependency
pairs
:
{ 1: append^#(@l, @ys) -> c_5(append#1^#(@l, @ys))
, 2: append#1^#(::(@x, @xs), @ys) -> c_6(append^#(@xs, @ys))
, 3: splitqs^#(@pivot, @l) -> c_9(splitqs#1^#(@l, @pivot))
, 4: splitqs#1^#(::(@x, @xs), @pivot) ->
c_10(splitqs^#(@pivot, @xs))
, 5: splitAndSort^#(@l) -> sortAll^#(split(@l))
, 6: sortAll^#(@l) -> sortAll#1^#(@l)
, 7: sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs)
, 8: sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals)
, 9: quicksort^#(@l) -> quicksort#1^#(@l)
, 10: quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@xs)
, 11: quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@ys)
, 12: quicksort#2^#(tuple#2(@xs, @ys), @z) ->
append^#(quicksort(@xs), ::(@z, quicksort(@ys)))
, 13: sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs)
, 14: quicksort#1^#(::(@z, @zs)) ->
quicksort#2^#(splitqs(@z, @zs), @z)
, 15: quicksort#1^#(::(@z, @zs)) -> splitqs^#(@z, @zs) }
Processor 'matrix interpretation of dimension 2' induces the
complexity certificate YES(?,O(n^1)) on application of dependency
pairs {4,5,7,12,14,15}. These cover all (indirect) predecessors of
dependency pairs {3,4,5,6,7,8,9,10,11,12,13,14,15}, their number of
application is equally bounded. The dependency pairs are shifted
into the weak component.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^4)).
Strict DPs:
{ append^#(@l, @ys) -> c_5(append#1^#(@l, @ys))
, append#1^#(::(@x, @xs), @ys) -> c_6(append^#(@xs, @ys)) }
Weak DPs:
{ splitAndSort^#(@l) -> sortAll^#(split(@l))
, sortAll^#(@l) -> sortAll#1^#(@l)
, sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs)
, sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals)
, quicksort^#(@l) -> quicksort#1^#(@l)
, quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@xs)
, quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@ys)
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
append^#(quicksort(@xs), ::(@z, quicksort(@ys)))
, sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs)
, quicksort#1^#(::(@z, @zs)) -> quicksort#2^#(splitqs(@z, @zs), @z)
, quicksort#1^#(::(@z, @zs)) -> splitqs^#(@z, @zs)
, splitqs^#(@pivot, @l) -> c_9(splitqs#1^#(@l, @pivot))
, splitqs#1^#(::(@x, @xs), @pivot) ->
c_10(splitqs^#(@pivot, @xs)) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^4))
The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.
{ quicksort#1^#(::(@z, @zs)) -> splitqs^#(@z, @zs)
, splitqs^#(@pivot, @l) -> c_9(splitqs#1^#(@l, @pivot))
, splitqs#1^#(::(@x, @xs), @pivot) ->
c_10(splitqs^#(@pivot, @xs)) }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^4)).
Strict DPs:
{ append^#(@l, @ys) -> c_5(append#1^#(@l, @ys))
, append#1^#(::(@x, @xs), @ys) -> c_6(append^#(@xs, @ys)) }
Weak DPs:
{ splitAndSort^#(@l) -> sortAll^#(split(@l))
, sortAll^#(@l) -> sortAll#1^#(@l)
, sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs)
, sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals)
, quicksort^#(@l) -> quicksort#1^#(@l)
, quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@xs)
, quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@ys)
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
append^#(quicksort(@xs), ::(@z, quicksort(@ys)))
, sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs)
, quicksort#1^#(::(@z, @zs)) ->
quicksort#2^#(splitqs(@z, @zs), @z) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^4))
We use the processor 'matrix interpretation of dimension 4' to
orient following rules strictly.
DPs: { append#1^#(::(@x, @xs), @ys) -> c_6(append^#(@xs, @ys)) }
The induced complexity on above rules (modulo remaining rules) is
YES(?,O(n^4)) . These rules are moved into the corresponding weak
component(s).
Sub-proof:
----------
The following argument positions are usable:
Uargs(c_5) = {1}, Uargs(c_6) = {1}
TcT has computed the following constructor-based matrix
interpretation satisfying not(EDA).
[0 1 0 0] [0 1 0
1] [1]
[#equal](x1, x2) = [0 0 0 1] x1 + [0 1 0
1] x2 + [1]
[0 0 0 0] [0 0 0
0] [0]
[0 0 0 0] [0 0 0
0] [1]
[0 0 0 1] [1]
[#eq](x1, x2) = [0 1 0 1] x2 + [1]
[0 0 0 0] [0]
[0 0 0 0] [1]
[0 1 0 0] [1 0 0
0] [0]
[quicksort#2](x1, x2) = [0 1 0 1] x1 + [1 0 0
0] x2 + [1]
[0 0 0 1] [0 0 0
0] [1]
[0 0 0 0] [0 0 0
0] [1]
[1 0 1 0] [0]
[split](x1) = [1 1 1 1] x1 + [0]
[0 0 1 1] [0]
[0 0 0 0] [1]
[1]
[#true] = [1]
[0]
[1]
[1 0 0 0] [1 0 0
0] [0]
[append](x1, x2) = [1 0 1 0] x1 + [0 1 1
0] x2 + [0]
[0 0 1 0] [0 0 1
0] [0]
[0 0 0 0] [0 0 0
1] [0]
[1 0 0 0] [1 0 0
0] [1]
[insert#3](x1, x2, x3, x4, x5) = [1 0 0 0] x1 + [0 0 1
1] x3 + [1]
[0 0 0 0] [0 0 1
1] [1]
[0 0 0 0] [0 0 0
1] [0]
[0 0 0 0] [1]
[#ckgt](x1) = [0 1 0 0] x1 + [0]
[1 0 1 0] [0]
[0 1 0 0] [0]
[0 0 0 0] [1 0 0
0] [1]
[insert](x1, x2) = [1 0 0 0] x1 + [1 0 1
1] x2 + [0]
[0 0 0 0] [0 0 1
1] [0]
[0 0 0 0] [0 0 0
1] [0]
[1 0 0 0] [1]
[#pos](x1) = [1 1 0 0] x1 + [0]
[0 0 1 0] [1]
[1 0 1 1] [0]
[0]
[#EQ] = [1]
[0]
[1]
[1 0 0 0] [1]
[insert#2](x1, x2, x3, x4) = [1 0 1 1] x1 + [0]
[0 0 1 1] [0]
[0 0 0 1] [0]
[0 0 1 0] [0 0 0
1] [0]
[#and](x1, x2) = [0 0 0 0] x1 + [1 0 0
0] x2 + [0]
[0 0 0 0] [0 0 0
0] [0]
[0 0 0 0] [0 0 0
0] [1]
[0 0 0 0] [0 0 0
0] [0]
[#compare](x1, x2) = [1 0 0 0] x1 + [0 0 1
0] x2 + [0]
[0 0 0 0] [0 0 0
0] [0]
[0 0 0 0] [0 0 0
0] [1]
[0 0 1 0] [0 0 0
0] [0]
[tuple#2](x1, x2) = [1 0 1 0] x1 + [1 0 1
1] x2 + [0]
[0 0 1 0] [0 0 1
0] [0]
[0 0 1 0] [0 0 1
0] [0]
[0]
[nil] = [0]
[0]
[1]
[1 0 1 0] [0]
[split#1](x1) = [1 1 1 1] x1 + [0]
[0 0 1 1] [0]
[0 0 0 0] [1]
[0 0 0 0] [0 0 0
0] [1]
[#greater](x1, x2) = [1 0 0 0] x1 + [0 0 1
1] x2 + [0]
[0 0 0 0] [0 0 0
0] [0]
[1 0 0 0] [0 0 1
0] [0]
[0 0 0 0] [1 0 0
0] [0 0 1 0] [1]
[insert#4](x1, x2, x3, x4, x5, x6) = [0 0 0 0] x1 + [0 0 1
1] x3 + [0 0 1 0] x5 + [1]
[0 0 1 1] [0 0 1
1] [0 0 0 0] [0]
[0 0 0 0] [0 0 0
1] [0 0 0 0] [0]
[1 0 0 0] [1]
[insert#1](x1, x2, x3) = [1 0 1 1] x2 + [0]
[0 0 1 1] [0]
[0 0 0 1] [0]
[1 0 1 0] [0]
[quicksort#1](x1) = [1 1 1 1] x1 + [1]
[0 0 1 0] [0]
[0 0 0 0] [1]
[1 0 0 0] [1 0 0
0] [0]
[append#1](x1, x2) = [1 0 1 0] x1 + [0 1 1
0] x2 + [0]
