We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^6)). Strict Trs: { #equal(@x, @y) -> #eq(@x, @y) , splitAndSort(@l) -> sortAll(split(@l)) , sortAll#2(tuple#2(@vals, @key), @xs) -> ::(tuple#2(quicksort(@vals), @key), sortAll(@xs)) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , insert(@x, @l) -> insert#1(@x, @l, @x) , sortAll(@l) -> sortAll#1(@l) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , sortAll#1(nil()) -> nil() , sortAll#1(::(@x, @xs)) -> sortAll#2(@x, @xs) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } Weak Trs: { #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^6)) We add the following dependency tuples: Strict DPs: { #equal^#(@x, @y) -> c_1(#eq^#(@x, @y)) , splitAndSort^#(@l) -> c_2(sortAll^#(split(@l)), split^#(@l)) , sortAll^#(@l) -> c_9(sortAll#1^#(@l)) , split^#(@l) -> c_5(split#1^#(@l)) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> c_3(quicksort^#(@vals), sortAll^#(@xs)) , quicksort^#(@l) -> c_25(quicksort#1^#(@l)) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys)) , append^#(@l, @ys) -> c_6(append#1^#(@l, @ys)) , split#1^#(nil()) -> c_14() , split#1^#(::(@x, @xs)) -> c_15(insert^#(@x, split(@xs)), split^#(@xs)) , append#1^#(nil(), @ys) -> c_22() , append#1^#(::(@x, @xs), @ys) -> c_23(append^#(@xs, @ys)) , insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> c_7(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x), #equal^#(@key1, @keyX)) , insert#4^#(#true(), @key1, @ls, @valX, @vals1, @x) -> c_17() , insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) -> c_18(insert^#(@x, @ls)) , insert^#(@x, @l) -> c_8(insert#1^#(@x, @l, @x)) , insert#1^#(tuple#2(@valX, @keyX), @l, @x) -> c_19(insert#2^#(@l, @keyX, @valX, @x)) , sortAll#1^#(nil()) -> c_12() , sortAll#1^#(::(@x, @xs)) -> c_13(sortAll#2^#(@x, @xs)) , insert#2^#(nil(), @keyX, @valX, @x) -> c_10() , insert#2^#(::(@l1, @ls), @keyX, @valX, @x) -> c_11(insert#3^#(@l1, @keyX, @ls, @valX, @x)) , #greater^#(@x, @y) -> c_16(#ckgt^#(#compare(@x, @y)), #compare^#(@x, @y)) , quicksort#1^#(nil()) -> c_20() , quicksort#1^#(::(@z, @zs)) -> c_21(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) , splitqs^#(@pivot, @l) -> c_24(splitqs#1^#(@l, @pivot)) , splitqs#1^#(nil(), @pivot) -> c_29() , splitqs#1^#(::(@x, @xs), @pivot) -> c_30(splitqs#2^#(splitqs(@pivot, @xs), @pivot, @x), splitqs^#(@pivot, @xs)) , splitqs#3^#(#true(), @ls, @rs, @x) -> c_26() , splitqs#3^#(#false(), @ls, @rs, @x) -> c_27() , splitqs#2^#(tuple#2(@ls, @rs), @pivot, @x) -> c_28(splitqs#3^#(#greater(@x, @pivot), @ls, @rs, @x), #greater^#(@x, @pivot)) } Weak DPs: { #eq^#(#pos(@x), #pos(@y)) -> c_31(#eq^#(@x, @y)) , #eq^#(#pos(@x), #0()) -> c_32() , #eq^#(#pos(@x), #neg(@y)) -> c_33() , #eq^#(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> c_34(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)), #eq^#(@x_1, @y_1), #eq^#(@x_2, @y_2)) , #eq^#(tuple#2(@x_1, @x_2), nil()) -> c_35() , #eq^#(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> c_36() , #eq^#(nil(), tuple#2(@y_1, @y_2)) -> c_37() , #eq^#(nil(), nil()) -> c_38() , #eq^#(nil(), ::(@y_1, @y_2)) -> c_39() , #eq^#(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> c_40() , #eq^#(::(@x_1, @x_2), nil()) -> c_41() , #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) -> c_42(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)), #eq^#(@x_1, @y_1), #eq^#(@x_2, @y_2)) , #eq^#(#0(), #pos(@y)) -> c_43() , #eq^#(#0(), #0()) -> c_44() , #eq^#(#0(), #neg(@y)) -> c_45() , #eq^#(#0(), #s(@y)) -> c_46() , #eq^#(#neg(@x), #pos(@y)) -> c_47() , #eq^#(#neg(@x), #0()) -> c_48() , #eq^#(#neg(@x), #neg(@y)) -> c_49(#eq^#(@x, @y)) , #eq^#(#s(@x), #0()) -> c_50() , #eq^#(#s(@x), #s(@y)) -> c_51(#eq^#(@x, @y)) , #ckgt^#(#EQ()) -> c_52() , #ckgt^#(#LT()) -> c_53() , #ckgt^#(#GT()) -> c_54() , #compare^#(#pos(@x), #pos(@y)) -> c_59(#compare^#(@x, @y)) , #compare^#(#pos(@x), #0()) -> c_60() , #compare^#(#pos(@x), #neg(@y)) -> c_61() , #compare^#(#0(), #pos(@y)) -> c_62() , #compare^#(#0(), #0()) -> c_63() , #compare^#(#0(), #neg(@y)) -> c_64() , #compare^#(#0(), #s(@y)) -> c_65() , #compare^#(#neg(@x), #pos(@y)) -> c_66() , #compare^#(#neg(@x), #0()) -> c_67() , #compare^#(#neg(@x), #neg(@y)) -> c_68(#compare^#(@y, @x)) , #compare^#(#s(@x), #0()) -> c_69() , #compare^#(#s(@x), #s(@y)) -> c_70(#compare^#(@x, @y)) , #and^#(#true(), #true()) -> c_55() , #and^#(#true(), #false()) -> c_56() , #and^#(#false(), #true()) -> c_57() , #and^#(#false(), #false()) -> c_58() } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^6)). Strict DPs: { #equal^#(@x, @y) -> c_1(#eq^#(@x, @y)) , splitAndSort^#(@l) -> c_2(sortAll^#(split(@l)), split^#(@l)) , sortAll^#(@l) -> c_9(sortAll#1^#(@l)) , split^#(@l) -> c_5(split#1^#(@l)) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> c_3(quicksort^#(@vals), sortAll^#(@xs)) , quicksort^#(@l) -> c_25(quicksort#1^#(@l)) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys)) , append^#(@l, @ys) -> c_6(append#1^#(@l, @ys)) , split#1^#(nil()) -> c_14() , split#1^#(::(@x, @xs)) -> c_15(insert^#(@x, split(@xs)), split^#(@xs)) , append#1^#(nil(), @ys) -> c_22() , append#1^#(::(@x, @xs), @ys) -> c_23(append^#(@xs, @ys)) , insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> c_7(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x), #equal^#(@key1, @keyX)) , insert#4^#(#true(), @key1, @ls, @valX, @vals1, @x) -> c_17() , insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) -> c_18(insert^#(@x, @ls)) , insert^#(@x, @l) -> c_8(insert#1^#(@x, @l, @x)) , insert#1^#(tuple#2(@valX, @keyX), @l, @x) -> c_19(insert#2^#(@l, @keyX, @valX, @x)) , sortAll#1^#(nil()) -> c_12() , sortAll#1^#(::(@x, @xs)) -> c_13(sortAll#2^#(@x, @xs)) , insert#2^#(nil(), @keyX, @valX, @x) -> c_10() , insert#2^#(::(@l1, @ls), @keyX, @valX, @x) -> c_11(insert#3^#(@l1, @keyX, @ls, @valX, @x)) , #greater^#(@x, @y) -> c_16(#ckgt^#(#compare(@x, @y)), #compare^#(@x, @y)) , quicksort#1^#(nil()) -> c_20() , quicksort#1^#(::(@z, @zs)) -> c_21(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) , splitqs^#(@pivot, @l) -> c_24(splitqs#1^#(@l, @pivot)) , splitqs#1^#(nil(), @pivot) -> c_29() , splitqs#1^#(::(@x, @xs), @pivot) -> c_30(splitqs#2^#(splitqs(@pivot, @xs), @pivot, @x), splitqs^#(@pivot, @xs)) , splitqs#3^#(#true(), @ls, @rs, @x) -> c_26() , splitqs#3^#(#false(), @ls, @rs, @x) -> c_27() , splitqs#2^#(tuple#2(@ls, @rs), @pivot, @x) -> c_28(splitqs#3^#(#greater(@x, @pivot), @ls, @rs, @x), #greater^#(@x, @pivot)) } Weak DPs: { #eq^#(#pos(@x), #pos(@y)) -> c_31(#eq^#(@x, @y)) , #eq^#(#pos(@x), #0()) -> c_32() , #eq^#(#pos(@x), #neg(@y)) -> c_33() , #eq^#(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> c_34(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)), #eq^#(@x_1, @y_1), #eq^#(@x_2, @y_2)) , #eq^#(tuple#2(@x_1, @x_2), nil()) -> c_35() , #eq^#(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> c_36() , #eq^#(nil(), tuple#2(@y_1, @y_2)) -> c_37() , #eq^#(nil(), nil()) -> c_38() , #eq^#(nil(), ::(@y_1, @y_2)) -> c_39() , #eq^#(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> c_40() , #eq^#(::(@x_1, @x_2), nil()) -> c_41() , #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) -> c_42(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)), #eq^#(@x_1, @y_1), #eq^#(@x_2, @y_2)) , #eq^#(#0(), #pos(@y)) -> c_43() , #eq^#(#0(), #0()) -> c_44() , #eq^#(#0(), #neg(@y)) -> c_45() , #eq^#(#0(), #s(@y)) -> c_46() , #eq^#(#neg(@x), #pos(@y)) -> c_47() , #eq^#(#neg(@x), #0()) -> c_48() , #eq^#(#neg(@x), #neg(@y)) -> c_49(#eq^#(@x, @y)) , #eq^#(#s(@x), #0()) -> c_50() , #eq^#(#s(@x), #s(@y)) -> c_51(#eq^#(@x, @y)) , #ckgt^#(#EQ()) -> c_52() , #ckgt^#(#LT()) -> c_53() , #ckgt^#(#GT()) -> c_54() , #compare^#(#pos(@x), #pos(@y)) -> c_59(#compare^#(@x, @y)) , #compare^#(#pos(@x), #0()) -> c_60() , #compare^#(#pos(@x), #neg(@y)) -> c_61() , #compare^#(#0(), #pos(@y)) -> c_62() , #compare^#(#0(), #0()) -> c_63() , #compare^#(#0(), #neg(@y)) -> c_64() , #compare^#(#0(), #s(@y)) -> c_65() , #compare^#(#neg(@x), #pos(@y)) -> c_66() , #compare^#(#neg(@x), #0()) -> c_67() , #compare^#(#neg(@x), #neg(@y)) -> c_68(#compare^#(@y, @x)) , #compare^#(#s(@x), #0()) -> c_69() , #compare^#(#s(@x), #s(@y)) -> c_70(#compare^#(@x, @y)) , #and^#(#true(), #true()) -> c_55() , #and^#(#true(), #false()) -> c_56() , #and^#(#false(), #true()) -> c_57() , #and^#(#false(), #false()) -> c_58() } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , splitAndSort(@l) -> sortAll(split(@l)) , sortAll#2(tuple#2(@vals, @key), @xs) -> ::(tuple#2(quicksort(@vals), @key), sortAll(@xs)) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , sortAll(@l) -> sortAll#1(@l) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , sortAll#1(nil()) -> nil() , sortAll#1(::(@x, @xs)) -> sortAll#2(@x, @xs) , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^6)) We estimate the number of application of {1,9,11,14,18,20,22,23,26,28,29} by applications of Pre({1,9,11,14,18,20,22,23,26,28,29}) = {3,4,6,8,13,17,25,30}. Here rules are labeled as follows: DPs: { 1: #equal^#(@x, @y) -> c_1(#eq^#(@x, @y)) , 2: splitAndSort^#(@l) -> c_2(sortAll^#(split(@l)), split^#(@l)) , 3: sortAll^#(@l) -> c_9(sortAll#1^#(@l)) , 4: split^#(@l) -> c_5(split#1^#(@l)) , 5: sortAll#2^#(tuple#2(@vals, @key), @xs) -> c_3(quicksort^#(@vals), sortAll^#(@xs)) , 6: quicksort^#(@l) -> c_25(quicksort#1^#(@l)) , 7: quicksort#2^#(tuple#2(@xs, @ys), @z) -> c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys)) , 8: append^#(@l, @ys) -> c_6(append#1^#(@l, @ys)) , 9: split#1^#(nil()) -> c_14() , 10: split#1^#(::(@x, @xs)) -> c_15(insert^#(@x, split(@xs)), split^#(@xs)) , 11: append#1^#(nil(), @ys) -> c_22() , 12: append#1^#(::(@x, @xs), @ys) -> c_23(append^#(@xs, @ys)) , 13: insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> c_7(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x), #equal^#(@key1, @keyX)) , 14: insert#4^#(#true(), @key1, @ls, @valX, @vals1, @x) -> c_17() , 15: insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) -> c_18(insert^#(@x, @ls)) , 16: insert^#(@x, @l) -> c_8(insert#1^#(@x, @l, @x)) , 17: insert#1^#(tuple#2(@valX, @keyX), @l, @x) -> c_19(insert#2^#(@l, @keyX, @valX, @x)) , 18: sortAll#1^#(nil()) -> c_12() , 19: sortAll#1^#(::(@x, @xs)) -> c_13(sortAll#2^#(@x, @xs)) , 20: insert#2^#(nil(), @keyX, @valX, @x) -> c_10() , 21: insert#2^#(::(@l1, @ls), @keyX, @valX, @x) -> c_11(insert#3^#(@l1, @keyX, @ls, @valX, @x)) , 22: #greater^#(@x, @y) -> c_16(#ckgt^#(#compare(@x, @y)), #compare^#(@x, @y)) , 23: quicksort#1^#(nil()) -> c_20() , 24: quicksort#1^#(::(@z, @zs)) -> c_21(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) , 25: splitqs^#(@pivot, @l) -> c_24(splitqs#1^#(@l, @pivot)) , 26: splitqs#1^#(nil(), @pivot) -> c_29() , 27: splitqs#1^#(::(@x, @xs), @pivot) -> c_30(splitqs#2^#(splitqs(@pivot, @xs), @pivot, @x), splitqs^#(@pivot, @xs)) , 28: splitqs#3^#(#true(), @ls, @rs, @x) -> c_26() , 29: splitqs#3^#(#false(), @ls, @rs, @x) -> c_27() , 30: splitqs#2^#(tuple#2(@ls, @rs), @pivot, @x) -> c_28(splitqs#3^#(#greater(@x, @pivot), @ls, @rs, @x), #greater^#(@x, @pivot)) , 31: #eq^#(#pos(@x), #pos(@y)) -> c_31(#eq^#(@x, @y)) , 32: #eq^#(#pos(@x), #0()) -> c_32() , 33: #eq^#(#pos(@x), #neg(@y)) -> c_33() , 34: #eq^#(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> c_34(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)), #eq^#(@x_1, @y_1), #eq^#(@x_2, @y_2)) , 35: #eq^#(tuple#2(@x_1, @x_2), nil()) -> c_35() , 36: #eq^#(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> c_36() , 37: #eq^#(nil(), tuple#2(@y_1, @y_2)) -> c_37() , 38: #eq^#(nil(), nil()) -> c_38() , 39: #eq^#(nil(), ::(@y_1, @y_2)) -> c_39() , 40: #eq^#(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> c_40() , 41: #eq^#(::(@x_1, @x_2), nil()) -> c_41() , 42: #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) -> c_42(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)), #eq^#(@x_1, @y_1), #eq^#(@x_2, @y_2)) , 43: #eq^#(#0(), #pos(@y)) -> c_43() , 44: #eq^#(#0(), #0()) -> c_44() , 45: #eq^#(#0(), #neg(@y)) -> c_45() , 46: #eq^#(#0(), #s(@y)) -> c_46() , 47: #eq^#(#neg(@x), #pos(@y)) -> c_47() , 48: #eq^#(#neg(@x), #0()) -> c_48() , 49: #eq^#(#neg(@x), #neg(@y)) -> c_49(#eq^#(@x, @y)) , 50: #eq^#(#s(@x), #0()) -> c_50() , 51: #eq^#(#s(@x), #s(@y)) -> c_51(#eq^#(@x, @y)) , 52: #ckgt^#(#EQ()) -> c_52() , 53: #ckgt^#(#LT()) -> c_53() , 54: #ckgt^#(#GT()) -> c_54() , 55: #compare^#(#pos(@x), #pos(@y)) -> c_59(#compare^#(@x, @y)) , 56: #compare^#(#pos(@x), #0()) -> c_60() , 57: #compare^#(#pos(@x), #neg(@y)) -> c_61() , 58: #compare^#(#0(), #pos(@y)) -> c_62() , 59: #compare^#(#0(), #0()) -> c_63() , 60: #compare^#(#0(), #neg(@y)) -> c_64() , 61: #compare^#(#0(), #s(@y)) -> c_65() , 62: #compare^#(#neg(@x), #pos(@y)) -> c_66() , 63: #compare^#(#neg(@x), #0()) -> c_67() , 64: #compare^#(#neg(@x), #neg(@y)) -> c_68(#compare^#(@y, @x)) , 65: #compare^#(#s(@x), #0()) -> c_69() , 66: #compare^#(#s(@x), #s(@y)) -> c_70(#compare^#(@x, @y)) , 67: #and^#(#true(), #true()) -> c_55() , 68: #and^#(#true(), #false()) -> c_56() , 69: #and^#(#false(), #true()) -> c_57() , 70: #and^#(#false(), #false()) -> c_58() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^6)). Strict DPs: { splitAndSort^#(@l) -> c_2(sortAll^#(split(@l)), split^#(@l)) , sortAll^#(@l) -> c_9(sortAll#1^#(@l)) , split^#(@l) -> c_5(split#1^#(@l)) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> c_3(quicksort^#(@vals), sortAll^#(@xs)) , quicksort^#(@l) -> c_25(quicksort#1^#(@l)) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys)) , append^#(@l, @ys) -> c_6(append#1^#(@l, @ys)) , split#1^#(::(@x, @xs)) -> c_15(insert^#(@x, split(@xs)), split^#(@xs)) , append#1^#(::(@x, @xs), @ys) -> c_23(append^#(@xs, @ys)) , insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> c_7(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x), #equal^#(@key1, @keyX)) , insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) -> c_18(insert^#(@x, @ls)) , insert^#(@x, @l) -> c_8(insert#1^#(@x, @l, @x)) , insert#1^#(tuple#2(@valX, @keyX), @l, @x) -> c_19(insert#2^#(@l, @keyX, @valX, @x)) , sortAll#1^#(::(@x, @xs)) -> c_13(sortAll#2^#(@x, @xs)) , insert#2^#(::(@l1, @ls), @keyX, @valX, @x) -> c_11(insert#3^#(@l1, @keyX, @ls, @valX, @x)) , quicksort#1^#(::(@z, @zs)) -> c_21(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) , splitqs^#(@pivot, @l) -> c_24(splitqs#1^#(@l, @pivot)) , splitqs#1^#(::(@x, @xs), @pivot) -> c_30(splitqs#2^#(splitqs(@pivot, @xs), @pivot, @x), splitqs^#(@pivot, @xs)) , splitqs#2^#(tuple#2(@ls, @rs), @pivot, @x) -> c_28(splitqs#3^#(#greater(@x, @pivot), @ls, @rs, @x), #greater^#(@x, @pivot)) } Weak