[0 0 1 0] [0 0 1
0] [0]
[0 0 0 0] [0 0 0
1] [0]
[0 0 0 1] [1 0 1
0] [1]
[splitqs](x1, x2) = [0 0 0 0] x1 + [1 0 1
0] x2 + [1]
[0 0 1 1] [1 1 1
1] [1]
[0 0 0 0] [0 0 1
0] [0]
[0]
[#false] = [0]
[0]
[1]
[1 0 1 0] [0]
[quicksort](x1) = [1 1 1 1] x1 + [1]
[0 0 1 0] [0]
[0 0 0 0] [1]
[1 0 0 0] [1 0 0
0] [0]
[::](x1, x2) = [1 0 0 0] x1 + [0 0 1
0] x2 + [0]
[0 0 0 0] [0 0 1
0] [1]
[0 0 0 0] [0 0 0
1] [0]
[0]
[#LT] = [1]
[0]
[1]
[0 0 0 0] [0 0 1
0] [0 0 0 0] [0 0 0 0] [1]
[splitqs#3](x1, x2, x3, x4) = [0 0 0 0] x1 + [1 0 1
0] x2 + [1 0 1 1] x3 + [1 0 0 0] x4 + [1]
[1 0 1 1] [0 0 1
0] [0 0 1 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 1
0] [0 0 1 0] [0 0 0 0] [1]
[0 1 0 0] [0 0 0
1] [0 0 0 0] [1]
[splitqs#2](x1, x2, x3) = [0 1 0 0] x1 + [0 0 0
0] x2 + [1 0 0 0] x3 + [1]
[1 0 0 1] [0 0 1
0] [1 0 0 0] [1]
[0 0 0 1] [0 0 0
0] [0 0 0 0] [1]
[1]
[#0] = [0]
[1]
[0]
[0 0 1 0] [1]
[#neg](x1) = [0 1 0 0] x1 + [1]
[1 0 0 0] [1]
[1 0 1 1] [0]
[1 0 0 0] [1]
[#s](x1) = [0 1 0 0] x1 + [0]
[0 0 1 0] [0]
[0 0 0 1] [0]
[0]
[#GT] = [1]
[0]
[1]
[1 0 1 0] [0 0 0
1] [1]
[splitqs#1](x1, x2) = [1 0 1 0] x1 + [0 0 0
0] x2 + [1]
[1 1 1 1] [0 0 1
1] [1]
[0 0 1 0] [0 0 0
0] [0]
[1 0 1 0] [1]
[splitAndSort^#](x1) = [1 1 1 1] x1 + [1]
[1 1 1 1] [1]
[1 1 1 1] [1]
[1 0 0 1] [0]
[sortAll^#](x1) = [0 0 0 0] x1 + [0]
[0 0 0 0] [0]
[0 0 0 0] [1]
[1 0 0 0] [1 0 0
1] [0]
[sortAll#2^#](x1, x2) = [0 0 0 0] x1 + [0 0 0
0] x2 + [0]
[0 0 0 0] [0 0 0
0] [0]
[0 0 0 0] [0 0 0
0] [1]
[0 0 1 0] [0]
[quicksort^#](x1) = [0 0 0 0] x1 + [0]
[0 0 0 0] [0]
[0 0 0 0] [1]
[0 0 0 1] [1]
[quicksort#2^#](x1, x2) = [0 0 0 0] x1 + [0]
[0 0 0 0] [0]
[0 0 0 0] [1]
[0 0 1 1] [0]
[append^#](x1, x2) = [0 0 0 0] x1 + [0]
[0 0 0 0] [0]
[0 0 0 0] [1]
[0 0 1 1] [0]
[append#1^#](x1, x2) = [0 0 0 0] x1 + [1]
[0 0 0 0] [0]
[0 0 0 0] [0]
[1 0 0 1] [0]
[sortAll#1^#](x1) = [0 0 0 0] x1 + [0]
[0 0 0 0] [0]
[0 0 0 0] [1]
[0 0 1 0] [0]
[quicksort#1^#](x1) = [0 0 0 0] x1 + [0]
[0 0 0 0] [0]
[0 0 0 0] [1]
[1 0 0 0] [0]
[c_5](x1) = [0 0 0 0] x1 + [0]
[0 0 0 0] [0]
[0 0 0 0] [1]
[1 0 0 0] [0]
[c_6](x1) = [0 0 0 0] x1 + [0]
[0 0 0 0] [0]
[0 0 0 0] [0]
The order satisfies the following ordering constraints:
[#equal(@x, @y)] = [0 1 0 0] [0 1 0 1] [1]
[0 0 0 1] @x + [0 1 0 1] @y + [1]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [1]
>= [0 0 0 1] [1]
[0 1 0 1] @y + [1]
[0 0 0 0] [0]
[0 0 0 0] [1]
= [#eq(@x, @y)]
[#eq(#pos(@x), #pos(@y))] = [1 0 1 1] [1]
[2 1 1 1] @y + [1]
[0 0 0 0] [0]
[0 0 0 0] [1]
>= [0 0 0 1] [1]
[0 1 0 1] @y + [1]
[0 0 0 0] [0]
[0 0 0 0] [1]
= [#eq(@x, @y)]
[#eq(#pos(@x), #0())] = [1]
[1]
[0]
[1]
> [0]
[0]
[0]
[1]
= [#false()]
[#eq(#pos(@x), #neg(@y))] = [1 0 1 1] [1]
[1 1 1 1] @y + [2]
[0 0 0 0] [0]
[0 0 0 0] [1]
> [0]
[0]
[0]
[1]
= [#false()]
[#eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [0 0 1 0] [0 0 1 0] [1]
[1 0 2 0] @y_1 + [1 0 2 1] @y_2 + [1]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [1]
>= [0 0 0 0] [1]
[0 0 0 1] @y_2 + [1]
[0 0 0 0] [0]
[0 0 0 0] [1]
= [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))]
[#eq(tuple#2(@x_1, @x_2), nil())] = [2]
[2]
[0]
[1]
> [0]
[0]
[0]
[1]
= [#false()]
[#eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2))] = [0 0 0 0] [0 0 0 1] [1]
[1 0 0 0] @y_1 + [0 0 1 1] @y_2 + [1]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [1]
> [0]
[0]
[0]
[1]
= [#false()]
[#eq(nil(), tuple#2(@y_1, @y_2))] = [0 0 1 0] [0 0 1 0] [1]
[1 0 2 0] @y_1 + [1 0 2 1] @y_2 + [1]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [1]
> [0]
[0]
[0]
[1]
= [#false()]
[#eq(nil(), nil())] = [2]
[2]
[0]
[1]
> [1]
[1]
[0]
[1]
= [#true()]
[#eq(nil(), ::(@y_1, @y_2))] = [0 0 0 0] [0 0 0 1] [1]
[1 0 0 0] @y_1 + [0 0 1 1] @y_2 + [1]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [1]
> [0]
[0]
[0]
[1]
= [#false()]
[#eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [0 0 1 0] [0 0 1 0] [1]
[1 0 2 0] @y_1 + [1 0 2 1] @y_2 + [1]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [1]
> [0]
[0]
[0]
[1]
= [#false()]
[#eq(::(@x_1, @x_2), nil())] = [2]
[2]
[0]
[1]
> [0]
[0]
[0]
[1]
= [#false()]
[#eq(::(@x_1, @x_2), ::(@y_1, @y_2))] = [0 0 0 0] [0 0 0 1] [1]
[1 0 0 0] @y_1 + [0 0 1 1] @y_2 + [1]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [1]
>= [0 0 0 0] [1]
[0 0 0 1] @y_2 + [1]
[0 0 0 0] [0]
[0 0 0 0] [1]
= [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))]
[#eq(#0(), #pos(@y))] = [1 0 1 1] [1]
[2 1 1 1] @y + [1]
[0 0 0 0] [0]
[0 0 0 0] [1]
> [0]
[0]
[0]
[1]
= [#false()]
[#eq(#0(), #0())] = [1]
[1]
[0]
[1]
>= [1]
[1]
[0]
[1]
= [#true()]
[#eq(#0(), #neg(@y))] = [1 0 1 1] [1]
[1 1 1 1] @y + [2]
[0 0 0 0] [0]
[0 0 0 0] [1]
> [0]
[0]
[0]
[1]
= [#false()]
[#eq(#0(), #s(@y))] = [0 0 0 1] [1]
[0 1 0 1] @y + [1]
[0 0 0 0] [0]
[0 0 0 0] [1]
> [0]
[0]
[0]
[1]
= [#false()]
[#eq(#neg(@x), #pos(@y))] = [1 0 1 1] [1]
[2 1 1 1] @y + [1]
[0 0 0 0] [0]
[0 0 0 0] [1]
> [0]
[0]
[0]
[1]
= [#false()]
[#eq(#neg(@x), #0())] = [1]
[1]
[0]
[1]
> [0]
[0]
[0]
[1]
= [#false()]
[#eq(#neg(@x), #neg(@y))] = [1 0 1 1] [1]
[1 1 1 1] @y + [2]
[0 0 0 0] [0]
[0 0 0 0] [1]
>= [0 0 0 1] [1]
[0 1 0 1] @y + [1]
[0 0 0 0] [0]
[0 0 0 0] [1]
= [#eq(@x, @y)]
[#eq(#s(@x), #0())] = [1]
[1]
[0]
[1]
> [0]
[0]
[0]
[1]
= [#false()]
[#eq(#s(@x), #s(@y))] = [0 0 0 1] [1]
[0 1 0 1] @y + [1]
[0 0 0 0] [0]
[0 0 0 0] [1]
>= [0 0 0 1] [1]
[0 1 0 1] @y + [1]
[0 0 0 0] [0]
[0 0 0 0] [1]
= [#eq(@x, @y)]
[quicksort#2(tuple#2(@xs, @ys), @z)] = [1 0 1 1] [1 0 1 0] [1 0 0 0] [0]
[1 0 2 1] @ys + [1 0 2 0] @xs + [1 0 0 0] @z + [1]
[0 0 1 0] [0 0 1 0] [0 0 0 0] [1]
[0 0 0 0] [0 0 0 0] [0 0 0 0] [1]
>= [1 0 1 0] [1 0 1 0] [1 0 0 0] [0]
[0 0 2 0] @ys + [1 0 2 0] @xs + [1 0 0 0] @z + [1]
[0 0 1 0] [0 0 1 0] [0 0 0 0] [1]
[0 0 0 0] [0 0 0 0] [0 0 0 0] [1]
= [append(quicksort(@xs), ::(@z, quicksort(@ys)))]
[split(@l)] = [1 0 1 0] [0]
[1 1 1 1] @l + [0]
[0 0 1 1] [0]
[0 0 0 0] [1]
>= [1 0 1 0] [0]
[1 1 1 1] @l + [0]
[0 0 1 1] [0]
[0 0 0 0] [1]
= [split#1(@l)]
[append(@l, @ys)] = [1 0 0 0] [1 0 0 0] [0]
[1 0 1 0] @l + [0 1 1 0] @ys + [0]