DPs: { #equal^#(@x, @y) -> c_1(#eq^#(@x, @y)) , #eq^#(#pos(@x), #pos(@y)) -> c_31(#eq^#(@x, @y)) , #eq^#(#pos(@x), #0()) -> c_32() , #eq^#(#pos(@x), #neg(@y)) -> c_33() , #eq^#(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> c_34(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)), #eq^#(@x_1, @y_1), #eq^#(@x_2, @y_2)) , #eq^#(tuple#2(@x_1, @x_2), nil()) -> c_35() , #eq^#(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> c_36() , #eq^#(nil(), tuple#2(@y_1, @y_2)) -> c_37() , #eq^#(nil(), nil()) -> c_38() , #eq^#(nil(), ::(@y_1, @y_2)) -> c_39() , #eq^#(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> c_40() , #eq^#(::(@x_1, @x_2), nil()) -> c_41() , #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) -> c_42(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)), #eq^#(@x_1, @y_1), #eq^#(@x_2, @y_2)) , #eq^#(#0(), #pos(@y)) -> c_43() , #eq^#(#0(), #0()) -> c_44() , #eq^#(#0(), #neg(@y)) -> c_45() , #eq^#(#0(), #s(@y)) -> c_46() , #eq^#(#neg(@x), #pos(@y)) -> c_47() , #eq^#(#neg(@x), #0()) -> c_48() , #eq^#(#neg(@x), #neg(@y)) -> c_49(#eq^#(@x, @y)) , #eq^#(#s(@x), #0()) -> c_50() , #eq^#(#s(@x), #s(@y)) -> c_51(#eq^#(@x, @y)) , split#1^#(nil()) -> c_14() , append#1^#(nil(), @ys) -> c_22() , insert#4^#(#true(), @key1, @ls, @valX, @vals1, @x) -> c_17() , sortAll#1^#(nil()) -> c_12() , insert#2^#(nil(), @keyX, @valX, @x) -> c_10() , #greater^#(@x, @y) -> c_16(#ckgt^#(#compare(@x, @y)), #compare^#(@x, @y)) , #ckgt^#(#EQ()) -> c_52() , #ckgt^#(#LT()) -> c_53() , #ckgt^#(#GT()) -> c_54() , #compare^#(#pos(@x), #pos(@y)) -> c_59(#compare^#(@x, @y)) , #compare^#(#pos(@x), #0()) -> c_60() , #compare^#(#pos(@x), #neg(@y)) -> c_61() , #compare^#(#0(), #pos(@y)) -> c_62() , #compare^#(#0(), #0()) -> c_63() , #compare^#(#0(), #neg(@y)) -> c_64() , #compare^#(#0(), #s(@y)) -> c_65() , #compare^#(#neg(@x), #pos(@y)) -> c_66() , #compare^#(#neg(@x), #0()) -> c_67() , #compare^#(#neg(@x), #neg(@y)) -> c_68(#compare^#(@y, @x)) , #compare^#(#s(@x), #0()) -> c_69() , #compare^#(#s(@x), #s(@y)) -> c_70(#compare^#(@x, @y)) , quicksort#1^#(nil()) -> c_20() , splitqs#1^#(nil(), @pivot) -> c_29() , splitqs#3^#(#true(), @ls, @rs, @x) -> c_26() , splitqs#3^#(#false(), @ls, @rs, @x) -> c_27() , #and^#(#true(), #true()) -> c_55() , #and^#(#true(), #false()) -> c_56() , #and^#(#false(), #true()) -> c_57() , #and^#(#false(), #false()) -> c_58() } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , splitAndSort(@l) -> sortAll(split(@l)) , sortAll#2(tuple#2(@vals, @key), @xs) -> ::(tuple#2(quicksort(@vals), @key), sortAll(@xs)) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , sortAll(@l) -> sortAll#1(@l) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , sortAll#1(nil()) -> nil() , sortAll#1(::(@x, @xs)) -> sortAll#2(@x, @xs) , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^6)) We estimate the number of application of {19} by applications of Pre({19}) = {18}. Here rules are labeled as follows: DPs: { 1: splitAndSort^#(@l) -> c_2(sortAll^#(split(@l)), split^#(@l)) , 2: sortAll^#(@l) -> c_9(sortAll#1^#(@l)) , 3: split^#(@l) -> c_5(split#1^#(@l)) , 4: sortAll#2^#(tuple#2(@vals, @key), @xs) -> c_3(quicksort^#(@vals), sortAll^#(@xs)) , 5: quicksort^#(@l) -> c_25(quicksort#1^#(@l)) , 6: quicksort#2^#(tuple#2(@xs, @ys), @z) -> c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys)) , 7: append^#(@l, @ys) -> c_6(append#1^#(@l, @ys)) , 8: split#1^#(::(@x, @xs)) -> c_15(insert^#(@x, split(@xs)), split^#(@xs)) , 9: append#1^#(::(@x, @xs), @ys) -> c_23(append^#(@xs, @ys)) , 10: insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> c_7(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x), #equal^#(@key1, @keyX)) , 11: insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) -> c_18(insert^#(@x, @ls)) , 12: insert^#(@x, @l) -> c_8(insert#1^#(@x, @l, @x)) , 13: insert#1^#(tuple#2(@valX, @keyX), @l, @x) -> c_19(insert#2^#(@l, @keyX, @valX, @x)) , 14: sortAll#1^#(::(@x, @xs)) -> c_13(sortAll#2^#(@x, @xs)) , 15: insert#2^#(::(@l1, @ls), @keyX, @valX, @x) -> c_11(insert#3^#(@l1, @keyX, @ls, @valX, @x)) , 16: quicksort#1^#(::(@z, @zs)) -> c_21(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) , 17: splitqs^#(@pivot, @l) -> c_24(splitqs#1^#(@l, @pivot)) , 18: splitqs#1^#(::(@x, @xs), @pivot) -> c_30(splitqs#2^#(splitqs(@pivot, @xs), @pivot, @x), splitqs^#(@pivot, @xs)) , 19: splitqs#2^#(tuple#2(@ls, @rs), @pivot, @x) -> c_28(splitqs#3^#(#greater(@x, @pivot), @ls, @rs, @x), #greater^#(@x, @pivot)) , 20: #equal^#(@x, @y) -> c_1(#eq^#(@x, @y)) , 21: #eq^#(#pos(@x), #pos(@y)) -> c_31(#eq^#(@x, @y)) , 22: #eq^#(#pos(@x), #0()) -> c_32() , 23: #eq^#(#pos(@x), #neg(@y)) -> c_33() , 24: #eq^#(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> c_34(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)), #eq^#(@x_1, @y_1), #eq^#(@x_2, @y_2)) , 25: #eq^#(tuple#2(@x_1, @x_2), nil()) -> c_35() , 26: #eq^#(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> c_36() , 27: #eq^#(nil(), tuple#2(@y_1, @y_2)) -> c_37() , 28: #eq^#(nil(), nil()) -> c_38() , 29: #eq^#(nil(), ::(@y_1, @y_2)) -> c_39() , 30: #eq^#(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> c_40() , 31: #eq^#(::(@x_1, @x_2), nil()) -> c_41() , 32: #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) -> c_42(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)), #eq^#(@x_1, @y_1), #eq^#(@x_2, @y_2)) , 33: #eq^#(#0(), #pos(@y)) -> c_43() , 34: #eq^#(#0(), #0()) -> c_44() , 35: #eq^#(#0(), #neg(@y)) -> c_45() , 36: #eq^#(#0(), #s(@y)) -> c_46() , 37: #eq^#(#neg(@x), #pos(@y)) -> c_47() , 38: #eq^#(#neg(@x), #0()) -> c_48() , 39: #eq^#(#neg(@x), #neg(@y)) -> c_49(#eq^#(@x, @y)) , 40: #eq^#(#s(@x), #0()) -> c_50() , 41: #eq^#(#s(@x), #s(@y)) -> c_51(#eq^#(@x, @y)) , 42: split#1^#(nil()) -> c_14() , 43: append#1^#(nil(), @ys) -> c_22() , 44: insert#4^#(#true(), @key1, @ls, @valX, @vals1, @x) -> c_17() , 45: sortAll#1^#(nil()) -> c_12() , 46: insert#2^#(nil(), @keyX, @valX, @x) -> c_10() , 47: #greater^#(@x, @y) -> c_16(#ckgt^#(#compare(@x, @y)), #compare^#(@x, @y)) , 48: #ckgt^#(#EQ()) -> c_52() , 49: #ckgt^#(#LT()) -> c_53() , 50: #ckgt^#(#GT()) -> c_54() , 51: #compare^#(#pos(@x), #pos(@y)) -> c_59(#compare^#(@x, @y)) , 52: #compare^#(#pos(@x), #0()) -> c_60() , 53: #compare^#(#pos(@x), #neg(@y)) -> c_61() , 54: #compare^#(#0(), #pos(@y)) -> c_62() , 55: #compare^#(#0(), #0()) -> c_63() , 56: #compare^#(#0(), #neg(@y)) -> c_64() , 57: #compare^#(#0(), #s(@y)) -> c_65() , 58: #compare^#(#neg(@x), #pos(@y)) -> c_66() , 59: #compare^#(#neg(@x), #0()) -> c_67() , 60: #compare^#(#neg(@x), #neg(@y)) -> c_68(#compare^#(@y, @x)) , 61: #compare^#(#s(@x), #0()) -> c_69() , 62: #compare^#(#s(@x), #s(@y)) -> c_70(#compare^#(@x, @y)) , 63: quicksort#1^#(nil()) -> c_20() , 64: splitqs#1^#(nil(), @pivot) -> c_29() , 65: splitqs#3^#(#true(), @ls, @rs, @x) -> c_26() , 66: splitqs#3^#(#false(), @ls, @rs, @x) -> c_27() , 67: #and^#(#true(), #true()) -> c_55() , 68: #and^#(#true(), #false()) -> c_56() , 69: #and^#(#false(), #true()) -> c_57() , 70: #and^#(#false(), #false()) -> c_58() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^6)). Strict DPs: { splitAndSort^#(@l) -> c_2(sortAll^#(split(@l)), split^#(@l)) , sortAll^#(@l) -> c_9(sortAll#1^#(@l)) , split^#(@l) -> c_5(split#1^#(@l)) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> c_3(quicksort^#(@vals), sortAll^#(@xs)) , quicksort^#(@l) -> c_25(quicksort#1^#(@l)) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys)) , append^#(@l, @ys) -> c_6(append#1^#(@l, @ys)) , split#1^#(::(@x, @xs)) -> c_15(insert^#(@x, split(@xs)), split^#(@xs)) , append#1^#(::(@x, @xs), @ys) -> c_23(append^#(@xs, @ys)) , insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> c_7(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x), #equal^#(@key1, @keyX)) , insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) -> c_18(insert^#(@x, @ls)) , insert^#(@x, @l) -> c_8(insert#1^#(@x, @l, @x)) , insert#1^#(tuple#2(@valX, @keyX), @l, @x) -> c_19(insert#2^#(@l, @keyX, @valX, @x)) , sortAll#1^#(::(@x, @xs)) -> c_13(sortAll#2^#(@x, @xs)) , insert#2^#(::(@l1, @ls), @keyX, @valX, @x) -> c_11(insert#3^#(@l1, @keyX, @ls, @valX, @x)) , quicksort#1^#(::(@z, @zs)) -> c_21(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) , splitqs^#(@pivot, @l) -> c_24(splitqs#1^#(@l, @pivot)) , splitqs#1^#(::(@x, @xs), @pivot) -> c_30(splitqs#2^#(splitqs(@pivot, @xs), @pivot, @x), splitqs^#(@pivot, @xs)) } Weak DPs: { #equal^#(@x, @y) -> c_1(#eq^#(@x, @y)) , #eq^#(#pos(@x), #pos(@y)) -> c_31(#eq^#(@x, @y)) , #eq^#(#pos(@x), #0()) -> c_32() , #eq^#(#pos(@x), #neg(@y)) -> c_33() , #eq^#(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> c_34(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)), #eq^#(@x_1, @y_1), #eq^#(@x_2, @y_2)) , #eq^#(tuple#2(@x_1, @x_2), nil()) -> c_35() , #eq^#(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> c_36() , #eq^#(nil(), tuple#2(@y_1, @y_2)) -> c_37() , #eq^#(nil(), nil()) -> c_38() , #eq^#(nil(), ::(@y_1, @y_2)) -> c_39() , #eq^#(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> c_40() , #eq^#(::(@x_1, @x_2), nil()) -> c_41() , #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) -> c_42(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)), #eq^#(@x_1, @y_1), #eq^#(@x_2, @y_2)) , #eq^#(#0(), #pos(@y)) -> c_43() , #eq^#(#0(), #0()) -> c_44() , #eq^#(#0(), #neg(@y)) -> c_45() , #eq^#(#0(), #s(@y)) -> c_46() , #eq^#(#neg(@x), #pos(@y)) -> c_47() , #eq^#(#neg(@x), #0()) -> c_48() , #eq^#(#neg(@x), #neg(@y)) -> c_49(#eq^#(@x, @y)) , #eq^#(#s(@x), #0()) -> c_50() , #eq^#(#s(@x), #s(@y)) -> c_51(#eq^#(@x, @y)) , split#1^#(nil()) -> c_14() , append#1^#(nil(), @ys) -> c_22() , insert#4^#(#true(), @key1, @ls, @valX, @vals1, @x) -> c_17() , sortAll#1^#(nil()) -> c_12() , insert#2^#(nil(), @keyX, @valX, @x) -> c_10() , #greater^#(@x, @y) -> c_16(#ckgt^#(#compare(@x, @y)), #compare^#(@x, @y)) , #ckgt^#(#EQ()) -> c_52() , #ckgt^#(#LT()) -> c_53() , #ckgt^#(#GT()) -> c_54() , #compare^#(#pos(@x), #pos(@y)) -> c_59(#compare^#(@x, @y)) , #compare^#(#pos(@x), #0()) -> c_60() , #compare^#(#pos(@x), #neg(@y)) -> c_61() , #compare^#(#0(), #pos(@y)) -> c_62() , #compare^#(#0(), #0()) -> c_63() , #compare^#(#0(), #neg(@y)) -> c_64() , #compare^#(#0(), #s(@y)) -> c_65() , #compare^#(#neg(@x), #pos(@y)) -> c_66() , #compare^#(#neg(@x), #0()) -> c_67() , #compare^#(#neg(@x), #neg(@y)) -> c_68(#compare^#(@y, @x)) , #compare^#(#s(@x), #0()) -> c_69() , #compare^#(#s(@x), #s(@y)) -> c_70(#compare^#(@x, @y)) , quicksort#1^#(nil()) -> c_20() , splitqs#1^#(nil(), @pivot) -> c_29() , splitqs#3^#(#true(), @ls, @rs, @x) -> c_26() , splitqs#3^#(#false(), @ls, @rs, @x) -> c_27() , splitqs#2^#(tuple#2(@ls, @rs), @pivot, @x) -> c_28(splitqs#3^#(#greater(@x, @pivot), @ls, @rs, @x), #greater^#(@x, @pivot)) , #and^#(#true(), #true()) -> c_55() , #and^#(#true(), #false()) -> c_56() , #and^#(#false(), #true()) -> c_57() , #and^#(#false(), #false()) -> c_58() } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , splitAndSort(@l) -> sortAll(split(@l)) , sortAll#2(tuple#2(@vals, @key), @xs) -> ::(tuple#2(quicksort(@vals), @key), sortAll(@xs)) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , sortAll(@l) -> sortAll#1(@l) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , sortAll#1(nil()) -> nil() , sortAll#1(::(@x, @xs)) -> sortAll#2(@x, @xs) , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^6)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { #equal^#(@x, @y) -> c_1(#eq^#(@x, @y)) , #eq^#(#pos(@x), #pos(@y)) -> c_31(#eq^#(@x, @y)) , #eq^#(#pos(@x), #0()) -> c_32() , #eq^#(#pos(@x), #neg(@y)) -> c_33() , #eq^#(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> c_34(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)), #eq^#(@x_1, @y_1), #eq^#(@x_2, @y_2)) , #eq^#(tuple#2(@x_1, @x_2), nil()) -> c_35() , #eq^#(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> c_36() , #eq^#(nil(), tuple#2(@y_1, @y_2)) -> c_37() , #eq^#(nil(), nil()) -> c_38() , #eq^#(nil(), ::(@y_1, @y_2)) -> c_39() , #eq^#(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> c_40() , #eq^#(::(@x_1, @x_2), nil()) -> c_41() , #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) -> c_42(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)), #eq^#(@x_1, @y_1), #eq^#(@x_2, @y_2)) , #eq^#(#0(), #pos(@y)) -> c_43() , #eq^#(#0(), #0()) -> c_44() , #eq^#(#0(), #neg(@y)) -> c_45() , #eq^#(#0(), #s(@y)) -> c_46() , #eq^#(#neg(@x), #pos(@y)) -> c_47() , #eq^#(#neg(@x), #0()) -> c_48() , #eq^#(#neg(@x), #neg(@y)) -> c_49(#eq^#(@x, @y)) , #eq^#(#s(@x), #0()) -> c_50() , #eq^#(#s(@x), #s(@y)) -> c_51(#eq^#(@x, @y)) , split#1^#(nil()) -> c_14() , append#1^#(nil(), @ys) -> c_22() , insert#4^#(#true(), @key1, @ls, @valX, @vals1, @x) -> c_17() , sortAll#1^#(nil()) -> c_12() , insert#2^#(nil(), @keyX, @valX, @x) -> c_10() , #greater^#(@x, @y) -> c_16(#ckgt^#(#compare(@x, @y)), #compare^#(@x, @y)) , #ckgt^#(#EQ()) -> c_52() , #ckgt^#(#LT()) -> c_53() , #ckgt^#(#GT()) -> c_54() , #compare^#(#pos(@x), #pos(@y)) -> c_59(#compare^#(@x, @y)) , #compare^#(#pos(@x), #0()) -> c_60() , #compare^#(#pos(@x), #neg(@y)) -> c_61() , #compare^#(#0(), #pos(@y)) -> c_62() , #compare^#(#0(), #0()) -> c_63() , #compare^#(#0(), #neg(@y)) -> c_64() , #compare^#(#0(), #s(@y)) -> c_65() , #compare^#(#neg(@x), #pos(@y)) -> c_66() , #compare^#(#neg(@x), #0()) -> c_67() , #compare^#(#neg(@x), #neg(@y)) -> c_68(#compare^#(@y, @x)) , #compare^#(#s(@x), #0()) -> c_69() , #compare^#(#s(@x), #s(@y)) -> c_70(#compare^#(@x, @y)) , quicksort#1^#(nil()) -> c_20() , splitqs#1^#(nil(), @pivot) -> c_29() , splitqs#3^#(#true(), @ls, @rs, @x) -> c_26() , splitqs#3^#(#false(), @ls, @rs, @x) -> c_27() , splitqs#2^#(tuple#2(@ls, @rs), @pivot, @x) -> c_28(splitqs#3^#(#greater(@x, @pivot), @ls, @rs, @x), #greater^#(@x, @pivot)) , #and^#(#true(), #true()) -> c_55() , #and^#(#true(), #false()) -> c_56() , #and^#(#false(), #true()) -> c_57() , #and^#(#false(), #false()) -> c_58() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^6)). Strict