[0 0 1 0] [0 0 1 0] [0]
[0 0 0 0] [0 0 0 1] [0]
>= [1 0 0 0] [1 0 0 0] [0]
[1 0 1 0] @l + [0 1 1 0] @ys + [0]
[0 0 1 0] [0 0 1 0] [0]
[0 0 0 0] [0 0 0 1] [0]
= [append#1(@l, @ys)]
[insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x)] = [1 0 0 0] [0 0 1 0] [1]
[0 0 1 1] @ls + [0 0 1 0] @vals1 + [1]
[0 0 1 1] [0 0 0 0] [1]
[0 0 0 1] [0 0 0 0] [0]
>= [1 0 0 0] [0 0 1 0] [1]
[0 0 1 1] @ls + [0 0 1 0] @vals1 + [1]
[0 0 1 1] [0 0 0 0] [1]
[0 0 0 1] [0 0 0 0] [0]
= [insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)]
[#ckgt(#EQ())] = [1]
[1]
[0]
[1]
> [0]
[0]
[0]
[1]
= [#false()]
[#ckgt(#LT())] = [1]
[1]
[0]
[1]
> [0]
[0]
[0]
[1]
= [#false()]
[#ckgt(#GT())] = [1]
[1]
[0]
[1]
>= [1]
[1]
[0]
[1]
= [#true()]
[insert(@x, @l)] = [0 0 0 0] [1 0 0 0] [1]
[1 0 0 0] @x + [1 0 1 1] @l + [0]
[0 0 0 0] [0 0 1 1] [0]
[0 0 0 0] [0 0 0 1] [0]
>= [1 0 0 0] [1]
[1 0 1 1] @l + [0]
[0 0 1 1] [0]
[0 0 0 1] [0]
= [insert#1(@x, @l, @x)]
[insert#2(nil(), @keyX, @valX, @x)] = [1]
[1]
[1]
[1]
>= [1]
[1]
[1]
[1]
= [::(tuple#2(::(@valX, nil()), @keyX), nil())]
[insert#2(::(@l1, @ls), @keyX, @valX, @x)] = [1 0 0 0] [1 0 0 0] [1]
[1 0 0 0] @l1 + [1 0 1 1] @ls + [1]
[0 0 0 0] [0 0 1 1] [1]
[0 0 0 0] [0 0 0 1] [0]
>= [1 0 0 0] [1 0 0 0] [1]
[1 0 0 0] @l1 + [0 0 1 1] @ls + [1]
[0 0 0 0] [0 0 1 1] [1]
[0 0 0 0] [0 0 0 1] [0]
= [insert#3(@l1, @keyX, @ls, @valX, @x)]
[#and(#true(), #true())] = [1]
[1]
[0]
[1]
>= [1]
[1]
[0]
[1]
= [#true()]
[#and(#true(), #false())] = [1]
[0]
[0]
[1]
> [0]
[0]
[0]
[1]
= [#false()]
[#and(#false(), #true())] = [1]
[1]
[0]
[1]
> [0]
[0]
[0]
[1]
= [#false()]
[#and(#false(), #false())] = [1]
[0]
[0]
[1]
> [0]
[0]
[0]
[1]
= [#false()]
[#compare(#pos(@x), #pos(@y))] = [0 0 0 0] [0 0 0 0] [0]
[1 0 0 0] @x + [0 0 1 0] @y + [2]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [1]
>= [0 0 0 0] [0 0 0 0] [0]
[1 0 0 0] @x + [0 0 1 0] @y + [0]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [1]
= [#compare(@x, @y)]
[#compare(#pos(@x), #0())] = [0 0 0 0] [0]
[1 0 0 0] @x + [2]
[0 0 0 0] [0]
[0 0 0 0] [1]
>= [0]
[1]
[0]
[1]
= [#GT()]
[#compare(#pos(@x), #neg(@y))] = [0 0 0 0] [0 0 0 0] [0]
[1 0 0 0] @x + [1 0 0 0] @y + [2]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [1]
>= [0]
[1]
[0]
[1]
= [#GT()]
[#compare(#0(), #pos(@y))] = [0 0 0 0] [0]
[0 0 1 0] @y + [2]
[0 0 0 0] [0]
[0 0 0 0] [1]
>= [0]
[1]
[0]
[1]
= [#LT()]
[#compare(#0(), #0())] = [0]
[2]
[0]
[1]
>= [0]
[1]
[0]
[1]
= [#EQ()]
[#compare(#0(), #neg(@y))] = [0 0 0 0] [0]
[1 0 0 0] @y + [2]
[0 0 0 0] [0]
[0 0 0 0] [1]
>= [0]
[1]
[0]
[1]
= [#GT()]
[#compare(#0(), #s(@y))] = [0 0 0 0] [0]
[0 0 1 0] @y + [1]
[0 0 0 0] [0]
[0 0 0 0] [1]
>= [0]
[1]
[0]
[1]
= [#LT()]
[#compare(#neg(@x), #pos(@y))] = [0 0 0 0] [0 0 0 0] [0]
[0 0 1 0] @x + [0 0 1 0] @y + [2]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [1]
>= [0]
[1]
[0]
[1]
= [#LT()]
[#compare(#neg(@x), #0())] = [0 0 0 0] [0]
[0 0 1 0] @x + [2]
[0 0 0 0] [0]
[0 0 0 0] [1]
>= [0]
[1]
[0]
[1]
= [#LT()]
[#compare(#neg(@x), #neg(@y))] = [0 0 0 0] [0 0 0 0] [0]
[0 0 1 0] @x + [1 0 0 0] @y + [2]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [1]
>= [0 0 0 0] [0 0 0 0] [0]
[0 0 1 0] @x + [1 0 0 0] @y + [0]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [1]
= [#compare(@y, @x)]
[#compare(#s(@x), #0())] = [0 0 0 0] [0]
[1 0 0 0] @x + [2]
[0 0 0 0] [0]
[0 0 0 0] [1]
>= [0]
[1]
[0]
[1]
= [#GT()]
[#compare(#s(@x), #s(@y))] = [0 0 0 0] [0 0 0 0] [0]
[1 0 0 0] @x + [0 0 1 0] @y + [1]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [1]
>= [0 0 0 0] [0 0 0 0] [0]
[1 0 0 0] @x + [0 0 1 0] @y + [0]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [1]
= [#compare(@x, @y)]
[split#1(nil())] = [0]
[1]
[1]
[1]
>= [0]
[0]
[0]
[1]
= [nil()]
[split#1(::(@x, @xs))] = [1 0 0 0] [1 0 1 0] [1]
[2 0 0 0] @x + [1 0 2 1] @xs + [1]
[0 0 0 0] [0 0 1 1] [1]
[0 0 0 0] [0 0 0 0] [1]
>= [0 0 0 0] [1 0 1 0] [1]
[1 0 0 0] @x + [1 0 2 1] @xs + [1]
[0 0 0 0] [0 0 1 1] [1]
[0 0 0 0] [0 0 0 0] [1]
= [insert(@x, split(@xs))]
[#greater(@x, @y)] = [0 0 0 0] [0 0 0 0] [1]
[1 0 0 0] @x + [0 0 1 1] @y + [0]
[0 0 0 0] [0 0 0 0] [0]
[1 0 0 0] [0 0 1 0] [0]
>= [0 0 0 0] [0 0 0 0] [1]
[1 0 0 0] @x + [0 0 1 0] @y + [0]
[0 0 0 0] [0 0 0 0] [0]
[1 0 0 0] [0 0 1 0] [0]
= [#ckgt(#compare(@x, @y))]
[insert#4(#true(), @key1, @ls, @valX, @vals1, @x)] = [1 0 0 0] [0 0 1 0] [1]
[0 0 1 1] @ls + [0 0 1 0] @vals1 + [1]
[0 0 1 1] [0 0 0 0] [1]
[0 0 0 1] [0 0 0 0] [0]
>= [1 0 0 0] [0 0 1 0] [1]
[0 0 1 0] @ls + [0 0 1 0] @vals1 + [1]
[0 0 1 0] [0 0 0 0] [1]
[0 0 0 1] [0 0 0 0] [0]
= [::(tuple#2(::(@valX, @vals1), @key1), @ls)]
[insert#4(#false(), @key1, @ls, @valX, @vals1, @x)] = [1 0 0 0] [0 0 1 0] [1]
[0 0 1 1] @ls + [0 0 1 0] @vals1 + [1]
[0 0 1 1] [0 0 0 0] [1]
[0 0 0 1] [0 0 0 0] [0]
>= [1 0 0 0] [0 0 1 0] [1]
[0 0 1 1] @ls + [0 0 1 0] @vals1 + [0]
[0 0 1 1] [0 0 0 0] [1]
[0 0 0 1] [0 0 0 0] [0]
= [::(tuple#2(@vals1, @key1), insert(@x, @ls))]
[insert#1(tuple#2(@valX, @keyX), @l, @x)] = [1 0 0 0] [1]
[1 0 1 1] @l + [0]
[0 0 1 1] [0]
[0 0 0 1] [0]
>= [1 0 0 0] [1]
[1 0 1 1] @l + [0]
[0 0 1 1] [0]
[0 0 0 1] [0]
= [insert#2(@l, @keyX, @valX, @x)]
[quicksort#1(nil())] = [0]
[2]
[0]
[1]
>= [0]
[0]
[0]
[1]
= [nil()]
[quicksort#1(::(@z, @zs))] = [1 0 0 0] [1 0 1 0] [1]
[2 0 0 0] @z + [1 0 2 1] @zs + [2]
[0 0 0 0] [0 0 1 0] [1]
[0 0 0 0] [0 0 0 0] [1]
>= [1 0 0 0] [1 0 1 0] [1]
[1 0 0 0] @z + [1 0 2 0] @zs + [2]
[0 0 0 0] [0 0 1 0] [1]
[0 0 0 0] [0 0 0 0] [1]
= [quicksort#2(splitqs(@z, @zs), @z)]
[append#1(nil(), @ys)] = [1 0 0 0] [0]
[0 1 1 0] @ys + [0]
[0 0 1 0] [0]
[0 0 0 1] [0]
>= [1 0 0 0] [0]
[0 1 0 0] @ys + [0]
[0 0 1 0] [0]
[0 0 0 1] [0]
= [@ys]
[append#1(::(@x, @xs), @ys)] = [1 0 0 0] [1 0 0 0] [1 0 0 0] [0]
[1 0 0 0] @x + [0 1 1 0] @ys + [1 0 1 0] @xs + [1]
[0 0 0 0] [0 0 1 0] [0 0 1 0] [1]
[0 0 0 0] [0 0 0 1] [0 0 0 0] [0]
>= [1 0 0 0] [1 0 0 0] [1 0 0 0] [0]
[1 0 0 0] @x + [0 0 1 0] @ys + [0 0 1 0] @xs + [0]
[0 0 0 0] [0 0 1 0] [0 0 1 0] [1]
[0 0 0 0] [0 0 0 1] [0 0 0 0] [0]
= [::(@x, append(@xs, @ys))]
[splitqs(@pivot, @l)] = [1 0 1 0] [0 0 0 1] [1]
[1 0 1 0] @l + [0 0 0 0] @pivot + [1]
[1 1 1 1] [0 0 1 1] [1]
[0 0 1 0] [0 0 0 0] [0]
>= [1 0 1 0] [0 0 0 1] [1]
[1 0 1 0] @l + [0 0 0 0] @pivot + [1]
[1 1 1 1] [0 0 1 1] [1]
[0 0 1 0] [0 0 0 0] [0]
= [splitqs#1(@l, @pivot)]
[quicksort(@l)] = [1 0 1 0] [0]
[1 1 1 1] @l + [1]
[0 0 1 0] [0]
[0 0 0 0] [1]
>= [1 0 1 0] [0]
[1 1 1 1] @l + [1]
[0 0 1 0] [0]
[0 0 0 0] [1]
= [quicksort#1(@l)]
[splitqs#3(#true(), @ls, @rs, @x)] = [0 0 0 0] [0 0 1 0] [0 0 0 0] [1]
[1 0 0 0] @x + [1 0 1 0] @ls + [1 0 1 1] @rs + [1]
[0 0 0 0] [0 0 1 0] [0 0 1 0] [2]
[0 0 0 0] [0 0 1 0] [0 0 1 0] [1]
> [0 0 0 0] [0 0 1 0] [0 0 0 0] [0]
[1 0 0 0] @x + [1 0 1 0] @ls + [1 0 1 1] @rs + [1]
[0 0 0 0] [0 0 1 0] [0 0 1 0] [1]
[0 0 0 0] [0 0 1 0] [0 0 1 0] [1]
= [tuple#2(@ls, ::(@x, @rs))]
[splitqs#3(#false(), @ls, @rs, @x)] = [0 0 0 0] [0 0 1 0] [0 0 0 0] [1]
[1 0 0 0] @x + [1 0 1 0] @ls + [1 0 1 1] @rs + [1]
[0 0 0 0] [0 0 1 0] [0 0 1 0] [1]
[0 0 0 0] [0 0 1 0] [0 0 1 0] [1]
>= [0 0 0 0] [0 0 1 0] [0 0 0 0] [1]
[1 0 0 0] @x + [1 0 1 0] @ls + [1 0 1 1] @rs + [1]
[0 0 0 0] [0 0 1 0] [0 0 1 0] [1]
[0 0 0 0] [0 0 1 0] [0 0 1 0] [1]
= [tuple#2(::(@x, @ls), @rs)]
[splitqs#2(tuple#2(@ls, @rs), @pivot, @x)] = [0 0 0 0] [1 0 1 0] [0 0 0 1] [1 0 1
1] [1]
[1 0 0 0] @x + [1 0 1 0] @ls + [0 0 0 0] @pivot + [1 0 1
1] @rs + [1]
[1 0 0 0] [0 0 2 0] [0 0 1 0] [0 0 1
0] [1]
[0 0 0 0] [0 0 1 0] [0 0 0 0] [0 0 1
0] [1]
>= [0 0 0 0] [0 0 1 0] [0 0 0 0] [0 0 0
0] [1]
[1 0 0 0] @x + [1 0 1 0] @ls + [0 0 0 0] @pivot + [1 0 1
1] @rs + [1]
[1 0 0 0] [0 0 1 0] [0 0 1 0] [0 0 1
0] [1]
[0 0 0 0] [0 0 1 0] [0 0 0 0] [0 0 1
0] [1]
= [splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)]
[splitqs#1(nil(), @pivot)] = [0 0 0 1] [1]
[0 0 0 0] @pivot + [1]
[0 0 1 1] [2]
[0 0 0 0] [0]
> [0]
[1]
[0]
[0]
= [tuple#2(nil(), nil())]
[splitqs#1(::(@x, @xs), @pivot)] = [1 0 0 0] [1 0 1 0] [0 0 0 1] [2]
[1 0 0 0] @x + [1 0 1 0] @xs + [0 0 0 0] @pivot + [2]
[2 0 0 0] [1 0 2 1] [0 0 1 1] [2]
[0 0 0 0] [0 0 1 0] [0 0 0 0] [1]
>= [0 0 0 0] [1 0 1 0] [0 0 0 1] [2]
[1 0 0 0] @x + [1 0 1 0] @xs + [0 0 0 0] @pivot + [2]
[1 0 0 0] [1 0 2 0] [0 0 1 1] [2]
[0 0 0 0] [0 0 1 0] [0 0 0 0] [1]
= [splitqs#2(splitqs(@pivot, @xs), @pivot, @x)]
[splitAndSort^#(@l)] = [1 0 1 0] [1]
[1 1 1 1] @l + [1]
[1 1 1 1] [1]
[1 1 1 1] [1]
>= [1 0 1 0] [1]
[0 0 0 0] @l + [0]
[0 0 0 0] [0]
[0 0 0 0] [1]
= [sortAll^#(split(@l))]
[sortAll^#(@l)] = [1 0 0 1] [0]
[0 0 0 0] @l + [0]
[0 0 0 0] [0]
[0 0 0 0] [1]
>= [1 0 0 1] [0]
[0 0 0 0] @l + [0]
[0 0 0 0] [0]
[0 0 0 0] [1]
= [sortAll#1^#(@l)]
[sortAll#2^#(tuple#2(@vals, @key), @xs)] = [1 0 0 1] [0 0 1 0] [0]
[0 0 0 0] @xs + [0 0 0 0] @vals + [0]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [1]
>= [1 0 0 1] [0]
[0 0 0 0] @xs + [0]
[0 0 0 0] [0]
[0 0 0 0] [1]
= [sortAll^#(@xs)]
[sortAll#2^#(tuple#2(@vals, @key), @xs)] = [1 0 0 1] [0 0 1 0] [0]
[0 0 0 0] @xs + [0 0 0 0] @vals + [0]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [1]
>= [0 0 1 0] [0]
[0 0 0 0] @vals + [0]
[0 0 0 0] [0]
[0 0 0 0] [1]
= [quicksort^#(@vals)]
[quicksort^#(@l)] = [0 0 1 0] [0]
[0 0 0 0] @l + [0]
[0 0 0 0] [0]
[0 0 0 0] [1]
>= [0 0 1 0] [0]
[0 0 0 0] @l + [0]
[0 0 0 0] [0]
[0 0 0 0] [1]
= [quicksort#1^#(@l)]
[quicksort#2^#(tuple#2(@xs, @ys), @z)] = [0 0 1 0] [0 0 1 0] [1]
[0 0 0 0] @ys + [0 0 0 0] @xs + [0]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [1]
> [0 0 1 0] [0]
[0 0 0 0] @xs + [0]
[0 0 0 0] [0]
[0 0 0 0] [1]
= [quicksort^#(@xs)]
[quicksort#2^#(tuple#2(@xs, @ys), @z)] = [0 0 1 0] [0 0 1 0] [1]
[0 0 0 0] @ys + [0 0 0 0] @xs + [0]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [1]
> [0 0 1 0] [0]
[0 0 0 0] @ys + [0]
[0 0 0 0] [0]
[0 0 0 0] [1]
= [quicksort^#(@ys)]
[quicksort#2^#(tuple#2(@xs, @ys), @z)] = [0 0 1 0] [0 0 1 0] [1]
[0 0 0 0] @ys + [0 0 0 0] @xs + [0]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [1]
>= [0 0 1 0] [1]
[0 0 0 0] @xs + [0]
[0 0 0 0] [0]
[0 0 0 0] [1]
= [append^#(quicksort(@xs), ::(@z, quicksort(@ys)))]
[append^#(@l, @ys)] = [0 0 1 1] [0]
[0 0 0 0] @l + [0]
[0 0 0 0] [0]
[0 0 0 0] [1]
>= [0 0 1 1] [0]
[0 0 0 0] @l + [0]
[0 0 0 0] [0]
[0 0 0 0] [1]
= [c_5(append#1^#(@l, @ys))]
[append#1^#(::(@x, @xs), @ys)] = [0 0 1 1] [1]
[0 0 0 0] @xs + [1]
[0 0 0 0] [0]
[0 0 0 0] [0]
> [0 0 1 1] [0]
[0 0 0 0] @xs + [0]
[0 0 0 0] [0]
[0 0 0 0] [0]
= [c_6(append^#(@xs, @ys))]
[sortAll#1^#(::(@x, @xs))] = [1 0 0 0] [1 0 0 1] [0]
[0 0 0 0] @x + [0 0 0 0] @xs + [0]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [1]
>= [1 0 0 0] [1 0 0 1] [0]
[0 0 0 0] @x + [0 0 0 0] @xs + [0]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [1]
= [sortAll#2^#(@x, @xs)]
[quicksort#1^#(::(@z, @zs))] = [0 0 1 0] [1]
[0 0 0 0] @zs + [0]
[0 0 0 0] [0]
[0 0 0 0] [1]
>= [0 0 1 0] [1]
[0 0 0 0] @zs + [0]
[0 0 0 0] [0]
[0 0 0 0] [1]
= [quicksort#2^#(splitqs(@z, @zs), @z)]
We return to the main proof.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^4)).
Strict DPs: { append^#(@l, @ys) -> c_5(append#1^#(@l, @ys)) }
Weak DPs:
{ splitAndSort^#(@l) -> sortAll^#(split(@l))
, sortAll^#(@l) -> sortAll#1^#(@l)
, sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs)
, sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals)
, quicksort^#(@l) -> quicksort#1^#(@l)
, quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@xs)
, quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@ys)
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
append^#(quicksort(@xs), ::(@z, quicksort(@ys)))
, append#1^#(::(@x, @xs), @ys) -> c_6(append^#(@xs, @ys))
, sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs)
, quicksort#1^#(::(@z, @zs)) ->
quicksort#2^#(splitqs(@z, @zs), @z) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^4))
We use the processor 'matrix interpretation of dimension 4' to
orient following rules strictly.
DPs: { append^#(@l, @ys) -> c_5(append#1^#(@l, @ys)) }
The induced complexity on above rules (modulo remaining rules) is
YES(?,O(n^4)) . These rules are moved into the corresponding weak
component(s).