DPs: { splitAndSort^#(@l) -> c_2(sortAll^#(split(@l)), split^#(@l)) , sortAll^#(@l) -> c_9(sortAll#1^#(@l)) , split^#(@l) -> c_5(split#1^#(@l)) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> c_3(quicksort^#(@vals), sortAll^#(@xs)) , quicksort^#(@l) -> c_25(quicksort#1^#(@l)) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys)) , append^#(@l, @ys) -> c_6(append#1^#(@l, @ys)) , split#1^#(::(@x, @xs)) -> c_15(insert^#(@x, split(@xs)), split^#(@xs)) , append#1^#(::(@x, @xs), @ys) -> c_23(append^#(@xs, @ys)) , insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> c_7(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x), #equal^#(@key1, @keyX)) , insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) -> c_18(insert^#(@x, @ls)) , insert^#(@x, @l) -> c_8(insert#1^#(@x, @l, @x)) , insert#1^#(tuple#2(@valX, @keyX), @l, @x) -> c_19(insert#2^#(@l, @keyX, @valX, @x)) , sortAll#1^#(::(@x, @xs)) -> c_13(sortAll#2^#(@x, @xs)) , insert#2^#(::(@l1, @ls), @keyX, @valX, @x) -> c_11(insert#3^#(@l1, @keyX, @ls, @valX, @x)) , quicksort#1^#(::(@z, @zs)) -> c_21(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) , splitqs^#(@pivot, @l) -> c_24(splitqs#1^#(@l, @pivot)) , splitqs#1^#(::(@x, @xs), @pivot) -> c_30(splitqs#2^#(splitqs(@pivot, @xs), @pivot, @x), splitqs^#(@pivot, @xs)) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , splitAndSort(@l) -> sortAll(split(@l)) , sortAll#2(tuple#2(@vals, @key), @xs) -> ::(tuple#2(quicksort(@vals), @key), sortAll(@xs)) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , sortAll(@l) -> sortAll#1(@l) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , sortAll#1(nil()) -> nil() , sortAll#1(::(@x, @xs)) -> sortAll#2(@x, @xs) , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^6)) Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> c_7(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x), #equal^#(@key1, @keyX)) , splitqs#1^#(::(@x, @xs), @pivot) -> c_30(splitqs#2^#(splitqs(@pivot, @xs), @pivot, @x), splitqs^#(@pivot, @xs)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^6)). Strict DPs: { splitAndSort^#(@l) -> c_1(sortAll^#(split(@l)), split^#(@l)) , sortAll^#(@l) -> c_2(sortAll#1^#(@l)) , split^#(@l) -> c_3(split#1^#(@l)) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> c_4(quicksort^#(@vals), sortAll^#(@xs)) , quicksort^#(@l) -> c_5(quicksort#1^#(@l)) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> c_6(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys)) , append^#(@l, @ys) -> c_7(append#1^#(@l, @ys)) , split#1^#(::(@x, @xs)) -> c_8(insert^#(@x, split(@xs)), split^#(@xs)) , append#1^#(::(@x, @xs), @ys) -> c_9(append^#(@xs, @ys)) , insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> c_10(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)) , insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) -> c_11(insert^#(@x, @ls)) , insert^#(@x, @l) -> c_12(insert#1^#(@x, @l, @x)) , insert#1^#(tuple#2(@valX, @keyX), @l, @x) -> c_13(insert#2^#(@l, @keyX, @valX, @x)) , sortAll#1^#(::(@x, @xs)) -> c_14(sortAll#2^#(@x, @xs)) , insert#2^#(::(@l1, @ls), @keyX, @valX, @x) -> c_15(insert#3^#(@l1, @keyX, @ls, @valX, @x)) , quicksort#1^#(::(@z, @zs)) -> c_16(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) , splitqs^#(@pivot, @l) -> c_17(splitqs#1^#(@l, @pivot)) , splitqs#1^#(::(@x, @xs), @pivot) -> c_18(splitqs^#(@pivot, @xs)) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , splitAndSort(@l) -> sortAll(split(@l)) , sortAll#2(tuple#2(@vals, @key), @xs) -> ::(tuple#2(quicksort(@vals), @key), sortAll(@xs)) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , sortAll(@l) -> sortAll#1(@l) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , sortAll#1(nil()) -> nil() , sortAll#1(::(@x, @xs)) -> sortAll#2(@x, @xs) , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^6)) We replace rewrite rules by usable rules: Weak Usable Rules: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^6)). Strict DPs: { splitAndSort^#(@l) -> c_1(sortAll^#(split(@l)), split^#(@l)) , sortAll^#(@l) -> c_2(sortAll#1^#(@l)) , split^#(@l) -> c_3(split#1^#(@l)) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> c_4(quicksort^#(@vals), sortAll^#(@xs)) , quicksort^#(@l) -> c_5(quicksort#1^#(@l)) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> c_6(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys)) , append^#(@l, @ys) -> c_7(append#1^#(@l, @ys)) , split#1^#(::(@x, @xs)) -> c_8(insert^#(@x, split(@xs)), split^#(@xs)) , append#1^#(::(@x, @xs), @ys) -> c_9(append^#(@xs, @ys)) , insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> c_10(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)) , insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) -> c_11(insert^#(@x, @ls)) , insert^#(@x, @l) -> c_12(insert#1^#(@x, @l, @x)) , insert#1^#(tuple#2(@valX, @keyX), @l, @x) -> c_13(insert#2^#(@l, @keyX, @valX, @x)) , sortAll#1^#(::(@x, @xs)) -> c_14(sortAll#2^#(@x, @xs)) , insert#2^#(::(@l1, @ls), @keyX, @valX, @x) -> c_15(insert#3^#(@l1, @keyX, @ls, @valX, @x)) , quicksort#1^#(::(@z, @zs)) -> c_16(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) , splitqs^#(@pivot, @l) -> c_17(splitqs#1^#(@l, @pivot)) , splitqs#1^#(::(@x, @xs), @pivot) -> c_18(splitqs^#(@pivot, @xs)) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^6)) We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component: Problem (R): ------------ Strict DPs: { splitAndSort^#(@l) -> c_1(sortAll^#(split(@l)), split^#(@l)) , split^#(@l) -> c_3(split#1^#(@l)) , split#1^#(::(@x, @xs)) -> c_8(insert^#(@x, split(@xs)), split^#(@xs)) , insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> c_10(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)) , insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) -> c_11(insert^#(@x, @ls)) , insert^#(@x, @l) -> c_12(insert#1^#(@x, @l, @x)) , insert#1^#(tuple#2(@valX, @keyX), @l, @x) -> c_13(insert#2^#(@l, @keyX, @valX, @x)) , insert#2^#(::(@l1, @ls), @keyX, @valX, @x) -> c_15(insert#3^#(@l1, @keyX, @ls, @valX, @x)) } Weak DPs: { sortAll^#(@l) -> c_2(sortAll#1^#(@l)) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> c_4(quicksort^#(@vals), sortAll^#(@xs)) , quicksort^#(@l) -> c_5(quicksort#1^#(@l)) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> c_6(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys)) , append^#(@l, @ys) -> c_7(append#1^#(@l, @ys)) , append#1^#(::(@x, @xs), @ys) -> c_9(append^#(@xs, @ys)) , sortAll#1^#(::(@x, @xs)) -> c_14(sortAll#2^#(@x, @xs)) , quicksort#1^#(::(@z, @zs)) -> c_16(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) , splitqs^#(@pivot, @l) -> c_17(splitqs#1^#(@l, @pivot)) , splitqs#1^#(::(@x, @xs), @pivot) -> c_18(splitqs^#(@pivot, @xs)) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } StartTerms: basic terms Strategy: innermost Problem (S): ------------ Strict DPs: { sortAll^#(@l) -> c_2(sortAll#1^#(@l)) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> c_4(quicksort^#(@vals), sortAll^#(@xs)) , quicksort^#(@l) -> c_5(quicksort#1^#(@l)) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> c_6(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys)) , append^#(@l, @ys) -> c_7(append#1^#(@l, @ys)) , append#1^#(::(@x, @xs), @ys) -> c_9(append^#(@xs, @ys)) , sortAll#1^#(::(@x, @xs)) -> c_14(sortAll#2^#(@x, @xs)) , quicksort#1^#(::(@z, @zs)) -> c_16(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) , splitqs^#(@pivot, @l) -> c_17(splitqs#1^#(@l, @pivot)) , splitqs#1^#(::(@x, @xs), @pivot) -> c_18(splitqs^#(@pivot, @xs)) } Weak DPs: { splitAndSort^#(@l) -> c_1(sortAll^#(split(@l)), split^#(@l)) , split^#(@l) -> c_3(split#1^#(@l)) , split#1^#(::(@x, @xs)) -> c_8(insert^#(@x, split(@xs)), split^#(@xs)) , insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> c_10(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)) , insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) -> c_11(insert^#(@x, @ls)) , insert^#(@x, @l) -> c_12(insert#1^#(@x, @l, @x)) , insert#1^#(tuple#2(@valX, @keyX), @l, @x) -> c_13(insert#2^#(@l, @keyX, @valX, @x)) , insert#2^#(::(@l1, @ls), @keyX, @valX, @x) -> c_15(insert#3^#(@l1, @keyX, @ls, @valX, @x)) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } StartTerms: basic terms Strategy: innermost Overall, the transformation results in the following sub-problem(s): Generated new problems: ----------------------- R) Strict DPs: { splitAndSort^#(@l) -> c_1(sortAll^#(split(@l)), split^#(@l)) , split^#(@l) -> c_3(split#1^#(@l)) , split#1^#(::(@x, @xs)) -> c_8(insert^#(@x, split(@xs)), split^#(@xs)) , insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> c_10(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)) , insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) -> c_11(insert^#(@x, @ls)) , insert^#(@x, @l) -> c_12(insert#1^#(@x, @l, @x)) , insert#1^#(tuple#2(@valX, @keyX), @l, @x) -> c_13(insert#2^#(@l, @keyX, @valX, @x)) , insert#2^#(::(@l1, @ls), @keyX, @valX, @x) -> c_15(insert#3^#(@l1, @keyX, @ls, @valX, @x)) } Weak DPs: { sortAll^#(@l) -> c_2(sortAll#1^#(@l)) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> c_4(quicksort^#(@vals), sortAll^#(@xs)) , quicksort^#(@l) -> c_5(quicksort#1^#(@l)) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> c_6(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys)) , append^#(@l, @ys) -> c_7(append#1^#(@l, @ys)) , append#1^#(::(@x, @xs), @ys) -> c_9(append^#(@xs, @ys)) , sortAll#1^#(::(@x, @xs)) -> c_14(sortAll#2^#(@x, @xs)) , quicksort#1^#(::(@z, @zs)) -> c_16(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) , splitqs^#(@pivot, @l) -> c_17(splitqs#1^#(@l, @pivot)) , splitqs#1^#(::(@x, @xs), @pivot) -> c_18(splitqs^#(@pivot, @xs)) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } StartTerms: basic terms Strategy: innermost This problem was proven YES(O(1),O(n^2)). S) Strict DPs: { sortAll^#(@l) -> c_2(sortAll#1^#(@l)) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> c_4(quicksort^#(@vals), sortAll^#(@xs)) , quicksort^#(@l) -> c_5(quicksort#1^#(@l)) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> c_6(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys)) , append^#(@l, @ys) -> c_7(append#1^#(@l, @ys)) , append#1^#(::(@x, @xs), @ys) -> c_9(append^#(@xs, @ys)) , sortAll#1^#(::(@x, @xs)) -> c_14(sortAll#2^#(@x, @xs)) , quicksort#1^#(::(@z, @zs)) -> c_16(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) , splitqs^#(@pivot, @l) -> c_17(splitqs#1^#(@l, @pivot)) , splitqs#1^#(::(@x, @xs), @pivot) -> c_18(splitqs^#(@pivot, @xs)) } Weak DPs: { splitAndSort^#(@l) -> c_1(sortAll^#(split(@l)), split^#(@l)) , split^#(@l) -> c_3(split#1^#(@l)) , split#1^#(::(@x, @xs)) -> c_8(insert^#(@x, split(@xs)), split^#(@xs)) , insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> c_10(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)) , insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) -> c_11(insert^#(@x, @ls)) , insert^#(@x, @l) -> c_12(insert#1^#(@x, @l, @x)) , insert#1^#(tuple#2(@valX, @keyX), @l, @x) -> c_13(insert#2^#(@l, @keyX, @valX, @x)) , insert#2^#(::(@l1, @ls), @keyX, @valX, @x) -> c_15(insert#3^#(@l1, @keyX, @ls, @valX, @x)) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } StartTerms: basic terms Strategy: innermost This problem was proven YES(O(1),O(n^6)). Proofs for generated problems: ------------------------------ R) We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { splitAndSort^#(@l) -> c_1(sortAll^#(split(@l)), split^#(@l)) , split^#(@l) -> c_3(split#1^#(@l)) , split#1^#(::(@x, @xs)) -> c_8(insert^#(@x, split(@xs)), split^#(@xs)) , insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> c_10(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)) , insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) -> c_11(insert^#(@x, @ls)) , insert^#(@x, @l) -> c_12(insert#1^#(@x, @l, @x)) , insert#1^#(tuple#2(@valX, @keyX), @l, @x) -> c_13(insert#2^#(@l, @keyX, @valX, @x)) , insert#2^#(::(@l1, @ls), @keyX, @valX, @x) -> c_15(insert#3^#(@l1, @keyX, @ls, @valX, @x)) } Weak DPs: { sortAll^#(@l) -> c_2(sortAll#1^#(@l)) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> c_4(quicksort^#(@vals), sortAll^#(@xs)) , quicksort^#(@l) -> c_5(quicksort#1^#(@l)) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> c_6(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys)) , append^#(@l, @ys) -> c_7(append#1^#(@l, @ys)) , append#1^#(::(@x, @xs), @ys) -> c_9(append^#(@xs, @ys)) , sortAll#1^#(::(@x, @xs)) -> c_14(sortAll#2^#(@x, @xs)) , quicksort#1^#(::(@z, @zs)) -> c_16(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) , splitqs^#(@pivot, @l) -> c_17(splitqs#1^#(@l, @pivot)) , splitqs#1^#(::(@x, @xs), @pivot) -> c_18(splitqs^#(@pivot, @xs)) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { sortAll^#(@l) -> c_2(sortAll#1^#(@l)) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> c_4(quicksort^#(@vals), sortAll^#(@xs)) , quicksort^#(@l) -> c_5(quicksort#1^#(@l)) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> c_6(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys)) , append^#(@l, @ys) -> c_7(append#1^#(@l, @ys)) , append#1^#(::(@x, @xs), @ys) -> c_9(append^#(@xs, @ys)) , sortAll#1^#(::(@x, @xs)) -> c_14(sortAll#2^#(@x, @xs)) , quicksort#1^#(::(@z, @zs)) -> c_16(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) , splitqs^#(@pivot, @l) -> c_17(splitqs#1^#(@l, @pivot)) , splitqs#1^#(::(@x, @xs), @pivot) -> c_18(splitqs^#(@pivot, @xs)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { splitAndSort^#(@l) -> c_1(sortAll^#(split(@l)), split^#(@l)) , split^#(@l) -> c_3(split#1^#(@l)) , split#1^#(::(@x, @xs)) -> c_8(insert^#(@x, split(@xs)), split^#(@xs)) , insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> c_10(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)) , insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) -> c_11(insert^#(@x, @ls)) , insert^#(@x, @l) -> c_12(insert#1^#(@x, @l, @x)) , insert#1^#(tuple#2(@valX, @keyX), @l, @x) -> c_13(insert#2^#(@l, @keyX, @valX, @x)) , insert#2^#(::(@l1, @ls), @keyX, @valX, @x) -> c_15(insert#3^#(@l1, @keyX, @ls, @valX, @x)) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { splitAndSort^#(@l) -> c_1(sortAll^#(split(@l)), split^#(@l)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { splitAndSort^#(@l) -> c_1(split^#(@l)) , split^#(@l) -> c_2(split#1^#(@l)) , split#1^#(::(@x, @xs)) -> c_3(insert^#(@x, split(@xs)), split^#(@xs)) , insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> c_4(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)) , insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) -> c_5(insert^#(@x, @ls)) , insert^#(@x, @l) -> c_6(insert#1^#(@x, @l, @x)) , insert#1^#(tuple#2(@valX, @keyX), @l, @x) -> c_7(insert#2^#(@l, @keyX, @valX, @x)) , insert#2^#(::(@l1, @ls), @keyX, @valX, @x) -> c_8(insert#3^#(@l1, @keyX, @ls, @valX, @x)) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We replace rewrite rules by usable rules: Weak Usable Rules: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , split(@l) -> split#1(@l) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { splitAndSort^#(@l) -> c_1(split^#(@l)) , split^#(@l) -> c_2(split#1^#(@l)) , split#1^#(::(@x, @xs)) -> c_3(insert^#(@x, split(@xs)), split^#(@xs)) , insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> c_4(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)) , insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) -> c_5(insert^#(@x, @ls)) , insert^#(@x, @l) -> c_6(insert#1^#(@x, @l, @x)) , insert#1^#(tuple#2(@valX, @keyX), @l, @x) -> c_7(insert#2^#(@l, @keyX, @valX, @x)) , insert#2^#(::(@l1, @ls), @keyX, @valX, @x) -> c_8(insert#3^#(@l1, @keyX, @ls, @valX, @x)) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , split(@l) -> split#1(@l) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We decompose the input problem according to the dependency graph into the upper component { splitAndSort^#(@l) -> c_1(split^#(@l)) , split^#(@l) -> c_2(split#1^#(@l)) , split#1^#(::(@x, @xs)) -> c_3(insert^#(@x, split(@xs)), split^#(@xs)) } and lower component { insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> c_4(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)) , insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) -> c_5(insert^#(@x, @ls)) , insert^#(@x, @l) -> c_6(insert#1^#(@x, @l, @x)) , insert#1^#(tuple#2(@valX, @keyX), @l, @x) -> c_7(insert#2^#(@l, @keyX, @valX, @x)) , insert#2^#(::(@l1, @ls), @keyX, @valX, @x) -> c_8(insert#3^#(@l1, @keyX, @ls, @valX, @x)) } Further, following extension rules are added to the lower component. { splitAndSort^#(@l) -> split^#(@l) , split^#(@l) -> split#1^#(@l) , split#1^#(::(@x, @xs)) -> split^#(@xs) , split#1^#(::(@x, @xs)) -> insert^#(@x, split(@xs)) } TcT solves the upper component with certificate YES(O(1),O(n^1)). Sub-proof: ---------- We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { splitAndSort^#(@l) -> c_1(split^#(@l)) , split^#(@l) -> c_2(split#1^#(@l)) , split#1^#(::(@x, @xs)) -> c_3(insert^#(@x, split(@xs)), split^#(@xs)) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , split(@l) -> split#1(@l) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 1: splitAndSort^#(@l) -> c_1(split^#(@l)) , 3: split#1^#(::(@x, @xs)) -> c_3(insert^#(@x, split(@xs)), split^#(@xs)) } Trs: { split(@l) -> split#1(@l) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_1) = {1}, Uargs(c_2) = {1}, Uargs(c_3) = {1, 2} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [#equal](x1, x2) = [0] [#eq](x1, x2) = [0] [split](x1) = [1] [#true] = [0] [insert#3](x1, x2, x3, x4, x5) = [4] x5 + [0] [insert](x1, x2) = [0] [#pos](x1) = [1] x1 + [0] [insert#2](x1, x2, x3, x4) = [2] x2 + [6] x3 + [0] [#and](x1, x2) = [0] [tuple#2](x1, x2) = [1] x1 + [0] [nil] = [0] [split#1](x1) = [0] [insert#4](x1, x2, x3, x4, x5, x6) = [1] x2 + [5] x5 + [0] [insert#1](x1, x2, x3) = [1] x3 + [0] [#false] = [0] [::](x1, x2) = [1] x1 + [1] x2 + [4] [#0] = [0] [#neg](x1) = [1] x1 + [0] [#s](x1) = [1] x1 + [0] [splitAndSort^#](x1) = [7] x1 + [7] [split^#](x1) = [1] x1 + [0] [split#1^#](x1) = [1] x1 + [0] [insert^#](x1, x2) = [0] [c_1](x1) = [4] x1 + [4] [c_2](x1) = [1] x1 + [0] [c_3](x1, x2) = [5] x1 + [1] x2 + [1] The order satisfies the following ordering constraints: [#equal(@x, @y)] = [0] >= [0] = [#eq(@x, @y)] [#eq(#pos(@x), #pos(@y))] = [0] >= [0] = [#eq(@x, @y)] [#eq(#pos(@x), #0())] = [0] >= [0] = [#false()] [#eq(#pos(@x), #neg(@y))] = [0] >= [0] = [#false()] [#eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [0] >= [0] = [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))] [#eq(tuple#2(@x_1, @x_2), nil())] = [0] >= [0] = [#false()] [#eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2))] = [0] >= [0] = [#false()] [#eq(nil(), tuple#2(@y_1, @y_2))] = [0] >= [0] = [#false()] [#eq(nil(), nil())] = [0] >= [0] = [#true()] [#eq(nil(), ::(@y_1, @y_2))] = [0] >= [0] = [#false()] [#eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [0] >= [0] = [#false()] [#eq(::(@x_1, @x_2), nil())] = [0] >= [0] = [#false()] [#eq(::(@x_1, @x_2), ::(@y_1, @y_2))] = [0] >= [0] = [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))] [#eq(#0(), #pos(@y))] = [0] >= [0] = [#false()] [#eq(#0(), #0())] = [0] >= [0] = [#true()] [#eq(#0(), #neg(@y))] = [0] >= [0] = [#false()] [#eq(#0(), #s(@y))] = [0] >= [0] = [#false()] [#eq(#neg(@x), #pos(@y))] = [0] >= [0] = [#false()] [#eq(#neg(@x), #0())] = [0] >= [0] = [#false()] [#eq(#neg(@x), #neg(@y))] = [0] >= [0] = [#eq(@x, @y)] [#eq(#s(@x), #0())] = [0] >= [0] = [#false()] [#eq(#s(@x), #s(@y))] = [0] >= [0] = [#eq(@x, @y)] [split(@l)] = [1] > [0] = [split#1(@l)] [insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x)] = [4] @x + [0] ? [5] @vals1 + [1] @key1 + [0] = [insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)] [insert(@x, @l)] = [0] ? [1] @x + [0] = [insert#1(@x, @l, @x)] [insert#2(nil(), @keyX, @valX, @x)] = [6] @valX + [2] @keyX + [0] ? [1] @valX + [8] = [::(tuple#2(::(@valX, nil()), @keyX), nil())] [insert#2(::(@l1, @ls), @keyX, @valX, @x)] = [6] @valX + [2] @keyX + [0] ? [4] @x + [0] = [insert#3(@l1, @keyX, @ls, @valX, @x)] [#and(#true(), #true())] = [0] >= [0] = [#true()] [#and(#true(), #false())] = [0] >= [0] = [#false()] [#and(#false(), #true())] = [0] >= [0] = [#false()] [#and(#false(), #false())] = [0] >= [0] = [#false()] [split#1(nil())] = [0] >= [0] = [nil()] [split#1(::(@x, @xs))] = [0] >= [0] = [insert(@x, split(@xs))] [insert#4(#true(), @key1, @ls, @valX, @vals1, @x)] = [5] @vals1 + [1] @key1 + [0] ? [1] @valX + [1] @ls + [1] @vals1 + [8] = [::(tuple#2(::(@valX, @vals1), @key1), @ls)] [insert#4(#false(), @key1, @ls, @valX, @vals1, @x)] = [5] @vals1 + [1] @key1 + [0] ? [1] @vals1 + [4] = [::(tuple#2(@vals1, @key1), insert(@x, @ls))] [insert#1(tuple#2(@valX, @keyX), @l, @x)] = [1] @x + [0] ? [6] @valX + [2] @keyX + [0] = [insert#2(@l, @keyX, @valX, @x)] [splitAndSort^#(@l)] = [7] @l + [7] > [4] @l + [4] = [c_1(split^#(@l))] [split^#(@l)] = [1] @l + [0] >= [1] @l + [0] = [c_2(split#1^#(@l))] [split#1^#(::(@x, @xs))] = [1] @x + [1] @xs + [4] > [1] @xs + [1] = [c_3(insert^#(@x, split(@xs)), split^#(@xs))] We return to the main proof. Consider the set of all dependency pairs : { 1: splitAndSort^#(@l) -> c_1(split^#(@l)) , 2: split^#(@l) -> c_2(split#1^#(@l)) , 3: split#1^#(::(@x, @xs)) -> c_3(insert^#(@x, split(@xs)), split^#(@xs)) } Processor 'matrix interpretation of dimension 1' induces the complexity certificate YES(?,O(n^1)) on application of dependency pairs {1,3}. These cover all (indirect) predecessors of dependency pairs {1,2,3}, their number of application is equally bounded. The dependency pairs are shifted into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { splitAndSort^#(@l) -> c_1(split^#(@l)) , split^#(@l) -> c_2(split#1^#(@l)) , split#1^#(::(@x, @xs)) -> c_3(insert^#(@x, split(@xs)), split^#(@xs)) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , split(@l) -> split#1(@l) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { splitAndSort^#(@l) -> c_1(split^#(@l)) , split^#(@l) -> c_2(split#1^#(@l)) , split#1^#(::(@x, @xs)) -> c_3(insert^#(@x, split(@xs)), split^#(@xs)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , split(@l) -> split#1(@l) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> c_4(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)) , insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) -> c_5(insert^#(@x, @ls)) , insert^#(@x, @l) -> c_6(insert#1^#(@x, @l, @x)) , insert#1^#(tuple#2(@valX, @keyX), @l, @x) -> c_7(insert#2^#(@l, @keyX, @valX, @x)) , insert#2^#(::(@l1, @ls), @keyX, @valX, @x) -> c_8(insert#3^#(@l1, @keyX, @ls, @valX, @x)) } Weak DPs: { splitAndSort^#(@l) -> split^#(@l) , split^#(@l) -> split#1^#(@l) , split#1^#(::(@x, @xs)) -> split^#(@xs) , split#1^#(::(@x, @xs)) -> insert^#(@x, split(@xs)) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , split(@l) -> split#1(@l) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 5: insert#2^#(::(@l1, @ls), @keyX, @valX, @x) -> c_8(insert#3^#(@l1, @keyX, @ls, @valX, @x)) , 8: split#1^#(::(@x, @xs)) -> split^#(@xs) , 9: split#1^#(::(@x, @xs)) -> insert^#(@x, split(@xs)) } Trs: { split#1(nil()) -> nil() , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_4) = {1}, Uargs(c_5) = {1}, Uargs(c_6) = {1}, Uargs(c_7) = {1}, Uargs(c_8) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [#equal](x1, x2) = [0] [#eq](x1, x2) = [0] [split](x1) = [1] x1 + [4] [#true] = [0] [insert#3](x1, x2, x3, x4, x5) = [1] x3 + [2] [insert](x1, x2) = [1] x2 + [1] [#pos](x1) = [1] x1 + [6] [insert#2](x1, x2, x3, x4) = [1] x1 + [1] [#and](x1, x2) = [0] [tuple#2](x1, x2) = [1] x1 + [0] [nil] = [4] [split#1](x1) = [1] x1 + [4] [insert#4](x1, x2, x3, x4, x5, x6) = [1] x1 + [1] x3 + [2] [insert#1](x1, x2, x3) = [1] x2 + [1] [#false] = [0] [::](x1, x2) = [1] x2 + [1] [#0] = [1] [#neg](x1) = [1] x1 + [6] [#s](x1) = [1] x1 + [6] [splitAndSort^#](x1) = [7] x1 + [7] [split^#](x1) = [6] x1 + [7] [split#1^#](x1) = [6] x1 + [7] [insert#3^#](x1, x2, x3, x4, x5) = [3] x3 + [0] [insert#4^#](x1, x2, x3, x4, x5, x6) = [3] x3 + [0] [insert^#](x1, x2) = [3] x2 + [0] [insert#1^#](x1, x2, x3) = [3] x2 + [0] [insert#2^#](x1, x2, x3, x4) = [3] x1 + [0] [c_4](x1) = [1] x1 + [0] [c_5](x1) = [1] x1 + [0] [c_6](x1) = [1] x1 + [0] [c_7](x1) = [1] x1 + [0] [c_8](x1) = [1] x1 + [1] The order satisfies the following ordering constraints: [#equal(@x, @y)] = [0] >= [0] = [#eq(@x, @y)] [#eq(#pos(@x), #pos(@y))] = [0] >= [0] = [#eq(@x, @y)] [#eq(#pos(@x), #0())] = [0] >= [0] = [#false()] [#eq(#pos(@x), #neg(@y))] = [0] >= [0] = [#false()] [#eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [0] >= [0] = [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))] [#eq(tuple#2(@x_1, @x_2), nil())] = [0] >= [0] = [#false()] [#eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2))] = [0] >= [0] = [#false()] [#eq(nil(), tuple#2(@y_1, @y_2))] = [0] >= [0] = [#false()] [#eq(nil(), nil())] = [0] >= [0] = [#true()] [#eq(nil(), ::(@y_1, @y_2))] = [0] >= [0] = [#false()] [#eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [0] >= [0] = [#false()] [#eq(::(@x_1, @x_2), nil())] = [0] >= [0] = [#false()] [#eq(::(@x_1, @x_2), ::(@y_1, @y_2))] = [0] >= [0] = [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))] [#eq(#0(), #pos(@y))] = [0] >= [0] = [#false()] [#eq(#0(), #0())] = [0] >= [0] = [#true()] [#eq(#0(), #neg(@y))] = [0] >= [0] = [#false()] [#eq(#0(), #s(@y))] = [0] >= [0] = [#false()] [#eq(#neg(@x), #pos(@y))] = [0] >= [0] = [#false()] [#eq(#neg(@x), #0())] = [0] >= [0] = [#false()] [#eq(#neg(@x), #neg(@y))] = [0] >= [0] = [#eq(@x, @y)] [#eq(#s(@x), #0())] = [0] >= [0] = [#false()] [#eq(#s(@x), #s(@y))] = [0] >= [0] = [#eq(@x, @y)] [split(@l)] = [1] @l + [4] >= [1] @l + [4] = [split#1(@l)] [insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x)] = [1] @ls + [2] >= [1] @ls + [2] = [insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)] [insert(@x, @l)] = [1] @l + [1] >= [1] @l + [1] = [insert#1(@x, @l, @x)] [insert#2(nil(), @keyX, @valX, @x)] = [5] >= [5] = [::(tuple#2(::(@valX, nil()), @keyX), nil())] [insert#2(::(@l1, @ls), @keyX, @valX, @x)] = [1] @ls + [2] >= [1] @ls + [2] = [insert#3(@l1, @keyX, @ls, @valX, @x)] [#and(#true(), #true())] = [0] >= [0] = [#true()] [#and(#true(), #false())] = [0] >= [0] = [#false()] [#and(#false(), #true())] = [0] >= [0] = [#false()] [#and(#false(), #false())] = [0] >= [0] = [#false()] [split#1(nil())] = [8] > [4] = [nil()] [split#1(::(@x, @xs))] = [1] @xs + [5] >= [1] @xs + [5] = [insert(@x, split(@xs))] [insert#4(#true(), @key1, @ls, @valX, @vals1, @x)] = [1] @ls + [2] > [1] @ls + [1] = [::(tuple#2(::(@valX, @vals1), @key1), @ls)] [insert#4(#false(), @key1, @ls, @valX, @vals1, @x)] = [1] @ls + [2] >= [1] @ls + [2] = [::(tuple#2(@vals1, @key1), insert(@x, @ls))] [insert#1(tuple#2(@valX, @keyX), @l, @x)] = [1] @l + [1] >= [1] @l + [1] = [insert#2(@l, @keyX, @valX, @x)] [splitAndSort^#(@l)] = [7] @l + [7] >= [6] @l + [7] = [split^#(@l)] [split^#(@l)] = [6] @l + [7] >= [6] @l + [7] = [split#1^#(@l)] [split#1^#(::(@x, @xs))] = [6] @xs + [13] > [6] @xs + [7] = [split^#(@xs)] [split#1^#(::(@x, @xs))] = [6] @xs + [13] > [3] @xs + [12] = [insert^#(@x, split(@xs))] [insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x)] = [3] @ls + [0] >= [3] @ls + [0] = [c_4(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x))] [insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x)] = [3] @ls + [0] >= [3] @ls + [0] = [c_5(insert^#(@x, @ls))] [insert^#(@x, @l)] = [3] @l + [0] >= [3] @l + [0] = [c_6(insert#1^#(@x, @l, @x))] [insert#1^#(tuple#2(@valX, @keyX), @l, @x)] = [3] @l + [0] >= [3] @l + [0] = [c_7(insert#2^#(@l, @keyX, @valX, @x))] [insert#2^#(::(@l1, @ls), @keyX, @valX, @x)] = [3] @ls + [3] > [3] @ls + [1] = [c_8(insert#3^#(@l1, @keyX, @ls, @valX, @x))] We return to the main proof. Consider the set of all dependency pairs : { 1: insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> c_4(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)) , 2: insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) -> c_5(insert^#(@x, @ls)) , 3: insert^#(@x, @l) -> c_6(insert#1^#(@x, @l, @x)) , 4: insert#1^#(tuple#2(@valX, @keyX), @l, @x) -> c_7(insert#2^#(@l, @keyX, @valX, @x)) , 5: insert#2^#(::(@l1, @ls), @keyX, @valX, @x) -> c_8(insert#3^#(@l1, @keyX, @ls, @valX, @x)) , 6: splitAndSort^#(@l) -> split^#(@l) , 7: split^#(@l) -> split#1^#(@l) , 8: split#1^#(::(@x, @xs)) -> split^#(@xs) , 9: split#1^#(::(@x, @xs)) -> insert^#(@x, split(@xs)) } Processor 'matrix interpretation of dimension 1' induces the complexity certificate YES(?,O(n^1)) on application of dependency pairs {5,8,9}. These cover all (indirect) predecessors of dependency pairs {1,2,3,4,5,6,7,8,9}, their number of application is equally bounded. The dependency pairs are shifted into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { splitAndSort^#(@l) -> split^#(@l) , split^#(@l) -> split#1^#(@l) , split#1^#(::(@x, @xs)) -> split^#(@xs) , split#1^#(::(@x, @xs)) -> insert^#(@x, split(@xs)) , insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> c_4(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)) , insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) -> c_5(insert^#(@x, @ls)) , insert^#(@x, @l) -> c_6(insert#1^#(@x, @l, @x)) , insert#1^#(tuple#2(@valX, @keyX), @l, @x) -> c_7(insert#2^#(@l, @keyX, @valX, @x)) , insert#2^#(::(@l1, @ls), @keyX, @valX, @x) -> c_8(insert#3^#(@l1, @keyX, @ls, @valX, @x)) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , split(@l) -> split#1(@l) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { splitAndSort^#(@l) -> split^#(@l) , split^#(@l) -> split#1^#(@l) , split#1^#(::(@x, @xs)) -> split^#(@xs) , split#1^#(::(@x, @xs)) -> insert^#(@x, split(@xs)) , insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> c_4(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)) , insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) -> c_5(insert^#(@x, @ls)) , insert^#(@x, @l) -> c_6(insert#1^#(@x, @l, @x)) , insert#1^#(tuple#2(@valX, @keyX), @l, @x) -> c_7(insert#2^#(@l, @keyX, @valX, @x)) , insert#2^#(::(@l1, @ls), @keyX, @valX, @x) -> c_8(insert#3^#(@l1, @keyX, @ls, @valX, @x)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , split(@l) -> split#1(@l) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded S) We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^6)). Strict DPs: { sortAll^#(@l) -> c_2(sortAll#1^#(@l)) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> c_4(quicksort^#(@vals), sortAll^#(@xs)) , quicksort^#(@l) -> c_5(quicksort#1^#(@l)) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> c_6(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys)) , append^#(@l, @ys) -> c_7(append#1^#(@l, @ys)) , append#1^#(::(@x, @xs), @ys) -> c_9(append^#(@xs, @ys)) , sortAll#1^#(::(@x, @xs)) -> c_14(sortAll#2^#(@x, @xs)) , quicksort#1^#(::(@z, @zs)) -> c_16(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) , splitqs^#(@pivot, @l) -> c_17(splitqs#1^#(@l, @pivot)) , splitqs#1^#(::(@x, @xs), @pivot) -> c_18(splitqs^#(@pivot, @xs)) } Weak DPs: { splitAndSort^#(@l) -> c_1(sortAll^#(split(@l)), split^#(@l)) , split^#(@l) -> c_3(split#1^#(@l)) , split#1^#(::(@x, @xs)) -> c_8(insert^#(@x, split(@xs)), split^#(@xs)) , insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> c_10(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)) , insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) -> c_11(insert^#(@x, @ls)) , insert^#(@x, @l) -> c_12(insert#1^#(@x, @l, @x)) , insert#1^#(tuple#2(@valX, @keyX), @l, @x) -> c_13(insert#2^#(@l, @keyX, @valX, @x)) , insert#2^#(::(@l1, @ls), @keyX, @valX, @x) -> c_15(insert#3^#(@l1, @keyX, @ls, @valX, @x)) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^6)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { split^#(@l) -> c_3(split#1^#(@l)) , split#1^#(::(@x, @xs)) -> c_8(insert^#(@x, split(@xs)), split^#(@xs)) , insert#3^#(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> c_10(insert#4^#(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)) , insert#4^#(#false(), @key1, @ls, @valX, @vals1, @x) -> c_11(insert^#(@x, @ls)) , insert^#(@x, @l) -> c_12(insert#1^#(@x, @l, @x)) , insert#1^#(tuple#2(@valX, @keyX), @l, @x) -> c_13(insert#2^#(@l, @keyX, @valX, @x)) , insert#2^#(::(@l1, @ls), @keyX, @valX, @x) -> c_15(insert#3^#(@l1, @keyX, @ls, @valX, @x)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^6)). Strict DPs: { sortAll^#(@l) -> c_2(sortAll#1^#(@l)) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> c_4(quicksort^#(@vals), sortAll^#(@xs)) , quicksort^#(@l) -> c_5(quicksort#1^#(@l)) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> c_6(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys)) , append^#(@l, @ys) -> c_7(append#1^#(@l, @ys)) , append#1^#(::(@x, @xs), @ys) -> c_9(append^#(@xs, @ys)) , sortAll#1^#(::(@x, @xs)) -> c_14(sortAll#2^#(@x, @xs)) , quicksort#1^#(::(@z, @zs)) -> c_16(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) , splitqs^#(@pivot, @l) -> c_17(splitqs#1^#(@l, @pivot)) , splitqs#1^#(::(@x, @xs), @pivot) -> c_18(splitqs^#(@pivot, @xs)) } Weak DPs: { splitAndSort^#(@l) -> c_1(sortAll^#(split(@l)), split^#(@l)) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^6)) Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { splitAndSort^#(@l) -> c_1(sortAll^#(split(@l)), split^#(@l)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^6)). Strict DPs: { sortAll^#(@l) -> c_1(sortAll#1^#(@l)) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> c_2(quicksort^#(@vals), sortAll^#(@xs)) , quicksort^#(@l) -> c_3(quicksort#1^#(@l)) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys)) , append^#(@l, @ys) -> c_5(append#1^#(@l, @ys)) , append#1^#(::(@x, @xs), @ys) -> c_6(append^#(@xs, @ys)) , sortAll#1^#(::(@x, @xs)) -> c_7(sortAll#2^#(@x, @xs)) , quicksort#1^#(::(@z, @zs)) -> c_8(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) , splitqs^#(@pivot, @l) -> c_9(splitqs#1^#(@l, @pivot)) , splitqs#1^#(::(@x, @xs), @pivot) -> c_10(splitqs^#(@pivot, @xs)) } Weak DPs: { splitAndSort^#(@l) -> c_11(sortAll^#(split(@l))) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^6)) We decompose the input problem according to the dependency graph into the upper component { splitAndSort^#(@l) -> c_11(sortAll^#(split(@l))) , sortAll^#(@l) -> c_1(sortAll#1^#(@l)) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> c_2(quicksort^#(@vals), sortAll^#(@xs)) , sortAll#1^#(::(@x, @xs)) -> c_7(sortAll#2^#(@x, @xs)) } and lower component { quicksort^#(@l) -> c_3(quicksort#1^#(@l)) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys)) , append^#(@l, @ys) -> c_5(append#1^#(@l, @ys)) , append#1^#(::(@x, @xs), @ys) -> c_6(append^#(@xs, @ys)) , quicksort#1^#(::(@z, @zs)) -> c_8(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) , splitqs^#(@pivot, @l) -> c_9(splitqs#1^#(@l, @pivot)) , splitqs#1^#(::(@x, @xs), @pivot) -> c_10(splitqs^#(@pivot, @xs)) } Further, following extension rules are added to the lower component. { splitAndSort^#(@l) -> sortAll^#(split(@l)) , sortAll^#(@l) -> sortAll#1^#(@l) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals) , sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs) } TcT solves the upper component with certificate YES(O(1),O(n^1)). Sub-proof: ---------- We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { sortAll^#(@l) -> c_1(sortAll#1^#(@l)) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> c_2(quicksort^#(@vals), sortAll^#(@xs)) , sortAll#1^#(::(@x, @xs)) -> c_7(sortAll#2^#(@x, @xs)) } Weak DPs: { splitAndSort^#(@l) -> c_11(sortAll^#(split(@l))) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We replace rewrite rules by usable rules: Weak Usable Rules: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , split(@l) -> split#1(@l) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { sortAll^#(@l) -> c_1(sortAll#1^#(@l)) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> c_2(quicksort^#(@vals), sortAll^#(@xs)) , sortAll#1^#(::(@x, @xs)) -> c_7(sortAll#2^#(@x, @xs)) } Weak DPs: { splitAndSort^#(@l) -> c_11(sortAll^#(split(@l))) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , split(@l) -> split#1(@l) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 2: sortAll#2^#(tuple#2(@vals, @key), @xs) -> c_2(quicksort^#(@vals), sortAll^#(@xs)) } Trs: { split(@l) -> split#1(@l) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_1) = {1}, Uargs(c_2) = {2}, Uargs(c_7) = {1}, Uargs(c_11) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [#equal](x1, x2) = [1] [#eq](x1, x2) = [1] [quicksort#2](x1, x2) = [0] [split](x1) = [5] x1 + [3] [#true] = [1] [append](x1, x2) = [0] [insert#3](x1, x2, x3, x4, x5) = [1] x3 + [3] [#ckgt](x1) = [0] [insert](x1, x2) = [1] x2 + [2] [#pos](x1) = [1] x1 + [0] [#EQ] = [0] [insert#2](x1, x2, x3, x4) = [1] x1 + [2] [#and](x1, x2) = [1] x1 + [0] [#compare](x1, x2) = [0] [tuple#2](x1, x2) = [0] [nil] = [2] [split#1](x1) = [5] x1 + [1] [#greater](x1, x2) = [0] [insert#4](x1, x2, x3, x4, x5, x6) = [1] x3 + [3] [insert#1](x1, x2, x3) = [1] x2 + [2] [quicksort#1](x1) = [0] [append#1](x1, x2) = [0] [splitqs](x1, x2) = [0] [#false] = [1] [quicksort](x1) = [0] [::](x1, x2) = [1] x1 + [1] x2 + [1] [#LT] = [0] [splitqs#3](x1, x2, x3, x4) = [0] [splitqs#2](x1, x2, x3) = [0] [#0] = [0] [#neg](x1) = [1] x1 + [0] [#s](x1) = [1] x1 + [0] [#GT] = [0] [splitqs#1](x1, x2) = [0] [splitAndSort^#](x1) = [7] x1 + [7] [sortAll^#](x1) = [1] x1 + [0] [sortAll#2^#](x1, x2) = [1] x2 + [1] [quicksort^#](x1) = [0] [sortAll#1^#](x1) = [1] x1 + [0] [c_1](x1) = [1] x1 + [0] [c_2](x1, x2) = [1] x1 + [1] x2 + [0] [c_7](x1) = [1] x1 + [0] [c_11](x1) = [1] x1 + [4] The order satisfies the following ordering constraints: [#equal(@x, @y)] = [1] >= [1] = [#eq(@x, @y)] [#eq(#pos(@x), #pos(@y))] = [1] >= [1] = [#eq(@x, @y)] [#eq(#pos(@x), #0())] = [1] >= [1] = [#false()] [#eq(#pos(@x), #neg(@y))] = [1] >= [1] = [#false()] [#eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [1] >= [1] = [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))] [#eq(tuple#2(@x_1, @x_2), nil())] = [1] >= [1] = [#false()] [#eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2))] = [1] >= [1] = [#false()] [#eq(nil(), tuple#2(@y_1, @y_2))] = [1] >= [1] = [#false()] [#eq(nil(), nil())] = [1] >= [1] = [#true()] [#eq(nil(), ::(@y_1, @y_2))] = [1] >= [1] = [#false()] [#eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [1] >= [1] = [#false()] [#eq(::(@x_1, @x_2), nil())] = [1] >= [1] = [#false()] [#eq(::(@x_1, @x_2), ::(@y_1, @y_2))] = [1] >= [1] = [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))] [#eq(#0(), #pos(@y))] = [1] >= [1] = [#false()] [#eq(#0(), #0())] = [1] >= [1] = [#true()] [#eq(#0(), #neg(@y))] = [1] >= [1] = [#false()] [#eq(#0(), #s(@y))] = [1] >= [1] = [#false()] [#eq(#neg(@x), #pos(@y))] = [1] >= [1] = [#false()] [#eq(#neg(@x), #0())] = [1] >= [1] = [#false()] [#eq(#neg(@x), #neg(@y))] = [1] >= [1] = [#eq(@x, @y)] [#eq(#s(@x), #0())] = [1] >= [1] = [#false()] [#eq(#s(@x), #s(@y))] = [1] >= [1] = [#eq(@x, @y)] [split(@l)] = [5] @l + [3] > [5] @l + [1] = [split#1(@l)] [insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x)] = [1] @ls + [3] >= [1] @ls + [3] = [insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)] [insert(@x, @l)] = [1] @l + [2] >= [1] @l + [2] = [insert#1(@x, @l, @x)] [insert#2(nil(), @keyX, @valX, @x)] = [4] > [3] = [::(tuple#2(::(@valX, nil()), @keyX), nil())] [insert#2(::(@l1, @ls), @keyX, @valX, @x)] = [1] @l1 + [1] @ls + [3] >= [1] @ls + [3] = [insert#3(@l1, @keyX, @ls, @valX, @x)] [#and(#true(), #true())] = [1] >= [1] = [#true()] [#and(#true(), #false())] = [1] >= [1] = [#false()] [#and(#false(), #true())] = [1] >= [1] = [#false()] [#and(#false(), #false())] = [1] >= [1] = [#false()] [split#1(nil())] = [11] > [2] = [nil()] [split#1(::(@x, @xs))] = [5] @x + [5] @xs + [6] > [5] @xs + [5] = [insert(@x, split(@xs))] [insert#4(#true(), @key1, @ls, @valX, @vals1, @x)] = [1] @ls + [3] > [1] @ls + [1] = [::(tuple#2(::(@valX, @vals1), @key1), @ls)] [insert#4(#false(), @key1, @ls, @valX, @vals1, @x)] = [1] @ls + [3] >= [1] @ls + [3] = [::(tuple#2(@vals1, @key1), insert(@x, @ls))] [insert#1(tuple#2(@valX, @keyX), @l, @x)] = [1] @l + [2] >= [1] @l + [2] = [insert#2(@l, @keyX, @valX, @x)] [splitAndSort^#(@l)] = [7] @l + [7] >= [5] @l + [7] = [c_11(sortAll^#(split(@l)))] [sortAll^#(@l)] = [1] @l + [0] >= [1] @l + [0] = [c_1(sortAll#1^#(@l))] [sortAll#2^#(tuple#2(@vals, @key), @xs)] = [1] @xs + [1] > [1] @xs + [0] = [c_2(quicksort^#(@vals), sortAll^#(@xs))] [sortAll#1^#(::(@x, @xs))] = [1] @x + [1] @xs + [1] >= [1] @xs + [1] = [c_7(sortAll#2^#(@x, @xs))] We return to the main proof. Consider the set of all dependency pairs : { 1: sortAll^#(@l) -> c_1(sortAll#1^#(@l)) , 2: sortAll#2^#(tuple#2(@vals, @key), @xs) -> c_2(quicksort^#(@vals), sortAll^#(@xs)) , 3: sortAll#1^#(::(@x, @xs)) -> c_7(sortAll#2^#(@x, @xs)) , 4: splitAndSort^#(@l) -> c_11(sortAll^#(split(@l))) } Processor 'matrix interpretation of dimension 1' induces the complexity certificate YES(?,O(n^1)) on application of dependency pairs {2}. These cover all (indirect) predecessors of dependency pairs {1,2,3,4}, their number of application is equally bounded. The dependency pairs are shifted into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { splitAndSort^#(@l) -> c_11(sortAll^#(split(@l))) , sortAll^#(@l) -> c_1(sortAll#1^#(@l)) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> c_2(quicksort^#(@vals), sortAll^#(@xs)) , sortAll#1^#(::(@x, @xs)) -> c_7(sortAll#2^#(@x, @xs)) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , split(@l) -> split#1(@l) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { splitAndSort^#(@l) -> c_11(sortAll^#(split(@l))) , sortAll^#(@l) -> c_1(sortAll#1^#(@l)) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> c_2(quicksort^#(@vals), sortAll^#(@xs)) , sortAll#1^#(::(@x, @xs)) -> c_7(sortAll#2^#(@x, @xs)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , split(@l) -> split#1(@l) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^5)). Strict DPs: { quicksort^#(@l) -> c_3(quicksort#1^#(@l)) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys)) , append^#(@l, @ys) -> c_5(append#1^#(@l, @ys)) , append#1^#(::(@x, @xs), @ys) -> c_6(append^#(@xs, @ys)) , quicksort#1^#(::(@z, @zs)) -> c_8(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) , splitqs^#(@pivot, @l) -> c_9(splitqs#1^#(@l, @pivot)) , splitqs#1^#(::(@x, @xs), @pivot) -> c_10(splitqs^#(@pivot, @xs)) } Weak DPs: { splitAndSort^#(@l) -> sortAll^#(split(@l)) , sortAll^#(@l) -> sortAll#1^#(@l) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals) , sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^5)) We decompose the input problem according to the dependency graph into the upper component { splitAndSort^#(@l) -> sortAll^#(split(@l)) , sortAll^#(@l) -> sortAll#1^#(@l) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals) , quicksort^#(@l) -> c_3(quicksort#1^#(@l)) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys)) , sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs) , quicksort#1^#(::(@z, @zs)) -> c_8(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) } and lower component { append^#(@l, @ys) -> c_5(append#1^#(@l, @ys)) , append#1^#(::(@x, @xs), @ys) -> c_6(append^#(@xs, @ys)) , splitqs^#(@pivot, @l) -> c_9(splitqs#1^#(@l, @pivot)) , splitqs#1^#(::(@x, @xs), @pivot) -> c_10(splitqs^#(@pivot, @xs)) } Further, following extension rules are added to the lower component. { splitAndSort^#(@l) -> sortAll^#(split(@l)) , sortAll^#(@l) -> sortAll#1^#(@l) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals) , quicksort^#(@l) -> quicksort#1^#(@l) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@xs) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@ys) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> append^#(quicksort(@xs), ::(@z, quicksort(@ys))) , sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs) , quicksort#1^#(::(@z, @zs)) -> quicksort#2^#(splitqs(@z, @zs), @z) , quicksort#1^#(::(@z, @zs)) -> splitqs^#(@z, @zs) } TcT solves the upper component with certificate YES(O(1),O(n^1)). Sub-proof: ---------- We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { quicksort^#(@l) -> c_3(quicksort#1^#(@l)) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys)) , quicksort#1^#(::(@z, @zs)) -> c_8(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) } Weak DPs: { splitAndSort^#(@l) -> sortAll^#(split(@l)) , sortAll^#(@l) -> sortAll#1^#(@l) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals) , sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. DPs: { 3: quicksort#1^#(::(@z, @zs)) -> c_8(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) , 4: splitAndSort^#(@l) -> sortAll^#(split(@l)) , 5: sortAll^#(@l) -> sortAll#1^#(@l) , 6: sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs) , 7: sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals) , 8: sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs) } Trs: { insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , quicksort#1(nil()) -> nil() , append#1(nil(), @ys) -> @ys } Sub-proof: ---------- The following argument positions are usable: Uargs(c_3) = {1}, Uargs(c_4) = {1, 2, 3}, Uargs(c_8) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA) and not(IDA(1)). [#equal](x1, x2) = [1] [5] [#eq](x1, x2) = [1] [5] [quicksort#2](x1, x2) = [0 0] x2 + [7] [0 1] [0] [split](x1) = [7 0] x1 + [1] [0 3] [1] [#true] = [1] [1] [append](x1, x2) = [0 0] x1 + [3 0] x2 + [0] [7 0] [2 1] [0] [insert#3](x1, x2, x3, x4, x5) = [0 0] x1 + [1 0] x3 + [7] [0 1] [0 1] [7] [#ckgt](x1) = [0 0] x1 + [1] [1 0] [3] [insert](x1, x2) = [1 0] x2 + [6] [0 1] [5] [#pos](x1) = [1 0] x1 + [0] [0 1] [2] [#EQ] = [3] [0] [insert#2](x1, x2, x3, x4) = [1 0] x1 + [6] [0 1] [5] [#and](x1, x2) = [1] [5] [#compare](x1, x2) = [2 1] x1 + [1 2] x2 + [4] [6 1] [1 6] [0] [tuple#2](x1, x2) = [1 0] x1 + [1 0] x2 + [1] [1 0] [0 0] [2] [nil] = [0] [5] [split#1](x1) = [7 0] x1 + [1] [0 3] [0] [#greater](x1, x2) = [0 0] x1 + [0 0] x2 + [1] [2 1] [1 2] [7] [insert#4](x1, x2, x3, x4, x5, x6) = [2 1] x1 + [1 0] x3 + [0 0] x5 + [0] [7 0] [0 1] [1 0] [2] [insert#1](x1, x2, x3) = [1 0] x2 + [6] [0 1] [5] [quicksort#1](x1) = [0 0] x1 + [7] [0 1] [2] [append#1](x1, x2) = [7 0] x2 + [1] [1 5] [0] [splitqs](x1, x2) = [1 0] x2 + [1] [4 0] [2] [#false] = [1] [5] [quicksort](x1) = [0 0] x1 + [1] [0 1] [0] [::](x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 1] [0 1] [2] [#LT] = [2] [0] [splitqs#3](x1, x2, x3, x4) = [0 0] x1 + [1 0] x2 + [1 0] x3 + [2] [2 0] [1 0] [0 0] [1] [splitqs#2](x1, x2, x3) = [1 0] x1 + [1] [0 1] [1] [#0] = [0] [0] [#neg](x1) = [0 1] x1 + [0] [1 0] [2] [#s](x1) = [1 0] x1 + [2] [0 1] [0] [#GT] = [0] [0] [splitqs#1](x1, x2) = [1 0] x1 + [1] [4 0] [2] [splitAndSort^#](x1) = [7 7] x1 + [7] [7 7] [7] [sortAll^#](x1) = [0 2] x1 + [4] [0 0] [4] [sortAll#2^#](x1, x2) = [0 2] x1 + [0 2] x2 + [3] [0 0] [0 0] [4] [quicksort^#](x1) = [2 0] x1 + [1] [0 0] [0] [quicksort#2^#](x1, x2) = [2 0] x1 + [0] [1 0] [0] [append^#](x1, x2) = [0] [1] [sortAll#1^#](x1) = [0 2] x1 + [2] [0 0] [4] [quicksort#1^#](x1) = [2 0] x1 + [1] [0 0] [0] [splitqs^#](x1, x2) = [1] [1] [c_3](x1) = [1 1] x1 + [0] [0 0] [0] [c_4](x1, x2, x3) = [5 0] x1 + [1 0] x2 + [1 0] x3 + [0] [0 0] [0 0] [0 0] [0] [c_8](x1, x2) = [1 0] x1 + [0] [0 0] [0] The order satisfies the following ordering constraints: [#equal(@x, @y)] = [1] [5] >= [1] [5] = [#eq(@x, @y)] [#eq(#pos(@x), #pos(@y))] = [1] [5] >= [1] [5] = [#eq(@x, @y)] [#eq(#pos(@x), #0())] = [1] [5] >= [1] [5] = [#false()] [#eq(#pos(@x), #neg(@y))] = [1] [5] >= [1] [5] = [#false()] [#eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [1] [5] >= [1] [5] = [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))] [#eq(tuple#2(@x_1, @x_2), nil())] = [1] [5] >= [1] [5] = [#false()] [#eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2))] = [1] [5] >= [1] [5] = [#false()] [#eq(nil(), tuple#2(@y_1, @y_2))] = [1] [5] >= [1] [5] = [#false()] [#eq(nil(), nil())] = [1] [5] >= [1] [1] = [#true()] [#eq(nil(), ::(@y_1, @y_2))] = [1] [5] >= [1] [5] = [#false()] [#eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [1] [5] >= [1] [5] = [#false()] [#eq(::(@x_1, @x_2), nil())] = [1] [5] >= [1] [5] = [#false()] [#eq(::(@x_1, @x_2), ::(@y_1, @y_2))] = [1] [5] >= [1] [5] = [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))] [#eq(#0(), #pos(@y))] = [1] [5] >= [1] [5] = [#false()] [#eq(#0(), #0())] = [1] [5] >= [1] [1] = [#true()] [#eq(#0(), #neg(@y))] = [1] [5] >= [1] [5] = [#false()] [#eq(#0(), #s(@y))] = [1] [5] >= [1] [5] = [#false()] [#eq(#neg(@x), #pos(@y))] = [1] [5] >= [1] [5] = [#false()] [#eq(#neg(@x), #0())] = [1] [5] >= [1] [5] = [#false()] [#eq(#neg(@x), #neg(@y))] = [1] [5] >= [1] [5] = [#eq(@x, @y)] [#eq(#s(@x), #0())] = [1] [5] >= [1] [5] = [#false()] [#eq(#s(@x), #s(@y))] = [1] [5] >= [1] [5] = [#eq(@x, @y)] [quicksort#2(tuple#2(@xs, @ys), @z)] = [0 0] @z + [7] [0 1] [0] ? [0 0] @ys + [0 0] @z + [6] [0 1] [0 1] [13] = [append(quicksort(@xs), ::(@z, quicksort(@ys)))] [split(@l)] = [7 0] @l + [1] [0 3] [1] >= [7 0] @l + [1] [0 3] [0] = [split#1(@l)] [append(@l, @ys)] = [0 0] @l + [3 0] @ys + [0] [7 0] [2 1] [0] ? [7 0] @ys + [1] [1 5] [0] = [append#1(@l, @ys)] [insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x)] = [1 0] @ls + [0 0] @vals1 + [7] [0 1] [1 0] [9] >= [1 0] @ls + [0 0] @vals1 + [7] [0 1] [1 0] [9] = [insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)] [#ckgt(#EQ())] = [1] [6] >= [1] [5] = [#false()] [#ckgt(#LT())] = [1] [5] >= [1] [5] = [#false()] [#ckgt(#GT())] = [1] [3] >= [1] [1] = [#true()] [insert(@x, @l)] = [1 0] @l + [6] [0 1] [5] >= [1 0] @l + [6] [0 1] [5] = [insert#1(@x, @l, @x)] [insert#2(nil(), @keyX, @valX, @x)] = [6] [10] > [1] [10] = [::(tuple#2(::(@valX, nil()), @keyX), nil())] [insert#2(::(@l1, @ls), @keyX, @valX, @x)] = [0 0] @l1 + [1 0] @ls + [7] [0 1] [0 1] [7] >= [0 0] @l1 + [1 0] @ls + [7] [0 1] [0 1] [7] = [insert#3(@l1, @keyX, @ls, @valX, @x)] [#and(#true(), #true())] = [1] [5] >= [1] [1] = [#true()] [#and(#true(), #false())] = [1] [5] >= [1] [5] = [#false()] [#and(#false(), #true())] = [1] [5] >= [1] [5] = [#false()] [#and(#false(), #false())] = [1] [5] >= [1] [5] = [#false()] [#compare(#pos(@x), #pos(@y))] = [2 1] @x + [1 2] @y + [10] [6 1] [1 6] [14] > [2 1] @x + [1 2] @y + [4] [6 1] [1 6] [0] = [#compare(@x, @y)] [#compare(#pos(@x), #0())] = [2 1] @x + [6] [6 1] [2] > [0] [0] = [#GT()] [#compare(#pos(@x), #neg(@y))] = [2 1] @x + [2 1] @y + [10] [6 1] [6 1] [14] > [0] [0] = [#GT()] [#compare(#0(), #pos(@y))] = [1 2] @y + [8] [1 6] [12] > [2] [0] = [#LT()] [#compare(#0(), #0())] = [4] [0] > [3] [0] = [#EQ()] [#compare(#0(), #neg(@y))] = [2 1] @y + [8] [6 1] [12] > [0] [0] = [#GT()] [#compare(#0(), #s(@y))] = [1 2] @y + [6] [1 6] [2] > [2] [0] = [#LT()] [#compare(#neg(@x), #pos(@y))] = [1 2] @x + [1 2] @y + [10] [1 6] [1 6] [14] > [2] [0] = [#LT()] [#compare(#neg(@x), #0())] = [1 2] @x + [6] [1 6] [2] > [2] [0] = [#LT()] [#compare(#neg(@x), #neg(@y))] = [1 2] @x + [2 1] @y + [10] [1 6] [6 1] [14] > [1 2] @x + [2 1] @y + [4] [1 6] [6 1] [0] = [#compare(@y, @x)] [#compare(#s(@x), #0())] = [2 1] @x + [8] [6 1] [12] > [0] [0] = [#GT()] [#compare(#s(@x), #s(@y))] = [2 1] @x + [1 2] @y + [10] [6 1] [1 6] [14] > [2 1] @x + [1 2] @y + [4] [6 1] [1 6] [0] = [#compare(@x, @y)] [split#1(nil())] = [1] [15] > [0] [5] = [nil()] [split#1(::(@x, @xs))] = [0 0] @x + [7 0] @xs + [8] [0 3] [0 3] [6] > [7 0] @xs + [7] [0 3] [6] = [insert(@x, split(@xs))] [#greater(@x, @y)] = [0 0] @x + [0 0] @y + [1] [2 1] [1 2] [7] >= [0 0] @x + [0 0] @y + [1] [2 1] [1 2] [7] = [#ckgt(#compare(@x, @y))] [insert#4(#true(), @key1, @ls, @valX, @vals1, @x)] = [1 0] @ls + [0 0] @vals1 + [3] [0 1] [1 0] [9] > [1 0] @ls + [0 0] @vals1 + [1] [0 1] [1 0] [5] = [::(tuple#2(::(@valX, @vals1), @key1), @ls)] [insert#4(#false(), @key1, @ls, @valX, @vals1, @x)] = [1 0] @ls + [0 0] @vals1 + [7] [0 1] [1 0] [9] >= [1 0] @ls + [0 0] @vals1 + [7] [0 1] [1 0] [9] = [::(tuple#2(@vals1, @key1), insert(@x, @ls))] [insert#1(tuple#2(@valX, @keyX), @l, @x)] = [1 0] @l + [6] [0 1] [5] >= [1 0] @l + [6] [0 1] [5] = [insert#2(@l, @keyX, @valX, @x)] [quicksort#1(nil())] = [7] [7] > [0] [5] = [nil()] [quicksort#1(::(@z, @zs))] = [0 0] @z + [0 0] @zs + [7] [0 1] [0 1] [4] >= [0 0] @z + [7] [0 1] [0] = [quicksort#2(splitqs(@z, @zs), @z)] [append#1(nil(), @ys)] = [7 0] @ys + [1] [1 5] [0] > [1 0] @ys + [0] [0 1] [0] = [@ys] [append#1(::(@x, @xs), @ys)] = [7 0] @ys + [1] [1 5] [0] ? [0 0] @x + [3 0] @ys + [0 0] @xs + [1] [0 1] [2 1] [7 0] [2] = [::(@x, append(@xs, @ys))] [splitqs(@pivot, @l)] = [1 0] @l + [1] [4 0] [2] >= [1 0] @l + [1] [4 0] [2] = [splitqs#1(@l, @pivot)] [quicksort(@l)] = [0 0] @l + [1] [0 1] [0] ? [0 0] @l + [7] [0 1] [2] = [quicksort#1(@l)] [splitqs#3(#true(), @ls, @rs, @x)] = [1 0] @ls + [1 0] @rs + [2] [1 0] [0 0] [3] >= [1 0] @ls + [1 0] @rs + [2] [1 0] [0 0] [2] = [tuple#2(@ls, ::(@x, @rs))] [splitqs#3(#false(), @ls, @rs, @x)] = [1 0] @ls + [1 0] @rs + [2] [1 0] [0 0] [3] >= [1 0] @ls + [1 0] @rs + [2] [1 0] [0 0] [3] = [tuple#2(::(@x, @ls), @rs)] [splitqs#2(tuple#2(@ls, @rs), @pivot, @x)] = [1 0] @ls + [1 0] @rs + [2] [1 0] [0 0] [3] >= [1 0] @ls + [1 0] @rs + [2] [1 0] [0 0] [3] = [splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)] [splitqs#1(nil(), @pivot)] = [1] [2] >= [1] [2] = [tuple#2(nil(), nil())] [splitqs#1(::(@x, @xs), @pivot)] = [1 0] @xs + [2] [4 0] [6] >= [1 0] @xs + [2] [4 0] [3] = [splitqs#2(splitqs(@pivot, @xs), @pivot, @x)] [splitAndSort^#(@l)] = [7 7] @l + [7] [7 7] [7] > [0 6] @l + [6] [0 0] [4] = [sortAll^#(split(@l))] [sortAll^#(@l)] = [0 2] @l + [4] [0 0] [4] > [0 2] @l + [2] [0 0] [4] = [sortAll#1^#(@l)] [sortAll#2^#(tuple#2(@vals, @key), @xs)] = [0 2] @xs + [2 0] @vals + [7] [0 0] [0 0] [4] > [0 2] @xs + [4] [0 0] [4] = [sortAll^#(@xs)] [sortAll#2^#(tuple#2(@vals, @key), @xs)] = [0 2] @xs + [2 0] @vals + [7] [0 0] [0 0] [4] > [2 0] @vals + [1] [0 0] [0] = [quicksort^#(@vals)] [quicksort^#(@l)] = [2 0] @l + [1] [0 0] [0] >= [2 0] @l + [1] [0 0] [0] = [c_3(quicksort#1^#(@l))] [quicksort#2^#(tuple#2(@xs, @ys), @z)] = [2 0] @ys + [2 0] @xs + [2] [1 0] [1 0] [1] >= [2 0] @ys + [2 0] @xs + [2] [0 0] [0 0] [0] = [c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys))] [sortAll#1^#(::(@x, @xs))] = [0 2] @x + [0 2] @xs + [6] [0 0] [0 0] [4] > [0 2] @x + [0 2] @xs + [3] [0 0] [0 0] [4] = [sortAll#2^#(@x, @xs)] [quicksort#1^#(::(@z, @zs))] = [2 0] @zs + [3] [0 0] [0] > [2 0] @zs + [2] [0 0] [0] = [c_8(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs))] We return to the main proof. Consider the set of all dependency pairs : { 1: quicksort^#(@l) -> c_3(quicksort#1^#(@l)) , 2: quicksort#2^#(tuple#2(@xs, @ys), @z) -> c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys)) , 3: quicksort#1^#(::(@z, @zs)) -> c_8(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) , 4: splitAndSort^#(@l) -> sortAll^#(split(@l)) , 5: sortAll^#(@l) -> sortAll#1^#(@l) , 6: sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs) , 7: sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals) , 8: sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs) } Processor 'matrix interpretation of dimension 2' induces the complexity certificate YES(?,O(n^1)) on application of dependency pairs {3,4,5,6,7,8}. These cover all (indirect) predecessors of dependency pairs {1,2,3,4,5,6,7,8}, their number of application is equally bounded. The dependency pairs are shifted into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { splitAndSort^#(@l) -> sortAll^#(split(@l)) , sortAll^#(@l) -> sortAll#1^#(@l) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals) , quicksort^#(@l) -> c_3(quicksort#1^#(@l)) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys)) , sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs) , quicksort#1^#(::(@z, @zs)) -> c_8(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { splitAndSort^#(@l) -> sortAll^#(split(@l)) , sortAll^#(@l) -> sortAll#1^#(@l) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals) , quicksort^#(@l) -> c_3(quicksort#1^#(@l)) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> c_4(append^#(quicksort(@xs), ::(@z, quicksort(@ys))), quicksort^#(@xs), quicksort^#(@ys)) , sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs) , quicksort#1^#(::(@z, @zs)) -> c_8(quicksort#2^#(splitqs(@z, @zs), @z), splitqs^#(@z, @zs)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^4)). Strict DPs: { append^#(@l, @ys) -> c_5(append#1^#(@l, @ys)) , append#1^#(::(@x, @xs), @ys) -> c_6(append^#(@xs, @ys)) , splitqs^#(@pivot, @l) -> c_9(splitqs#1^#(@l, @pivot)) , splitqs#1^#(::(@x, @xs), @pivot) -> c_10(splitqs^#(@pivot, @xs)) } Weak DPs: { splitAndSort^#(@l) -> sortAll^#(split(@l)) , sortAll^#(@l) -> sortAll#1^#(@l) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals) , quicksort^#(@l) -> quicksort#1^#(@l) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@xs) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@ys) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> append^#(quicksort(@xs), ::(@z, quicksort(@ys))) , sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs) , quicksort#1^#(::(@z, @zs)) -> quicksort#2^#(splitqs(@z, @zs), @z) , quicksort#1^#(::(@z, @zs)) -> splitqs^#(@z, @zs) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^4)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. DPs: { 4: splitqs#1^#(::(@x, @xs), @pivot) -> c_10(splitqs^#(@pivot, @xs)) , 5: splitAndSort^#(@l) -> sortAll^#(split(@l)) , 7: sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs) , 12: quicksort#2^#(tuple#2(@xs, @ys), @z) -> append^#(quicksort(@xs), ::(@z, quicksort(@ys))) , 14: quicksort#1^#(::(@z, @zs)) -> quicksort#2^#(splitqs(@z, @zs), @z) , 15: quicksort#1^#(::(@z, @zs)) -> splitqs^#(@z, @zs) } Trs: { #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#s(@x), #0()) -> #false() , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , #and(#true(), #true()) -> #true() , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_5) = {1}, Uargs(c_6) = {1}, Uargs(c_9) = {1}, Uargs(c_10) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA) and not(IDA(1)). [#equal](x1, x2) = [0 3] x2 + [6] [0 0] [0] [#eq](x1, x2) = [6] [0] [quicksort#2](x1, x2) = [1] [0] [split](x1) = [3 0] x1 + [7] [2 3] [2] [#true] = [4] [0] [append](x1, x2) = [0 0] x1 + [0] [0 3] [0] [insert#3](x1, x2, x3, x4, x5) = [0 0] x1 + [1 0] x3 + [6] [1 0] [0 1] [5] [#ckgt](x1) = [2 3] x1 + [0] [1 0] [0] [insert](x1, x2) = [1 0] x2 + [3] [0 1] [5] [#pos](x1) = [1 0] x1 + [4] [0 1] [0] [#EQ] = [0] [2] [insert#2](x1, x2, x3, x4) = [1 0] x1 + [3] [0 1] [5] [#and](x1, x2) = [5] [0] [#compare](x1, x2) = [0 0] x1 + [0 0] x2 + [0] [1 0] [0 1] [0] [tuple#2](x1, x2) = [1 0] x1 + [0 0] x2 + [1] [1 0] [1 0] [0] [nil] = [1] [2] [split#1](x1) = [3 0] x1 + [6] [2 3] [2] [#greater](x1, x2) = [3 0] x1 + [0 3] x2 + [0] [0 0] [0 1] [0] [insert#4](x1, x2, x3, x4, x5, x6) = [0 0] x1 + [1 0] x3 + [0 0] x5 + [6] [0 1] [0 1] [1 0] [6] [insert#1](x1, x2, x3) = [1 0] x2 + [3] [0 1] [5] [quicksort#1](x1) = [3] [4] [append#1](x1, x2) = [0 0] x1 + [7 0] x2 + [3] [0 1] [0 7] [0] [splitqs](x1, x2) = [0 4] x1 + [4 5] x2 + [3] [0 0] [1 0] [1] [#false] = [5] [0] [quicksort](x1) = [0 2] x1 + [5] [0 0] [0] [::](x1, x2) = [0 0] x1 + [1 0] x2 + [3] [1 0] [0 1] [0] [#LT] = [0] [2] [splitqs#3](x1, x2, x3, x4) = [1 1] x1 + [1 0] x2 + [0 0] x3 + [1 0] x4 + [0] [0 0] [1 0] [1 0] [0 0] [3] [splitqs#2](x1, x2, x3) = [0 1] x1 + [0 4] x2 + [4 0] x3 + [0] [0 1] [0 0] [0 0] [3] [#0] = [4] [0] [#neg](x1) = [0 1] x1 + [4] [1 0] [0] [#s](x1) = [1 0] x1 + [5] [0 1] [1] [#GT] = [0] [3] [splitqs#1](x1, x2) = [1 4] x1 + [0 4] x2 + [2] [1 0] [0 0] [1] [splitAndSort^#](x1) = [7 7] x1 + [7] [7 7] [7] [sortAll^#](x1) = [0 2] x1 + [1] [0 0] [5] [sortAll#2^#](x1, x2) = [2 0] x1 + [0 2] x2 + [1] [0 0] [0 0] [5] [quicksort^#](x1) = [2 0] x1 + [3] [0 0] [5] [quicksort#2^#](x1, x2) = [0 2] x1 + [3] [0 0] [5] [append^#](x1, x2) = [0] [1] [append#1^#](x1, x2) = [0] [1] [sortAll#1^#](x1) = [0 2] x1 + [1] [0 0] [5] [quicksort#1^#](x1) = [2 0] x1 + [3] [0 0] [5] [splitqs^#](x1, x2) = [2 0] x2 + [2] [0 0] [0] [splitqs#1^#](x1, x2) = [2 0] x1 + [0] [0 0] [1] [c_5](x1) = [1 0] x1 + [0] [0 0] [0] [c_6](x1) = [1 0] x1 + [0] [0 0] [0] [c_9](x1) = [1 2] x1 + [0] [0 0] [0] [c_10](x1) = [1 0] x1 + [0] [0 0] [0] The order satisfies the following ordering constraints: [#equal(@x, @y)] = [0 3] @y + [6] [0 0] [0] >= [6] [0] = [#eq(@x, @y)] [#eq(#pos(@x), #pos(@y))] = [6] [0] >= [6] [0] = [#eq(@x, @y)] [#eq(#pos(@x), #0())] = [6] [0] > [5] [0] = [#false()] [#eq(#pos(@x), #neg(@y))] = [6] [0] > [5] [0] = [#false()] [#eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [6] [0] > [5] [0] = [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))] [#eq(tuple#2(@x_1, @x_2), nil())] = [6] [0] > [5] [0] = [#false()] [#eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2))] = [6] [0] > [5] [0] = [#false()] [#eq(nil(), tuple#2(@y_1, @y_2))] = [6] [0] > [5] [0] = [#false()] [#eq(nil(), nil())] = [6] [0] > [4] [0] = [#true()] [#eq(nil(), ::(@y_1, @y_2))] = [6] [0] > [5] [0] = [#false()] [#eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [6] [0] > [5] [0] = [#false()] [#eq(::(@x_1, @x_2), nil())] = [6] [0] > [5] [0] = [#false()] [#eq(::(@x_1, @x_2), ::(@y_1, @y_2))] = [6] [0] > [5] [0] = [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))] [#eq(#0(), #pos(@y))] = [6] [0] > [5] [0] = [#false()] [#eq(#0(), #0())] = [6] [0] > [4] [0] = [#true()] [#eq(#0(), #neg(@y))] = [6] [0] > [5] [0] = [#false()] [#eq(#0(), #s(@y))] = [6] [0] > [5] [0] = [#false()] [#eq(#neg(@x), #pos(@y))] = [6] [0] > [5] [0] = [#false()] [#eq(#neg(@x), #0())] = [6] [0] > [5] [0] = [#false()] [#eq(#neg(@x), #neg(@y))] = [6] [0] >= [6] [0] = [#eq(@x, @y)] [#eq(#s(@x), #0())] = [6] [0] > [5] [0] = [#false()] [#eq(#s(@x), #s(@y))] = [6] [0] >= [6] [0] = [#eq(@x, @y)] [quicksort#2(tuple#2(@xs, @ys), @z)] = [1] [0] > [0] [0] = [append(quicksort(@xs), ::(@z, quicksort(@ys)))] [split(@l)] = [3 0] @l + [7] [2 3] [2] > [3 0] @l + [6] [2 3] [2] = [split#1(@l)] [append(@l, @ys)] = [0 0] @l + [0] [0 3] [0] ? [0 0] @l + [7 0] @ys + [3] [0 1] [0 7] [0] = [append#1(@l, @ys)] [insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x)] = [1 0] @ls + [0 0] @vals1 + [6] [0 1] [1 0] [6] >= [1 0] @ls + [0 0] @vals1 + [6] [0 1] [1 0] [6] = [insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)] [#ckgt(#EQ())] = [6] [0] > [5] [0] = [#false()] [#ckgt(#LT())] = [6] [0] > [5] [0] = [#false()] [#ckgt(#GT())] = [9] [0] > [4] [0] = [#true()] [insert(@x, @l)] = [1 0] @l + [3] [0 1] [5] >= [1 0] @l + [3] [0 1] [5] = [insert#1(@x, @l, @x)] [insert#2(nil(), @keyX, @valX, @x)] = [4] [7] >= [4] [7] = [::(tuple#2(::(@valX, nil()), @keyX), nil())] [insert#2(::(@l1, @ls), @keyX, @valX, @x)] = [0 0] @l1 + [1 0] @ls + [6] [1 0] [0 1] [5] >= [0 0] @l1 + [1 0] @ls + [6] [1 0] [0 1] [5] = [insert#3(@l1, @keyX, @ls, @valX, @x)] [#and(#true(), #true())] = [5] [0] > [4] [0] = [#true()] [#and(#true(), #false())] = [5] [0] >= [5] [0] = [#false()] [#and(#false(), #true())] = [5] [0] >= [5] [0] = [#false()] [#and(#false(), #false())] = [5] [0] >= [5] [0] = [#false()] [#compare(#pos(@x), #pos(@y))] = [0 0] @x + [0 0] @y + [0] [1 0] [0 1] [4] >= [0 0] @x + [0 0] @y + [0] [1 0] [0 1] [0] = [#compare(@x, @y)] [#compare(#pos(@x), #0())] = [0 0] @x + [0] [1 0] [4] >= [0] [3] = [#GT()] [#compare(#pos(@x), #neg(@y))] = [0 0] @x + [0 0] @y + [0] [1 0] [1 0] [4] >= [0] [3] = [#GT()] [#compare(#0(), #pos(@y))] = [0 0] @y + [0] [0 1] [4] >= [0] [2] = [#LT()] [#compare(#0(), #0())] = [0] [4] >= [0] [2] = [#EQ()] [#compare(#0(), #neg(@y))] = [0 0] @y + [0] [1 0] [4] >= [0] [3] = [#GT()] [#compare(#0(), #s(@y))] = [0 0] @y + [0] [0 1] [5] >= [0] [2] = [#LT()] [#compare(#neg(@x), #pos(@y))] = [0 0] @x + [0 0] @y + [0] [0 1] [0 1] [4] >= [0] [2] = [#LT()] [#compare(#neg(@x), #0())] = [0 0] @x + [0] [0 1] [4] >= [0] [2] = [#LT()] [#compare(#neg(@x), #neg(@y))] = [0 0] @x + [0 0] @y + [0] [0 1] [1 0] [4] >= [0 0] @x + [0 0] @y + [0] [0 1] [1 0] [0] = [#compare(@y, @x)] [#compare(#s(@x), #0())] = [0 0] @x + [0] [1 0] [5] >= [0] [3] = [#GT()] [#compare(#s(@x), #s(@y))] = [0 0] @x + [0 0] @y + [0] [1 0] [0 1] [6] >= [0 0] @x + [0 0] @y + [0] [1 0] [0 1] [0] = [#compare(@x, @y)] [split#1(nil())] = [9] [10] > [1] [2] = [nil()] [split#1(::(@x, @xs))] = [0 0] @x + [3 0] @xs + [15] [3 0] [2 3] [8] > [3 0] @xs + [10] [2 3] [7] = [insert(@x, split(@xs))] [#greater(@x, @y)] = [3 0] @x + [0 3] @y + [0] [0 0] [0 1] [0] >= [3 0] @x + [0 3] @y + [0] [0 0] [0 0] [0] = [#ckgt(#compare(@x, @y))] [insert#4(#true(), @key1, @ls, @valX, @vals1, @x)] = [1 0] @ls + [0 0] @vals1 + [6] [0 1] [1 0] [6] > [1 0] @ls + [0 0] @vals1 + [3] [0 1] [1 0] [4] = [::(tuple#2(::(@valX, @vals1), @key1), @ls)] [insert#4(#false(), @key1, @ls, @valX, @vals1, @x)] = [1 0] @ls + [0 0] @vals1 + [6] [0 1] [1 0] [6] >= [1 0] @ls + [0 0] @vals1 + [6] [0 1] [1 0] [6] = [::(tuple#2(@vals1, @key1), insert(@x, @ls))] [insert#1(tuple#2(@valX, @keyX), @l, @x)] = [1 0] @l + [3] [0 1] [5] >= [1 0] @l + [3] [0 1] [5] = [insert#2(@l, @keyX, @valX, @x)] [quicksort#1(nil())] = [3] [4] > [1] [2] = [nil()] [quicksort#1(::(@z, @zs))] = [3] [4] > [1] [0] = [quicksort#2(splitqs(@z, @zs), @z)] [append#1(nil(), @ys)] = [7 0] @ys + [3] [0 7] [2] > [1 0] @ys + [0] [0 1] [0] = [@ys] [append#1(::(@x, @xs), @ys)] = [0 0] @x + [7 0] @ys + [0 0] @xs + [3] [1 0] [0 7] [0 1] [0] ? [0 0] @x + [0 0] @xs + [3] [1 0] [0 3] [0] = [::(@x, append(@xs, @ys))] [splitqs(@pivot, @l)] = [4 5] @l + [0 4] @pivot + [3] [1 0] [0 0] [1] > [1 4] @l + [0 4] @pivot + [2] [1 0] [0 0] [1] = [splitqs#1(@l, @pivot)] [quicksort(@l)] = [0 2] @l + [5] [0 0] [0] ? [3] [4] = [quicksort#1(@l)] [splitqs#3(#true(), @ls, @rs, @x)] = [1 0] @x + [1 0] @ls + [0 0] @rs + [4] [0 0] [1 0] [1 0] [3] > [1 0] @ls + [0 0] @rs + [1] [1 0] [1 0] [3] = [tuple#2(@ls, ::(@x, @rs))] [splitqs#3(#false(), @ls, @rs, @x)] = [1 0] @x + [1 0] @ls + [0 0] @rs + [5] [0 0] [1 0] [1 0] [3] > [1 0] @ls + [0 0] @rs + [4] [1 0] [1 0] [3] = [tuple#2(::(@x, @ls), @rs)] [splitqs#2(tuple#2(@ls, @rs), @pivot, @x)] = [4 0] @x + [1 0] @ls + [0 4] @pivot + [1 0] @rs + [0] [0 0] [1 0] [0 0] [1 0] [3] >= [4 0] @x + [1 0] @ls + [0 4] @pivot + [0 0] @rs + [0] [0 0] [1 0] [0 0] [1 0] [3] = [splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)] [splitqs#1(nil(), @pivot)] = [0 4] @pivot + [11] [0 0] [2] > [2] [2] = [tuple#2(nil(), nil())] [splitqs#1(::(@x, @xs), @pivot)] = [4 0] @x + [1 4] @xs + [0 4] @pivot + [5] [0 0] [1 0] [0 0] [4] > [4 0] @x + [1 0] @xs + [0 4] @pivot + [1] [0 0] [1 0] [0 0] [4] = [splitqs#2(splitqs(@pivot, @xs), @pivot, @x)] [splitAndSort^#(@l)] = [7 7] @l + [7] [7 7] [7] > [4 6] @l + [5] [0 0] [5] = [sortAll^#(split(@l))] [sortAll^#(@l)] = [0 2] @l + [1] [0 0] [5] >= [0 2] @l + [1] [0 0] [5] = [sortAll#1^#(@l)] [sortAll#2^#(tuple#2(@vals, @key), @xs)] = [0 2] @xs + [2 0] @vals + [3] [0 0] [0 0] [5] > [0 2] @xs + [1] [0 0] [5] = [sortAll^#(@xs)] [sortAll#2^#(tuple#2(@vals, @key), @xs)] = [0 2] @xs + [2 0] @vals + [3] [0 0] [0 0] [5] >= [2 0] @vals + [3] [0 0] [5] = [quicksort^#(@vals)] [quicksort^#(@l)] = [2 0] @l + [3] [0 0] [5] >= [2 0] @l + [3] [0 0] [5] = [quicksort#1^#(@l)] [quicksort#2^#(tuple#2(@xs, @ys), @z)] = [2 0] @ys + [2 0] @xs + [3] [0 0] [0 0] [5] >= [2 0] @xs + [3] [0 0] [5] = [quicksort^#(@xs)] [quicksort#2^#(tuple#2(@xs, @ys), @z)] = [2 0] @ys + [2 0] @xs + [3] [0 0] [0 0] [5] >= [2 0] @ys + [3] [0 0] [5] = [quicksort^#(@ys)] [quicksort#2^#(tuple#2(@xs, @ys), @z)] = [2 0] @ys + [2 0] @xs + [3] [0 0] [0 0] [5] > [0] [1] = [append^#(quicksort(@xs), ::(@z, quicksort(@ys)))] [append^#(@l, @ys)] = [0] [1] >= [0] [0] = [c_5(append#1^#(@l, @ys))] [append#1^#(::(@x, @xs), @ys)] = [0] [1] >= [0] [0] = [c_6(append^#(@xs, @ys))] [sortAll#1^#(::(@x, @xs))] = [2 0] @x + [0 2] @xs + [1] [0 0] [0 0] [5] >= [2 0] @x + [0 2] @xs + [1] [0 0] [0 0] [5] = [sortAll#2^#(@x, @xs)] [quicksort#1^#(::(@z, @zs))] = [2 0] @zs + [9] [0 0] [5] > [2 0] @zs + [5] [0 0] [5] = [quicksort#2^#(splitqs(@z, @zs), @z)] [quicksort#1^#(::(@z, @zs))] = [2 0] @zs + [9] [0 0] [5] > [2 0] @zs + [2] [0 0] [0] = [splitqs^#(@z, @zs)] [splitqs^#(@pivot, @l)] = [2 0] @l + [2] [0 0] [0] >= [2 0] @l + [2] [0 0] [0] = [c_9(splitqs#1^#(@l, @pivot))] [splitqs#1^#(::(@x, @xs), @pivot)] = [2 0] @xs + [6] [0 0] [1] > [2 0] @xs + [2] [0 0] [0] = [c_10(splitqs^#(@pivot, @xs))] We return to the main proof. Consider the set of all dependency pairs : { 1: append^#(@l, @ys) -> c_5(append#1^#(@l, @ys)) , 2: append#1^#(::(@x, @xs), @ys) -> c_6(append^#(@xs, @ys)) , 3: splitqs^#(@pivot, @l) -> c_9(splitqs#1^#(@l, @pivot)) , 4: splitqs#1^#(::(@x, @xs), @pivot) -> c_10(splitqs^#(@pivot, @xs)) , 5: splitAndSort^#(@l) -> sortAll^#(split(@l)) , 6: sortAll^#(@l) -> sortAll#1^#(@l) , 7: sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs) , 8: sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals) , 9: quicksort^#(@l) -> quicksort#1^#(@l) , 10: quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@xs) , 11: quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@ys) , 12: quicksort#2^#(tuple#2(@xs, @ys), @z) -> append^#(quicksort(@xs), ::(@z, quicksort(@ys))) , 13: sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs) , 14: quicksort#1^#(::(@z, @zs)) -> quicksort#2^#(splitqs(@z, @zs), @z) , 15: quicksort#1^#(::(@z, @zs)) -> splitqs^#(@z, @zs) } Processor 'matrix interpretation of dimension 2' induces the complexity certificate YES(?,O(n^1)) on application of dependency pairs {4,5,7,12,14,15}. These cover all (indirect) predecessors of dependency pairs {3,4,5,6,7,8,9,10,11,12,13,14,15}, their number of application is equally bounded. The dependency pairs are shifted into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^4)). Strict DPs: { append^#(@l, @ys) -> c_5(append#1^#(@l, @ys)) , append#1^#(::(@x, @xs), @ys) -> c_6(append^#(@xs, @ys)) } Weak DPs: { splitAndSort^#(@l) -> sortAll^#(split(@l)) , sortAll^#(@l) -> sortAll#1^#(@l) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals) , quicksort^#(@l) -> quicksort#1^#(@l) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@xs) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@ys) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> append^#(quicksort(@xs), ::(@z, quicksort(@ys))) , sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs) , quicksort#1^#(::(@z, @zs)) -> quicksort#2^#(splitqs(@z, @zs), @z) , quicksort#1^#(::(@z, @zs)) -> splitqs^#(@z, @zs) , splitqs^#(@pivot, @l) -> c_9(splitqs#1^#(@l, @pivot)) , splitqs#1^#(::(@x, @xs), @pivot) -> c_10(splitqs^#(@pivot, @xs)) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^4)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { quicksort#1^#(::(@z, @zs)) -> splitqs^#(@z, @zs) , splitqs^#(@pivot, @l) -> c_9(splitqs#1^#(@l, @pivot)) , splitqs#1^#(::(@x, @xs), @pivot) -> c_10(splitqs^#(@pivot, @xs)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^4)). Strict DPs: { append^#(@l, @ys) -> c_5(append#1^#(@l, @ys)) , append#1^#(::(@x, @xs), @ys) -> c_6(append^#(@xs, @ys)) } Weak