Sub-proof:
----------
The following argument positions are usable:
Uargs(c_5) = {1}, Uargs(c_6) = {1}
TcT has computed the following constructor-based matrix
interpretation satisfying not(EDA).
[0 0 0 0] [0]
[#equal](x1, x2) = [0 0 0 0] x1 + [0]
[0 0 1 0] [0]
[0 0 0 0] [1]
[0 0 0 0] [0]
[#eq](x1, x2) = [0 0 0 0] x1 + [0]
[0 0 1 0] [0]
[0 0 0 0] [1]
[0 1 0 0] [0 0 0
1] [1]
[quicksort#2](x1, x2) = [0 1 0 0] x1 + [0 0 0
0] x2 + [0]
[1 0 1 0] [0 0 0
1] [0]
[1 0 0 0] [0 0 0
0] [1]
[0 0 1 0] [1]
[split](x1) = [0 0 0 0] x1 + [1]
[0 1 0 1] [1]
[0 0 0 1] [1]
[0]
[#true] = [0]
[1]
[1]
[0 0 0 0] [1 1 0
0] [0]
[append](x1, x2) = [0 0 0 0] x1 + [0 1 0
0] x2 + [0]
[0 0 1 0] [0 0 1
0] [0]
[0 0 0 1] [0 0 0
1] [0]
[0 0 0 0] [0 1 0
0] [0 0 0 1] [0]
[insert#3](x1, x2, x3, x4, x5) = [0 0 0 0] x1 + [0 1 0
0] x3 + [0 0 0 0] x4 + [0]
[0 0 0 1] [0 0 1
0] [0 0 0 0] [1]
[0 0 0 0] [0 1 0
1] [0 0 0 0] [1]
[0 0 0 0] [0]
[#ckgt](x1) = [0 0 0 0] x1 + [0]
[1 1 0 1] [0]
[0 0 1 0] [0]
[0 0 0 1] [1 0 0
0] [0]
[insert](x1, x2) = [0 0 0 0] x1 + [0 1 0
0] x2 + [0]
[0 0 0 0] [0 0 1
0] [1]
[0 0 0 0] [0 1 0
1] [0]
[1 0 0 0] [1]
[#pos](x1) = [0 1 0 0] x1 + [1]
[0 0 1 0] [1]
[1 0 0 0] [1]
[0]
[#EQ] = [0]
[1]
[0]
[1 0 0 0] [0 0 0
1] [0]
[insert#2](x1, x2, x3, x4) = [0 1 0 0] x1 + [0 0 0
0] x3 + [0]
[0 0 1 0] [0 0 0
0] [1]
[0 1 0 1] [0 0 0
0] [0]
[0 0 0 0] [0]
[#and](x1, x2) = [0 0 0 0] x2 + [0]
[0 0 1 0] [0]
[0 0 0 0] [1]
[0 0 0 0] [0 0 0
0] [0]
[#compare](x1, x2) = [0 0 0 0] x1 + [0 0 0
0] x2 + [0]
[0 0 1 0] [0 0 1
0] [0]
[1 0 0 0] [1 0 0
0] [0]
[0 0 0 1] [0 0 0
1] [0]
[tuple#2](x1, x2) = [0 0 0 0] x1 + [0 0 0
0] x2 + [1]
[0 0 1 0] [0 0 1
0] [0]
[0 0 0 1] [0 0 0
0] [0]
[1]
[nil] = [1]
[1]
[0]
[0 0 1 0] [1]
[split#1](x1) = [0 0 0 0] x1 + [1]
[0 1 0 1] [1]
[0 0 0 1] [1]
[0 0 0 0] [0 0 0
0] [1]
[#greater](x1, x2) = [0 0 0 0] x1 + [0 0 0
0] x2 + [0]
[1 0 0 0] [1 1 0
0] [0]
[0 0 1 0] [0 0 1
0] [0]
[0 0 0 0] [0 1 0
0] [0 0 0 1] [0 0 0 0] [0]
[insert#4](x1, x2, x3, x4, x5, x6) = [0 0 0 0] x1 + [0 1 0
0] x3 + [0 0 0 0] x4 + [0 0 0 0] x5 + [0]
[1 0 0 1] [0 0 1
0] [0 0 0 0] [0 0 0 1] [0]
[0 0 0 0] [0 1 0
1] [0 0 0 0] [0 0 0 0] [1]
[0 0 0 1] [1 0 0
0] [0]
[insert#1](x1, x2, x3) = [0 0 0 0] x1 + [0 1 0
0] x2 + [0]
[0 0 0 0] [0 0 1
0] [1]
[0 0 0 0] [0 1 0
1] [0]
[0 0 1 1] [1]
[quicksort#1](x1) = [0 0 0 0] x1 + [1]
[0 0 1 1] [0]
[0 0 0 1] [0]
[0 0 0 0] [1 1 0
0] [0]
[append#1](x1, x2) = [0 0 0 0] x1 + [0 1 0
0] x2 + [0]
[0 0 1 0] [0 0 1
0] [0]
[0 0 0 1] [0 0 0
1] [0]
[0 0 0 1] [0]
[splitqs](x1, x2) = [0 0 0 0] x2 + [1]
[0 0 1 0] [1]
[1 0 0 1] [0]
[0]
[#false] = [0]
[0]
[1]
[0 0 1 1] [1]
[quicksort](x1) = [0 0 0 0] x1 + [1]
[0 0 1 1] [0]
[0 0 0 1] [0]
[0 0 0 0] [0 1 0
0] [0]
[::](x1, x2) = [0 0 0 0] x1 + [0 1 0
0] x2 + [0]
[0 0 0 1] [0 0 1
0] [0]
[0 0 0 0] [0 0 0
1] [1]
[0]
[#LT] = [0]
[1]
[0]
[0 0 0 0] [0 0 0
1] [0 0 0 1] [0 0 0 0] [1]
[splitqs#3](x1, x2, x3, x4) = [0 0 0 0] x1 + [0 0 0
0] x2 + [0 0 0 0] x3 + [0 0 0 0] x4 + [1]
[0 0 0 0] [0 0 1
0] [0 0 1 0] [0 0 0 1] [0]
[0 1 0 0] [0 0 0
1] [0 0 0 0] [0 0 0 0] [1]
[1 1 0 0] [0 0 0
0] [0]
[splitqs#2](x1, x2, x3) = [0 1 0 0] x1 + [0 0 0
0] x3 + [0]
[0 0 1 0] [0 0 0
1] [0]
[1 0 0 0] [0 0 0
0] [1]
[1]
[#0] = [1]
[1]
[1]
[1 0 0 0] [0]
[#neg](x1) = [0 1 0 0] x1 + [0]
[0 1 1 0] [0]
[0 0 0 0] [1]
[1 0 0 0] [0]
[#s](x1) = [0 1 0 0] x1 + [1]
[0 0 1 0] [0]
[0 0 0 1] [0]
[0]
[#GT] = [0]
[1]
[1]
[0 0 0 1] [0]
[splitqs#1](x1, x2) = [0 0 0 0] x1 + [1]
[0 0 1 0] [1]
[1 0 0 1] [0]
[1 1 0 1] [1]
[splitAndSort^#](x1) = [1 1 1 1] x1 + [1]
[1 1 1 1] [1]
[1 1 1 1] [1]
[0 0 1 0] [0]
[sortAll^#](x1) = [0 0 0 0] x1 + [0]
[0 0 0 0] [0]
[0 0 0 0] [0]
[0 0 0 1] [0 0 1
0] [0]
[sortAll#2^#](x1, x2) = [0 0 0 0] x1 + [0 0 0
0] x2 + [0]
[0 0 0 0] [0 0 0
0] [0]
[0 0 0 0] [0 0 0
0] [0]
[0 0 0 1] [0]
[quicksort^#](x1) = [0 0 0 0] x1 + [0]
[0 0 0 0] [0]
[0 0 0 0] [0]
[1 0 0 0] [1]
[quicksort#2^#](x1, x2) = [0 0 0 0] x1 + [0]
[0 0 0 0] [0]
[0 0 0 0] [0]
[0 0 0 1] [1]
[append^#](x1, x2) = [0 0 0 0] x1 + [0]
[0 0 0 0] [0]
[0 0 0 0] [0]
[0 0 0 1] [0]
[append#1^#](x1, x2) = [0 0 0 0] x1 + [0]
[0 0 0 0] [1]
[1 0 0 0] [1]
[0 0 1 0] [0]
[sortAll#1^#](x1) = [0 0 0 0] x1 + [0]
[0 0 0 0] [0]
[0 0 0 0] [0]
[0 0 0 1] [0]
[quicksort#1^#](x1) = [0 0 0 0] x1 + [0]
[0 0 0 0] [0]
[0 0 0 0] [0]
[1 0 0 0] [0]
[c_5](x1) = [0 0 0 0] x1 + [0]
[0 0 0 0] [0]
[0 0 0 0] [0]
[1 0 0 0] [0]
[c_6](x1) = [0 0 0 0] x1 + [0]
[0 0 0 0] [0]
[0 0 0 0] [0]
The order satisfies the following ordering constraints:
[#equal(@x, @y)] = [0 0 0 0] [0]
[0 0 0 0] @x + [0]
[0 0 1 0] [0]
[0 0 0 0] [1]
>= [0 0 0 0] [0]
[0 0 0 0] @x + [0]
[0 0 1 0] [0]
[0 0 0 0] [1]
= [#eq(@x, @y)]
[#eq(#pos(@x), #pos(@y))] = [0 0 0 0] [0]
[0 0 0 0] @x + [0]
[0 0 1 0] [1]
[0 0 0 0] [1]
>= [0 0 0 0] [0]
[0 0 0 0] @x + [0]
[0 0 1 0] [0]
[0 0 0 0] [1]
= [#eq(@x, @y)]
[#eq(#pos(@x), #0())] = [0 0 0 0] [0]
[0 0 0 0] @x + [0]
[0 0 1 0] [1]
[0 0 0 0] [1]
>= [0]
[0]
[0]
[1]
= [#false()]
[#eq(#pos(@x), #neg(@y))] = [0 0 0 0] [0]
[0 0 0 0] @x + [0]
[0 0 1 0] [1]
[0 0 0 0] [1]
>= [0]
[0]
[0]
[1]
= [#false()]
[#eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] @x_1 + [0 0 0 0] @x_2 + [0]
[0 0 1 0] [0 0 1 0] [0]
[0 0 0 0] [0 0 0 0] [1]
>= [0 0 0 0] [0]
[0 0 0 0] @x_2 + [0]
[0 0 1 0] [0]
[0 0 0 0] [1]
= [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))]
[#eq(tuple#2(@x_1, @x_2), nil())] = [0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] @x_1 + [0 0 0 0] @x_2 + [0]
[0 0 1 0] [0 0 1 0] [0]
[0 0 0 0] [0 0 0 0] [1]
>= [0]
[0]
[0]
[1]
= [#false()]
[#eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2))] = [0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] @x_1 + [0 0 0 0] @x_2 + [0]
[0 0 1 0] [0 0 1 0] [0]
[0 0 0 0] [0 0 0 0] [1]
>= [0]
[0]
[0]
[1]
= [#false()]
[#eq(nil(), tuple#2(@y_1, @y_2))] = [0]
[0]
[1]
[1]
>= [0]
[0]
[0]
[1]
= [#false()]
[#eq(nil(), nil())] = [0]
[0]
[1]
[1]
>= [0]
[0]
[1]
[1]
= [#true()]
[#eq(nil(), ::(@y_1, @y_2))] = [0]
[0]
[1]
[1]
>= [0]
[0]
[0]
[1]
= [#false()]
[#eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] @x_1 + [0 0 0 0] @x_2 + [0]
[0 0 0 1] [0 0 1 0] [0]
[0 0 0 0] [0 0 0 0] [1]
>= [0]
[0]
[0]
[1]
= [#false()]
[#eq(::(@x_1, @x_2), nil())] = [0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] @x_1 + [0 0 0 0] @x_2 + [0]
[0 0 0 1] [0 0 1 0] [0]
[0 0 0 0] [0 0 0 0] [1]
>= [0]
[0]
[0]
[1]
= [#false()]
[#eq(::(@x_1, @x_2), ::(@y_1, @y_2))] = [0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] @x_1 + [0 0 0 0] @x_2 + [0]
[0 0 0 1] [0 0 1 0] [0]
[0 0 0 0] [0 0 0 0] [1]
>= [0 0 0 0] [0]
[0 0 0 0] @x_2 + [0]
[0 0 1 0] [0]
[0 0 0 0] [1]
= [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))]
[#eq(#0(), #pos(@y))] = [0]
[0]
[1]
[1]
>= [0]
[0]
[0]
[1]
= [#false()]
[#eq(#0(), #0())] = [0]
[0]
[1]
[1]
>= [0]
[0]
[1]
[1]
= [#true()]
[#eq(#0(), #neg(@y))] = [0]
[0]
[1]
[1]
>= [0]
[0]
[0]
[1]
= [#false()]
[#eq(#0(), #s(@y))] = [0]
[0]
[1]
[1]
>= [0]
[0]
[0]
[1]
= [#false()]
[#eq(#neg(@x), #pos(@y))] = [0 0 0 0] [0]
[0 0 0 0] @x + [0]
[0 1 1 0] [0]
[0 0 0 0] [1]
>= [0]
[0]
[0]
[1]
= [#false()]
[#eq(#neg(@x), #0())] = [0 0 0 0] [0]
[0 0 0 0] @x + [0]
[0 1 1 0] [0]
[0 0 0 0] [1]
>= [0]
[0]
[0]
[1]
= [#false()]
[#eq(#neg(@x), #neg(@y))] = [0 0 0 0] [0]
[0 0 0 0] @x + [0]
[0 1 1 0] [0]
[0 0 0 0] [1]
>= [0 0 0 0] [0]
[0 0 0 0] @x + [0]
[0 0 1 0] [0]
[0 0 0 0] [1]
= [#eq(@x, @y)]
[#eq(#s(@x), #0())] = [0 0 0 0] [0]
[0 0 0 0] @x + [0]
[0 0 1 0] [0]
[0 0 0 0] [1]
>= [0]
[0]
[0]
[1]
= [#false()]
[#eq(#s(@x), #s(@y))] = [0 0 0 0] [0]
[0 0 0 0] @x + [0]
[0 0 1 0] [0]
[0 0 0 0] [1]
>= [0 0 0 0] [0]
[0 0 0 0] @x + [0]
[0 0 1 0] [0]
[0 0 0 0] [1]
= [#eq(@x, @y)]
[quicksort#2(tuple#2(@xs, @ys), @z)] = [0 0 0 0] [0 0 0 0] [0 0 0 1] [2]
[0 0 0 0] @ys + [0 0 0 0] @xs + [0 0 0 0] @z + [1]
[0 0 1 1] [0 0 1 1] [0 0 0 1] [0]
[0 0 0 1] [0 0 0 1] [0 0 0 0] [1]
>= [0 0 0 0] [0 0 0 0] [0 0 0 0] [2]
[0 0 0 0] @ys + [0 0 0 0] @xs + [0 0 0 0] @z + [1]
[0 0 1 1] [0 0 1 1] [0 0 0 1] [0]
[0 0 0 1] [0 0 0 1] [0 0 0 0] [1]
= [append(quicksort(@xs), ::(@z, quicksort(@ys)))]
[split(@l)] = [0 0 1 0] [1]
[0 0 0 0] @l + [1]
[0 1 0 1] [1]
[0 0 0 1] [1]
>= [0 0 1 0] [1]
[0 0 0 0] @l + [1]
[0 1 0 1] [1]
[0 0 0 1] [1]
= [split#1(@l)]
[append(@l, @ys)] = [0 0 0 0] [1 1 0 0] [0]
[0 0 0 0] @l + [0 1 0 0] @ys + [0]
[0 0 1 0] [0 0 1 0] [0]
[0 0 0 1] [0 0 0 1] [0]
>= [0 0 0 0] [1 1 0 0] [0]
[0 0 0 0] @l + [0 1 0 0] @ys + [0]
[0 0 1 0] [0 0 1 0] [0]
[0 0 0 1] [0 0 0 1] [0]
= [append#1(@l, @ys)]
[insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x)] = [0 0 0 1] [0 1 0 0] [0 0 0 0] [0]
[0 0 0 0] @valX + [0 1 0 0] @ls + [0 0 0 0] @vals1 + [0]
[0 0 0 0] [0 0 1 0] [0 0 0 1] [1]
[0 0 0 0] [0 1 0 1] [0 0 0 0] [1]
>= [0 0 0 1] [0 1 0 0] [0 0 0 0] [0]
[0 0 0 0] @valX + [0 1 0 0] @ls + [0 0 0 0] @vals1 + [0]
[0 0 0 0] [0 0 1 0] [0 0 0 1] [1]
[0 0 0 0] [0 1 0 1] [0 0 0 0] [1]
= [insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)]
[#ckgt(#EQ())] = [0]
[0]
[0]
[1]
>= [0]
[0]
[0]
[1]
= [#false()]
[#ckgt(#LT())] = [0]
[0]
[0]
[1]
>= [0]
[0]
[0]
[1]
= [#false()]
[#ckgt(#GT())] = [0]
[0]
[1]
[1]
>= [0]
[0]
[1]
[1]
= [#true()]
[insert(@x, @l)] = [0 0 0 1] [1 0 0 0] [0]
[0 0 0 0] @x + [0 1 0 0] @l + [0]
[0 0 0 0] [0 0 1 0] [1]
[0 0 0 0] [0 1 0 1] [0]
>= [0 0 0 1] [1 0 0 0] [0]
[0 0 0 0] @x + [0 1 0 0] @l + [0]
[0 0 0 0] [0 0 1 0] [1]
[0 0 0 0] [0 1 0 1] [0]
= [insert#1(@x, @l, @x)]
[insert#2(nil(), @keyX, @valX, @x)] = [0 0 0 1] [1]
[0 0 0 0] @valX + [1]
[0 0 0 0] [2]
[0 0 0 0] [1]
>= [1]
[1]
[2]
[1]
= [::(tuple#2(::(@valX, nil()), @keyX), nil())]
[insert#2(::(@l1, @ls), @keyX, @valX, @x)] = [0 0 0 1] [0 0 0 0] [0 1 0 0] [0]
[0 0 0 0] @valX + [0 0 0 0] @l1 + [0 1 0 0] @ls + [0]
[0 0 0 0] [0 0 0 1] [0 0 1 0] [1]
[0 0 0 0] [0 0 0 0] [0 1 0 1] [1]
>= [0 0 0 1] [0 0 0 0] [0 1 0 0] [0]
[0 0 0 0] @valX + [0 0 0 0] @l1 + [0 1 0 0] @ls + [0]
[0 0 0 0] [0 0 0 1] [0 0 1 0] [1]
[0 0 0 0] [0 0 0 0] [0 1 0 1] [1]
= [insert#3(@l1, @keyX, @ls, @valX, @x)]
[#and(#true(), #true())] = [0]
[0]
[1]
[1]
>= [0]
[0]
[1]
[1]
= [#true()]
[#and(#true(), #false())] = [0]
[0]
[0]
[1]
>= [0]
[0]
[0]
[1]
= [#false()]
[#and(#false(), #true())] = [0]
[0]
[1]
[1]
>= [0]
[0]
[0]
[1]
= [#false()]
[#and(#false(), #false())] = [0]
[0]
[0]
[1]
>= [0]
[0]
[0]
[1]
= [#false()]
[#compare(#pos(@x), #pos(@y))] = [0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] @x + [0 0 0 0] @y + [0]
[0 0 1 0] [0 0 1 0] [2]
[1 0 0 0] [1 0 0 0] [2]
>= [0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] @x + [0 0 0 0] @y + [0]
[0 0 1 0] [0 0 1 0] [0]
[1 0 0 0] [1 0 0 0] [0]
= [#compare(@x, @y)]
[#compare(#pos(@x), #0())] = [0 0 0 0] [0]
[0 0 0 0] @x + [0]
[0 0 1 0] [2]
[1 0 0 0] [2]
>= [0]
[0]
[1]
[1]
= [#GT()]
[#compare(#pos(@x), #neg(@y))] = [0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] @x + [0 0 0 0] @y + [0]
[0 0 1 0] [0 1 1 0] [1]
[1 0 0 0] [1 0 0 0] [1]
>= [0]
[0]
[1]
[1]
= [#GT()]
[#compare(#0(), #pos(@y))] = [0 0 0 0] [0]
[0 0 0 0] @y + [0]
[0 0 1 0] [2]
[1 0 0 0] [2]
>= [0]
[0]
[1]
[0]
= [#LT()]
[#compare(#0(), #0())] = [0]
[0]
[2]
[2]
>= [0]
[0]
[1]
[0]
= [#EQ()]
[#compare(#0(), #neg(@y))] = [0 0 0 0] [0]
[0 0 0 0] @y + [0]
[0 1 1 0] [1]
[1 0 0 0] [1]
>= [0]
[0]
[1]
[1]
= [#GT()]
[#compare(#0(), #s(@y))] = [0 0 0 0] [0]
[0 0 0 0] @y + [0]
[0 0 1 0] [1]
[1 0 0 0] [1]
>= [0]
[0]
[1]
[0]
= [#LT()]
[#compare(#neg(@x), #pos(@y))] = [0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] @x + [0 0 0 0] @y + [0]
[0 1 1 0] [0 0 1 0] [1]
[1 0 0 0] [1 0 0 0] [1]
>= [0]
[0]
[1]
[0]
= [#LT()]
[#compare(#neg(@x), #0())] = [0 0 0 0] [0]
[0 0 0 0] @x + [0]
[0 1 1 0] [1]
[1 0 0 0] [1]
>= [0]
[0]
[1]
[0]
= [#LT()]
[#compare(#neg(@x), #neg(@y))] = [0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] @x + [0 0 0 0] @y + [0]
[0 1 1 0] [0 1 1 0] [0]
[1 0 0 0] [1 0 0 0] [0]
>= [0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] @x + [0 0 0 0] @y + [0]
[0 0 1 0] [0 0 1 0] [0]
[1 0 0 0] [1 0 0 0] [0]
= [#compare(@y, @x)]
[#compare(#s(@x), #0())] = [0 0 0 0] [0]
[0 0 0 0] @x + [0]
[0 0 1 0] [1]
[1 0 0 0] [1]
>= [0]
[0]
[1]
[1]
= [#GT()]
[#compare(#s(@x), #s(@y))] = [0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] @x + [0 0 0 0] @y + [0]
[0 0 1 0] [0 0 1 0] [0]
[1 0 0 0] [1 0 0 0] [0]
>= [0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] @x + [0 0 0 0] @y + [0]
[0 0 1 0] [0 0 1 0] [0]
[1 0 0 0] [1 0 0 0] [0]
= [#compare(@x, @y)]
[split#1(nil())] = [2]
[1]
[2]
[1]
> [1]
[1]
[1]
[0]
= [nil()]
[split#1(::(@x, @xs))] = [0 0 0 1] [0 0 1 0] [1]
[0 0 0 0] @x + [0 0 0 0] @xs + [1]
[0 0 0 0] [0 1 0 1] [2]
[0 0 0 0] [0 0 0 1] [2]
>= [0 0 0 1] [0 0 1 0] [1]
[0 0 0 0] @x + [0 0 0 0] @xs + [1]
[0 0 0 0] [0 1 0 1] [2]
[0 0 0 0] [0 0 0 1] [2]
= [insert(@x, split(@xs))]
[#greater(@x, @y)] = [0 0 0 0] [0 0 0 0] [1]
[0 0 0 0] @x + [0 0 0 0] @y + [0]
[1 0 0 0] [1 1 0 0] [0]
[0 0 1 0] [0 0 1 0] [0]
> [0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] @x + [0 0 0 0] @y + [0]
[1 0 0 0] [1 0 0 0] [0]
[0 0 1 0] [0 0 1 0] [0]
= [#ckgt(#compare(@x, @y))]
[insert#4(#true(), @key1, @ls, @valX, @vals1, @x)] = [0 0 0 1] [0 1 0 0] [0 0 0 0] [0]
[0 0 0 0] @valX + [0 1 0 0] @ls + [0 0 0 0] @vals1 + [0]
[0 0 0 0] [0 0 1 0] [0 0 0 1] [1]
[0 0 0 0] [0 1 0 1] [0 0 0 0] [1]
>= [0 1 0 0] [0 0 0 0] [0]
[0 1 0 0] @ls + [0 0 0 0] @vals1 + [0]
[0 0 1 0] [0 0 0 1] [1]
[0 0 0 1] [0 0 0 0] [1]
= [::(tuple#2(::(@valX, @vals1), @key1), @ls)]
[insert#4(#false(), @key1, @ls, @valX, @vals1, @x)] = [0 0 0 1] [0 1 0 0] [0 0 0 0] [0]
[0 0 0 0] @valX + [0 1 0 0] @ls + [0 0 0 0] @vals1 + [0]
[0 0 0 0] [0 0 1 0] [0 0 0 1] [1]
[0 0 0 0] [0 1 0 1] [0 0 0 0] [1]
>= [0 1 0 0] [0 0 0 0] [0]
[0 1 0 0] @ls + [0 0 0 0] @vals1 + [0]
[0 0 1 0] [0 0 0 1] [1]
[0 1 0 1] [0 0 0 0] [1]
= [::(tuple#2(@vals1, @key1), insert(@x, @ls))]
[insert#1(tuple#2(@valX, @keyX), @l, @x)] = [1 0 0 0] [0 0 0 1] [0]
[0 1 0 0] @l + [0 0 0 0] @valX + [0]
[0 0 1 0] [0 0 0 0] [1]
[0 1 0 1] [0 0 0 0] [0]
>= [1 0 0 0] [0 0 0 1] [0]
[0 1 0 0] @l + [0 0 0 0] @valX + [0]
[0 0 1 0] [0 0 0 0] [1]
[0 1 0 1] [0 0 0 0] [0]
= [insert#2(@l, @keyX, @valX, @x)]
[quicksort#1(nil())] = [2]
[1]
[1]
[0]
> [1]
[1]
[1]
[0]
= [nil()]
[quicksort#1(::(@z, @zs))] = [0 0 0 1] [0 0 1 1] [2]
[0 0 0 0] @z + [0 0 0 0] @zs + [1]
[0 0 0 1] [0 0 1 1] [1]
[0 0 0 0] [0 0 0 1] [1]
>= [0 0 0 1] [0 0 0 0] [2]
[0 0 0 0] @z + [0 0 0 0] @zs + [1]
[0 0 0 1] [0 0 1 1] [1]
[0 0 0 0] [0 0 0 1] [1]
= [quicksort#2(splitqs(@z, @zs), @z)]
[append#1(nil(), @ys)] = [1 1 0 0] [0]
[0 1 0 0] @ys + [0]
[0 0 1 0] [1]
[0 0 0 1] [0]
>= [1 0 0 0] [0]
[0 1 0 0] @ys + [0]
[0 0 1 0] [0]
[0 0 0 1] [0]
= [@ys]
[append#1(::(@x, @xs), @ys)] = [0 0 0 0] [1 1 0 0] [0 0 0 0] [0]
[0 0 0 0] @x + [0 1 0 0] @ys + [0 0 0 0] @xs + [0]
[0 0 0 1] [0 0 1 0] [0 0 1 0] [0]
[0 0 0 0] [0 0 0 1] [0 0 0 1] [1]
>= [0 0 0 0] [0 1 0 0] [0 0 0 0] [0]
[0 0 0 0] @x + [0 1 0 0] @ys + [0 0 0 0] @xs + [0]
[0 0 0 1] [0 0 1 0] [0 0 1 0] [0]
[0 0 0 0] [0 0 0 1] [0 0 0 1] [1]
= [::(@x, append(@xs, @ys))]
[splitqs(@pivot, @l)] = [0 0 0 1] [0]
[0 0 0 0] @l + [1]
[0 0 1 0] [1]
[1 0 0 1] [0]
>= [0 0 0 1] [0]
[0 0 0 0] @l + [1]
[0 0 1 0] [1]
[1 0 0 1] [0]
= [splitqs#1(@l, @pivot)]
[quicksort(@l)] = [0 0 1 1] [1]
[0 0 0 0] @l + [1]
[0 0 1 1] [0]
[0 0 0 1] [0]
>= [0 0 1 1] [1]
[0 0 0 0] @l + [1]
[0 0 1 1] [0]
[0 0 0 1] [0]
= [quicksort#1(@l)]
[splitqs#3(#true(), @ls, @rs, @x)] = [0 0 0 0] [0 0 0 1] [0 0 0 1] [1]
[0 0 0 0] @x + [0 0 0 0] @ls + [0 0 0 0] @rs + [1]
[0 0 0 1] [0 0 1 0] [0 0 1 0] [0]
[0 0 0 0] [0 0 0 1] [0 0 0 0] [1]
>= [0 0 0 0] [0 0 0 1] [0 0 0 1] [1]
[0 0 0 0] @x + [0 0 0 0] @ls + [0 0 0 0] @rs + [1]
[0 0 0 1] [0 0 1 0] [0 0 1 0] [0]
[0 0 0 0] [0 0 0 1] [0 0 0 0] [0]
= [tuple#2(@ls, ::(@x, @rs))]
[splitqs#3(#false(), @ls, @rs, @x)] = [0 0 0 0] [0 0 0 1] [0 0 0 1] [1]
[0 0 0 0] @x + [0 0 0 0] @ls + [0 0 0 0] @rs + [1]
[0 0 0 1] [0 0 1 0] [0 0 1 0] [0]
[0 0 0 0] [0 0 0 1] [0 0 0 0] [1]
>= [0 0 0 0] [0 0 0 1] [0 0 0 1] [1]
[0 0 0 0] @x + [0 0 0 0] @ls + [0 0 0 0] @rs + [1]
[0 0 0 1] [0 0 1 0] [0 0 1 0] [0]
[0 0 0 0] [0 0 0 1] [0 0 0 0] [1]
= [tuple#2(::(@x, @ls), @rs)]
[splitqs#2(tuple#2(@ls, @rs), @pivot, @x)] = [0 0 0 0] [0 0 0 1] [0 0 0 1] [1]
[0 0 0 0] @x + [0 0 0 0] @ls + [0 0 0 0] @rs + [1]
[0 0 0 1] [0 0 1 0] [0 0 1 0] [0]
[0 0 0 0] [0 0 0 1] [0 0 0 1] [1]
>= [0 0 0 0] [0 0 0 1] [0 0 0 1] [1]
[0 0 0 0] @x + [0 0 0 0] @ls + [0 0 0 0] @rs + [1]
[0 0 0 1] [0 0 1 0] [0 0 1 0] [0]
[0 0 0 0] [0 0 0 1] [0 0 0 0] [1]
= [splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)]
[splitqs#1(nil(), @pivot)] = [0]
[1]
[2]
[1]
>= [0]
[1]
[2]
[0]
= [tuple#2(nil(), nil())]
[splitqs#1(::(@x, @xs), @pivot)] = [0 0 0 0] [0 0 0 1] [1]
[0 0 0 0] @x + [0 0 0 0] @xs + [1]
[0 0 0 1] [0 0 1 0] [1]
[0 0 0 0] [0 1 0 1] [1]
>= [0 0 0 0] [0 0 0 1] [1]
[0 0 0 0] @x + [0 0 0 0] @xs + [1]
[0 0 0 1] [0 0 1 0] [1]
[0 0 0 0] [0 0 0 1] [1]
= [splitqs#2(splitqs(@pivot, @xs), @pivot, @x)]
[splitAndSort^#(@l)] = [1 1 0 1] [1]
[1 1 1 1] @l + [1]
[1 1 1 1] [1]
[1 1 1 1] [1]
>= [0 1 0 1] [1]
[0 0 0 0] @l + [0]
[0 0 0 0] [0]
[0 0 0 0] [0]
= [sortAll^#(split(@l))]
[sortAll^#(@l)] = [0 0 1 0] [0]
[0 0 0 0] @l + [0]
[0 0 0 0] [0]
[0 0 0 0] [0]
>= [0 0 1 0] [0]
[0 0 0 0] @l + [0]
[0 0 0 0] [0]
[0 0 0 0] [0]
= [sortAll#1^#(@l)]
[sortAll#2^#(tuple#2(@vals, @key), @xs)] = [0 0 1 0] [0 0 0 1] [0]
[0 0 0 0] @xs + [0 0 0 0] @vals + [0]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [0]
>= [0 0 1 0] [0]
[0 0 0 0] @xs + [0]
[0 0 0 0] [0]
[0 0 0 0] [0]
= [sortAll^#(@xs)]
[sortAll#2^#(tuple#2(@vals, @key), @xs)] = [0 0 1 0] [0 0 0 1] [0]
[0 0 0 0] @xs + [0 0 0 0] @vals + [0]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [0]
>= [0 0 0 1] [0]
[0 0 0 0] @vals + [0]
[0 0 0 0] [0]
[0 0 0 0] [0]
= [quicksort^#(@vals)]
[quicksort^#(@l)] = [0 0 0 1] [0]
[0 0 0 0] @l + [0]
[0 0 0 0] [0]
[0 0 0 0] [0]
>= [0 0 0 1] [0]
[0 0 0 0] @l + [0]
[0 0 0 0] [0]
[0 0 0 0] [0]
= [quicksort#1^#(@l)]
[quicksort#2^#(tuple#2(@xs, @ys), @z)] = [0 0 0 1] [0 0 0 1] [1]
[0 0 0 0] @ys + [0 0 0 0] @xs + [0]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [0]
> [0 0 0 1] [0]
[0 0 0 0] @xs + [0]
[0 0 0 0] [0]
[0 0 0 0] [0]
= [quicksort^#(@xs)]
[quicksort#2^#(tuple#2(@xs, @ys), @z)] = [0 0 0 1] [0 0 0 1] [1]
[0 0 0 0] @ys + [0 0 0 0] @xs + [0]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [0]
> [0 0 0 1] [0]
[0 0 0 0] @ys + [0]
[0 0 0 0] [0]
[0 0 0 0] [0]
= [quicksort^#(@ys)]
[quicksort#2^#(tuple#2(@xs, @ys), @z)] = [0 0 0 1] [0 0 0 1] [1]
[0 0 0 0] @ys + [0 0 0 0] @xs + [0]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [0]
>= [0 0 0 1] [1]
[0 0 0 0] @xs + [0]
[0 0 0 0] [0]
[0 0 0 0] [0]
= [append^#(quicksort(@xs), ::(@z, quicksort(@ys)))]
[append^#(@l, @ys)] = [0 0 0 1] [1]
[0 0 0 0] @l + [0]
[0 0 0 0] [0]
[0 0 0 0] [0]
> [0 0 0 1] [0]
[0 0 0 0] @l + [0]
[0 0 0 0] [0]
[0 0 0 0] [0]
= [c_5(append#1^#(@l, @ys))]
[append#1^#(::(@x, @xs), @ys)] = [0 0 0 1] [1]
[0 0 0 0] @xs + [0]
[0 0 0 0] [1]
[0 1 0 0] [1]
>= [0 0 0 1] [1]
[0 0 0 0] @xs + [0]
[0 0 0 0] [0]
[0 0 0 0] [0]
= [c_6(append^#(@xs, @ys))]
[sortAll#1^#(::(@x, @xs))] = [0 0 0 1] [0 0 1 0] [0]
[0 0 0 0] @x + [0 0 0 0] @xs + [0]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [0]
>= [0 0 0 1] [0 0 1 0] [0]
[0 0 0 0] @x + [0 0 0 0] @xs + [0]
[0 0 0 0] [0 0 0 0] [0]
[0 0 0 0] [0 0 0 0] [0]
= [sortAll#2^#(@x, @xs)]
[quicksort#1^#(::(@z, @zs))] = [0 0 0 1] [1]
[0 0 0 0] @zs + [0]
[0 0 0 0] [0]
[0 0 0 0] [0]
>= [0 0 0 1] [1]
[0 0 0 0] @zs + [0]
[0 0 0 0] [0]
[0 0 0 0] [0]
= [quicksort#2^#(splitqs(@z, @zs), @z)]
We return to the main proof.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).
Weak DPs:
{ splitAndSort^#(@l) -> sortAll^#(split(@l))
, sortAll^#(@l) -> sortAll#1^#(@l)
, sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs)
, sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals)
, quicksort^#(@l) -> quicksort#1^#(@l)
, quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@xs)
, quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@ys)
, quicksort#2^#(tuple#2(@xs, @ys), @z) ->
append^#(quicksort(@xs), ::(@z, quicksort(@ys)))
, append^#(@l, @ys) -> c_5(append#1^#(@l, @ys))
, append#1^#(::(@x, @xs), @ys) -> c_6(append^#(@xs, @ys))
, sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs)
, quicksort#1^#(::(@z, @zs)) ->
quicksort#2^#(splitqs(@z, @zs), @z) }
Weak Trs:
{ #equal(@x, @y) -> #eq(@x, @y)
, #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
, #eq(#pos(@x), #0()) -> #false()
, #eq(#pos(@x), #neg(@y)) -> #false()
, #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(tuple#2(@x_1, @x_2), nil()) -> #false()
, #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false()
, #eq(nil(), tuple#2(@y_1, @y_2)) -> #false()
, #eq(nil(), nil()) -> #true()
, #eq(nil(), ::(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false()
, #eq(::(@x_1, @x_2), nil()) -> #false()
, #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
, #eq(#0(), #pos(@y)) -> #false()
, #eq(#0(), #0()) -> #true()
, #eq(#0(), #neg(@y)) -> #false()
, #eq(#0(), #s(@y)) -> #false()
, #eq(#neg(@x), #pos(@y)) -> #false()
, #eq(#neg(@x), #0()) -> #false()
, #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
, #eq(#s(@x), #0()) -> #false()
, #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
, quicksort#2(tuple#2(@xs, @ys), @z) ->
append(quicksort(@xs), ::(@z, quicksort(@ys)))
, split(@l) -> split#1(@l)
, append(@l, @ys) -> append#1(@l, @ys)
, insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) ->
insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)
, #ckgt(#EQ()) -> #false()
, #ckgt(#LT()) -> #false()
, #ckgt(#GT()) -> #true()
, insert(@x, @l) -> insert#1(@x, @l, @x)
, insert#2(nil(), @keyX, @valX, @x) ->
::(tuple#2(::(@valX, nil()), @keyX), nil())
, insert#2(::(@l1, @ls), @keyX, @valX, @x) ->
insert#3(@l1, @keyX, @ls, @valX, @x)
, #and(#true(), #true()) -> #true()
, #and(#true(), #false()) -> #false()
, #and(#false(), #true()) -> #false()
, #and(#false(), #false()) -> #false()
, #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
, #compare(#pos(@x), #0()) -> #GT()
, #compare(#pos(@x), #neg(@y)) -> #GT()
, #compare(#0(), #pos(@y)) -> #LT()
, #compare(#0(), #0()) -> #EQ()
, #compare(#0(), #neg(@y)) -> #GT()
, #compare(#0(), #s(@y)) -> #LT()
, #compare(#neg(@x), #pos(@y)) -> #LT()
, #compare(#neg(@x), #0()) -> #LT()
, #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
, #compare(#s(@x), #0()) -> #GT()
, #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
, split#1(nil()) -> nil()
, split#1(::(@x, @xs)) -> insert(@x, split(@xs))
, #greater(@x, @y) -> #ckgt(#compare(@x, @y))
, insert#4(#true(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(::(@valX, @vals1), @key1), @ls)
, insert#4(#false(), @key1, @ls, @valX, @vals1, @x) ->
::(tuple#2(@vals1, @key1), insert(@x, @ls))
, insert#1(tuple#2(@valX, @keyX), @l, @x) ->
insert#2(@l, @keyX, @valX, @x)
, quicksort#1(nil()) -> nil()
, quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z)
, append#1(nil(), @ys) -> @ys
, append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys))
, splitqs(@pivot, @l) -> splitqs#1(@l, @pivot)
, quicksort(@l) -> quicksort#1(@l)
, splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs))
, splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs)
, splitqs#2(tuple#2(@ls, @rs), @pivot, @x) ->
splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)
, splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil())
, splitqs#1(::(@x, @xs), @pivot) ->
splitqs#2(splitqs(@pivot, @xs), @pivot, @x) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(1))
Empty rules are trivially bounded
Hurray, we answered YES(O(1),O(n^6))