DPs: { splitAndSort^#(@l) -> sortAll^#(split(@l)) , sortAll^#(@l) -> sortAll#1^#(@l) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals) , quicksort^#(@l) -> quicksort#1^#(@l) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@xs) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@ys) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> append^#(quicksort(@xs), ::(@z, quicksort(@ys))) , sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs) , quicksort#1^#(::(@z, @zs)) -> quicksort#2^#(splitqs(@z, @zs), @z) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^4)) We use the processor 'matrix interpretation of dimension 4' to orient following rules strictly. DPs: { append#1^#(::(@x, @xs), @ys) -> c_6(append^#(@xs, @ys)) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^4)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- The following argument positions are usable: Uargs(c_5) = {1}, Uargs(c_6) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [0 1 0 0] [0 1 0 1] [1] [#equal](x1, x2) = [0 0 0 1] x1 + [0 1 0 1] x2 + [1] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] [0 0 0 1] [1] [#eq](x1, x2) = [0 1 0 1] x2 + [1] [0 0 0 0] [0] [0 0 0 0] [1] [0 1 0 0] [1 0 0 0] [0] [quicksort#2](x1, x2) = [0 1 0 1] x1 + [1 0 0 0] x2 + [1] [0 0 0 1] [0 0 0 0] [1] [0 0 0 0] [0 0 0 0] [1] [1 0 1 0] [0] [split](x1) = [1 1 1 1] x1 + [0] [0 0 1 1] [0] [0 0 0 0] [1] [1] [#true] = [1] [0] [1] [1 0 0 0] [1 0 0 0] [0] [append](x1, x2) = [1 0 1 0] x1 + [0 1 1 0] x2 + [0] [0 0 1 0] [0 0 1 0] [0] [0 0 0 0] [0 0 0 1] [0] [1 0 0 0] [1 0 0 0] [1] [insert#3](x1, x2, x3, x4, x5) = [1 0 0 0] x1 + [0 0 1 1] x3 + [1] [0 0 0 0] [0 0 1 1] [1] [0 0 0 0] [0 0 0 1] [0] [0 0 0 0] [1] [#ckgt](x1) = [0 1 0 0] x1 + [0] [1 0 1 0] [0] [0 1 0 0] [0] [0 0 0 0] [1 0 0 0] [1] [insert](x1, x2) = [1 0 0 0] x1 + [1 0 1 1] x2 + [0] [0 0 0 0] [0 0 1 1] [0] [0 0 0 0] [0 0 0 1] [0] [1 0 0 0] [1] [#pos](x1) = [1 1 0 0] x1 + [0] [0 0 1 0] [1] [1 0 1 1] [0] [0] [#EQ] = [1] [0] [1] [1 0 0 0] [1] [insert#2](x1, x2, x3, x4) = [1 0 1 1] x1 + [0] [0 0 1 1] [0] [0 0 0 1] [0] [0 0 1 0] [0 0 0 1] [0] [#and](x1, x2) = [0 0 0 0] x1 + [1 0 0 0] x2 + [0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] [0 0 0 0] [0 0 0 0] [0] [#compare](x1, x2) = [1 0 0 0] x1 + [0 0 1 0] x2 + [0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] [0 0 1 0] [0 0 0 0] [0] [tuple#2](x1, x2) = [1 0 1 0] x1 + [1 0 1 1] x2 + [0] [0 0 1 0] [0 0 1 0] [0] [0 0 1 0] [0 0 1 0] [0] [0] [nil] = [0] [0] [1] [1 0 1 0] [0] [split#1](x1) = [1 1 1 1] x1 + [0] [0 0 1 1] [0] [0 0 0 0] [1] [0 0 0 0] [0 0 0 0] [1] [#greater](x1, x2) = [1 0 0 0] x1 + [0 0 1 1] x2 + [0] [0 0 0 0] [0 0 0 0] [0] [1 0 0 0] [0 0 1 0] [0] [0 0 0 0] [1 0 0 0] [0 0 1 0] [1] [insert#4](x1, x2, x3, x4, x5, x6) = [0 0 0 0] x1 + [0 0 1 1] x3 + [0 0 1 0] x5 + [1] [0 0 1 1] [0 0 1 1] [0 0 0 0] [0] [0 0 0 0] [0 0 0 1] [0 0 0 0] [0] [1 0 0 0] [1] [insert#1](x1, x2, x3) = [1 0 1 1] x2 + [0] [0 0 1 1] [0] [0 0 0 1] [0] [1 0 1 0] [0] [quicksort#1](x1) = [1 1 1 1] x1 + [1] [0 0 1 0] [0] [0 0 0 0] [1] [1 0 0 0] [1 0 0 0] [0] [append#1](x1, x2) = [1 0 1 0] x1 + [0 1 1 0] x2 + [0] [0 0 1 0] [0 0 1 0] [0] [0 0 0 0] [0 0 0 1] [0] [0 0 0 1] [1 0 1 0] [1] [splitqs](x1, x2) = [0 0 0 0] x1 + [1 0 1 0] x2 + [1] [0 0 1 1] [1 1 1 1] [1] [0 0 0 0] [0 0 1 0] [0] [0] [#false] = [0] [0] [1] [1 0 1 0] [0] [quicksort](x1) = [1 1 1 1] x1 + [1] [0 0 1 0] [0] [0 0 0 0] [1] [1 0 0 0] [1 0 0 0] [0] [::](x1, x2) = [1 0 0 0] x1 + [0 0 1 0] x2 + [0] [0 0 0 0] [0 0 1 0] [1] [0 0 0 0] [0 0 0 1] [0] [0] [#LT] = [1] [0] [1] [0 0 0 0] [0 0 1 0] [0 0 0 0] [0 0 0 0] [1] [splitqs#3](x1, x2, x3, x4) = [0 0 0 0] x1 + [1 0 1 0] x2 + [1 0 1 1] x3 + [1 0 0 0] x4 + [1] [1 0 1 1] [0 0 1 0] [0 0 1 0] [0 0 0 0] [0] [0 0 0 0] [0 0 1 0] [0 0 1 0] [0 0 0 0] [1] [0 1 0 0] [0 0 0 1] [0 0 0 0] [1] [splitqs#2](x1, x2, x3) = [0 1 0 0] x1 + [0 0 0 0] x2 + [1 0 0 0] x3 + [1] [1 0 0 1] [0 0 1 0] [1 0 0 0] [1] [0 0 0 1] [0 0 0 0] [0 0 0 0] [1] [1] [#0] = [0] [1] [0] [0 0 1 0] [1] [#neg](x1) = [0 1 0 0] x1 + [1] [1 0 0 0] [1] [1 0 1 1] [0] [1 0 0 0] [1] [#s](x1) = [0 1 0 0] x1 + [0] [0 0 1 0] [0] [0 0 0 1] [0] [0] [#GT] = [1] [0] [1] [1 0 1 0] [0 0 0 1] [1] [splitqs#1](x1, x2) = [1 0 1 0] x1 + [0 0 0 0] x2 + [1] [1 1 1 1] [0 0 1 1] [1] [0 0 1 0] [0 0 0 0] [0] [1 0 1 0] [1] [splitAndSort^#](x1) = [1 1 1 1] x1 + [1] [1 1 1 1] [1] [1 1 1 1] [1] [1 0 0 1] [0] [sortAll^#](x1) = [0 0 0 0] x1 + [0] [0 0 0 0] [0] [0 0 0 0] [1] [1 0 0 0] [1 0 0 1] [0] [sortAll#2^#](x1, x2) = [0 0 0 0] x1 + [0 0 0 0] x2 + [0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] [0 0 1 0] [0] [quicksort^#](x1) = [0 0 0 0] x1 + [0] [0 0 0 0] [0] [0 0 0 0] [1] [0 0 0 1] [1] [quicksort#2^#](x1, x2) = [0 0 0 0] x1 + [0] [0 0 0 0] [0] [0 0 0 0] [1] [0 0 1 1] [0] [append^#](x1, x2) = [0 0 0 0] x1 + [0] [0 0 0 0] [0] [0 0 0 0] [1] [0 0 1 1] [0] [append#1^#](x1, x2) = [0 0 0 0] x1 + [1] [0 0 0 0] [0] [0 0 0 0] [0] [1 0 0 1] [0] [sortAll#1^#](x1) = [0 0 0 0] x1 + [0] [0 0 0 0] [0] [0 0 0 0] [1] [0 0 1 0] [0] [quicksort#1^#](x1) = [0 0 0 0] x1 + [0] [0 0 0 0] [0] [0 0 0 0] [1] [1 0 0 0] [0] [c_5](x1) = [0 0 0 0] x1 + [0] [0 0 0 0] [0] [0 0 0 0] [1] [1 0 0 0] [0] [c_6](x1) = [0 0 0 0] x1 + [0] [0 0 0 0] [0] [0 0 0 0] [0] The order satisfies the following ordering constraints: [#equal(@x, @y)] = [0 1 0 0] [0 1 0 1] [1] [0 0 0 1] @x + [0 1 0 1] @y + [1] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] >= [0 0 0 1] [1] [0 1 0 1] @y + [1] [0 0 0 0] [0] [0 0 0 0] [1] = [#eq(@x, @y)] [#eq(#pos(@x), #pos(@y))] = [1 0 1 1] [1] [2 1 1 1] @y + [1] [0 0 0 0] [0] [0 0 0 0] [1] >= [0 0 0 1] [1] [0 1 0 1] @y + [1] [0 0 0 0] [0] [0 0 0 0] [1] = [#eq(@x, @y)] [#eq(#pos(@x), #0())] = [1] [1] [0] [1] > [0] [0] [0] [1] = [#false()] [#eq(#pos(@x), #neg(@y))] = [1 0 1 1] [1] [1 1 1 1] @y + [2] [0 0 0 0] [0] [0 0 0 0] [1] > [0] [0] [0] [1] = [#false()] [#eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [0 0 1 0] [0 0 1 0] [1] [1 0 2 0] @y_1 + [1 0 2 1] @y_2 + [1] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] >= [0 0 0 0] [1] [0 0 0 1] @y_2 + [1] [0 0 0 0] [0] [0 0 0 0] [1] = [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))] [#eq(tuple#2(@x_1, @x_2), nil())] = [2] [2] [0] [1] > [0] [0] [0] [1] = [#false()] [#eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2))] = [0 0 0 0] [0 0 0 1] [1] [1 0 0 0] @y_1 + [0 0 1 1] @y_2 + [1] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] > [0] [0] [0] [1] = [#false()] [#eq(nil(), tuple#2(@y_1, @y_2))] = [0 0 1 0] [0 0 1 0] [1] [1 0 2 0] @y_1 + [1 0 2 1] @y_2 + [1] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] > [0] [0] [0] [1] = [#false()] [#eq(nil(), nil())] = [2] [2] [0] [1] > [1] [1] [0] [1] = [#true()] [#eq(nil(), ::(@y_1, @y_2))] = [0 0 0 0] [0 0 0 1] [1] [1 0 0 0] @y_1 + [0 0 1 1] @y_2 + [1] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] > [0] [0] [0] [1] = [#false()] [#eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [0 0 1 0] [0 0 1 0] [1] [1 0 2 0] @y_1 + [1 0 2 1] @y_2 + [1] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] > [0] [0] [0] [1] = [#false()] [#eq(::(@x_1, @x_2), nil())] = [2] [2] [0] [1] > [0] [0] [0] [1] = [#false()] [#eq(::(@x_1, @x_2), ::(@y_1, @y_2))] = [0 0 0 0] [0 0 0 1] [1] [1 0 0 0] @y_1 + [0 0 1 1] @y_2 + [1] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] >= [0 0 0 0] [1] [0 0 0 1] @y_2 + [1] [0 0 0 0] [0] [0 0 0 0] [1] = [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))] [#eq(#0(), #pos(@y))] = [1 0 1 1] [1] [2 1 1 1] @y + [1] [0 0 0 0] [0] [0 0 0 0] [1] > [0] [0] [0] [1] = [#false()] [#eq(#0(), #0())] = [1] [1] [0] [1] >= [1] [1] [0] [1] = [#true()] [#eq(#0(), #neg(@y))] = [1 0 1 1] [1] [1 1 1 1] @y + [2] [0 0 0 0] [0] [0 0 0 0] [1] > [0] [0] [0] [1] = [#false()] [#eq(#0(), #s(@y))] = [0 0 0 1] [1] [0 1 0 1] @y + [1] [0 0 0 0] [0] [0 0 0 0] [1] > [0] [0] [0] [1] = [#false()] [#eq(#neg(@x), #pos(@y))] = [1 0 1 1] [1] [2 1 1 1] @y + [1] [0 0 0 0] [0] [0 0 0 0] [1] > [0] [0] [0] [1] = [#false()] [#eq(#neg(@x), #0())] = [1] [1] [0] [1] > [0] [0] [0] [1] = [#false()] [#eq(#neg(@x), #neg(@y))] = [1 0 1 1] [1] [1 1 1 1] @y + [2] [0 0 0 0] [0] [0 0 0 0] [1] >= [0 0 0 1] [1] [0 1 0 1] @y + [1] [0 0 0 0] [0] [0 0 0 0] [1] = [#eq(@x, @y)] [#eq(#s(@x), #0())] = [1] [1] [0] [1] > [0] [0] [0] [1] = [#false()] [#eq(#s(@x), #s(@y))] = [0 0 0 1] [1] [0 1 0 1] @y + [1] [0 0 0 0] [0] [0 0 0 0] [1] >= [0 0 0 1] [1] [0 1 0 1] @y + [1] [0 0 0 0] [0] [0 0 0 0] [1] = [#eq(@x, @y)] [quicksort#2(tuple#2(@xs, @ys), @z)] = [1 0 1 1] [1 0 1 0] [1 0 0 0] [0] [1 0 2 1] @ys + [1 0 2 0] @xs + [1 0 0 0] @z + [1] [0 0 1 0] [0 0 1 0] [0 0 0 0] [1] [0 0 0 0] [0 0 0 0] [0 0 0 0] [1] >= [1 0 1 0] [1 0 1 0] [1 0 0 0] [0] [0 0 2 0] @ys + [1 0 2 0] @xs + [1 0 0 0] @z + [1] [0 0 1 0] [0 0 1 0] [0 0 0 0] [1] [0 0 0 0] [0 0 0 0] [0 0 0 0] [1] = [append(quicksort(@xs), ::(@z, quicksort(@ys)))] [split(@l)] = [1 0 1 0] [0] [1 1 1 1] @l + [0] [0 0 1 1] [0] [0 0 0 0] [1] >= [1 0 1 0] [0] [1 1 1 1] @l + [0] [0 0 1 1] [0] [0 0 0 0] [1] = [split#1(@l)] [append(@l, @ys)] = [1 0 0 0] [1 0 0 0] [0] [1 0 1 0] @l + [0 1 1 0] @ys + [0] [0 0 1 0] [0 0 1 0] [0] [0 0 0 0] [0 0 0 1] [0] >= [1 0 0 0] [1 0 0 0] [0] [1 0 1 0] @l + [0 1 1 0] @ys + [0] [0 0 1 0] [0 0 1 0] [0] [0 0 0 0] [0 0 0 1] [0] = [append#1(@l, @ys)] [insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x)] = [1 0 0 0] [0 0 1 0] [1] [0 0 1 1] @ls + [0 0 1 0] @vals1 + [1] [0 0 1 1] [0 0 0 0] [1] [0 0 0 1] [0 0 0 0] [0] >= [1 0 0 0] [0 0 1 0] [1] [0 0 1 1] @ls + [0 0 1 0] @vals1 + [1] [0 0 1 1] [0 0 0 0] [1] [0 0 0 1] [0 0 0 0] [0] = [insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)] [#ckgt(#EQ())] = [1] [1] [0] [1] > [0] [0] [0] [1] = [#false()] [#ckgt(#LT())] = [1] [1] [0] [1] > [0] [0] [0] [1] = [#false()] [#ckgt(#GT())] = [1] [1] [0] [1] >= [1] [1] [0] [1] = [#true()] [insert(@x, @l)] = [0 0 0 0] [1 0 0 0] [1] [1 0 0 0] @x + [1 0 1 1] @l + [0] [0 0 0 0] [0 0 1 1] [0] [0 0 0 0] [0 0 0 1] [0] >= [1 0 0 0] [1] [1 0 1 1] @l + [0] [0 0 1 1] [0] [0 0 0 1] [0] = [insert#1(@x, @l, @x)] [insert#2(nil(), @keyX, @valX, @x)] = [1] [1] [1] [1] >= [1] [1] [1] [1] = [::(tuple#2(::(@valX, nil()), @keyX), nil())] [insert#2(::(@l1, @ls), @keyX, @valX, @x)] = [1 0 0 0] [1 0 0 0] [1] [1 0 0 0] @l1 + [1 0 1 1] @ls + [1] [0 0 0 0] [0 0 1 1] [1] [0 0 0 0] [0 0 0 1] [0] >= [1 0 0 0] [1 0 0 0] [1] [1 0 0 0] @l1 + [0 0 1 1] @ls + [1] [0 0 0 0] [0 0 1 1] [1] [0 0 0 0] [0 0 0 1] [0] = [insert#3(@l1, @keyX, @ls, @valX, @x)] [#and(#true(), #true())] = [1] [1] [0] [1] >= [1] [1] [0] [1] = [#true()] [#and(#true(), #false())] = [1] [0] [0] [1] > [0] [0] [0] [1] = [#false()] [#and(#false(), #true())] = [1] [1] [0] [1] > [0] [0] [0] [1] = [#false()] [#and(#false(), #false())] = [1] [0] [0] [1] > [0] [0] [0] [1] = [#false()] [#compare(#pos(@x), #pos(@y))] = [0 0 0 0] [0 0 0 0] [0] [1 0 0 0] @x + [0 0 1 0] @y + [2] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] >= [0 0 0 0] [0 0 0 0] [0] [1 0 0 0] @x + [0 0 1 0] @y + [0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] = [#compare(@x, @y)] [#compare(#pos(@x), #0())] = [0 0 0 0] [0] [1 0 0 0] @x + [2] [0 0 0 0] [0] [0 0 0 0] [1] >= [0] [1] [0] [1] = [#GT()] [#compare(#pos(@x), #neg(@y))] = [0 0 0 0] [0 0 0 0] [0] [1 0 0 0] @x + [1 0 0 0] @y + [2] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] >= [0] [1] [0] [1] = [#GT()] [#compare(#0(), #pos(@y))] = [0 0 0 0] [0] [0 0 1 0] @y + [2] [0 0 0 0] [0] [0 0 0 0] [1] >= [0] [1] [0] [1] = [#LT()] [#compare(#0(), #0())] = [0] [2] [0] [1] >= [0] [1] [0] [1] = [#EQ()] [#compare(#0(), #neg(@y))] = [0 0 0 0] [0] [1 0 0 0] @y + [2] [0 0 0 0] [0] [0 0 0 0] [1] >= [0] [1] [0] [1] = [#GT()] [#compare(#0(), #s(@y))] = [0 0 0 0] [0] [0 0 1 0] @y + [1] [0 0 0 0] [0] [0 0 0 0] [1] >= [0] [1] [0] [1] = [#LT()] [#compare(#neg(@x), #pos(@y))] = [0 0 0 0] [0 0 0 0] [0] [0 0 1 0] @x + [0 0 1 0] @y + [2] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] >= [0] [1] [0] [1] = [#LT()] [#compare(#neg(@x), #0())] = [0 0 0 0] [0] [0 0 1 0] @x + [2] [0 0 0 0] [0] [0 0 0 0] [1] >= [0] [1] [0] [1] = [#LT()] [#compare(#neg(@x), #neg(@y))] = [0 0 0 0] [0 0 0 0] [0] [0 0 1 0] @x + [1 0 0 0] @y + [2] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] >= [0 0 0 0] [0 0 0 0] [0] [0 0 1 0] @x + [1 0 0 0] @y + [0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] = [#compare(@y, @x)] [#compare(#s(@x), #0())] = [0 0 0 0] [0] [1 0 0 0] @x + [2] [0 0 0 0] [0] [0 0 0 0] [1] >= [0] [1] [0] [1] = [#GT()] [#compare(#s(@x), #s(@y))] = [0 0 0 0] [0 0 0 0] [0] [1 0 0 0] @x + [0 0 1 0] @y + [1] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] >= [0 0 0 0] [0 0 0 0] [0] [1 0 0 0] @x + [0 0 1 0] @y + [0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] = [#compare(@x, @y)] [split#1(nil())] = [0] [1] [1] [1] >= [0] [0] [0] [1] = [nil()] [split#1(::(@x, @xs))] = [1 0 0 0] [1 0 1 0] [1] [2 0 0 0] @x + [1 0 2 1] @xs + [1] [0 0 0 0] [0 0 1 1] [1] [0 0 0 0] [0 0 0 0] [1] >= [0 0 0 0] [1 0 1 0] [1] [1 0 0 0] @x + [1 0 2 1] @xs + [1] [0 0 0 0] [0 0 1 1] [1] [0 0 0 0] [0 0 0 0] [1] = [insert(@x, split(@xs))] [#greater(@x, @y)] = [0 0 0 0] [0 0 0 0] [1] [1 0 0 0] @x + [0 0 1 1] @y + [0] [0 0 0 0] [0 0 0 0] [0] [1 0 0 0] [0 0 1 0] [0] >= [0 0 0 0] [0 0 0 0] [1] [1 0 0 0] @x + [0 0 1 0] @y + [0] [0 0 0 0] [0 0 0 0] [0] [1 0 0 0] [0 0 1 0] [0] = [#ckgt(#compare(@x, @y))] [insert#4(#true(), @key1, @ls, @valX, @vals1, @x)] = [1 0 0 0] [0 0 1 0] [1] [0 0 1 1] @ls + [0 0 1 0] @vals1 + [1] [0 0 1 1] [0 0 0 0] [1] [0 0 0 1] [0 0 0 0] [0] >= [1 0 0 0] [0 0 1 0] [1] [0 0 1 0] @ls + [0 0 1 0] @vals1 + [1] [0 0 1 0] [0 0 0 0] [1] [0 0 0 1] [0 0 0 0] [0] = [::(tuple#2(::(@valX, @vals1), @key1), @ls)] [insert#4(#false(), @key1, @ls, @valX, @vals1, @x)] = [1 0 0 0] [0 0 1 0] [1] [0 0 1 1] @ls + [0 0 1 0] @vals1 + [1] [0 0 1 1] [0 0 0 0] [1] [0 0 0 1] [0 0 0 0] [0] >= [1 0 0 0] [0 0 1 0] [1] [0 0 1 1] @ls + [0 0 1 0] @vals1 + [0] [0 0 1 1] [0 0 0 0] [1] [0 0 0 1] [0 0 0 0] [0] = [::(tuple#2(@vals1, @key1), insert(@x, @ls))] [insert#1(tuple#2(@valX, @keyX), @l, @x)] = [1 0 0 0] [1] [1 0 1 1] @l + [0] [0 0 1 1] [0] [0 0 0 1] [0] >= [1 0 0 0] [1] [1 0 1 1] @l + [0] [0 0 1 1] [0] [0 0 0 1] [0] = [insert#2(@l, @keyX, @valX, @x)] [quicksort#1(nil())] = [0] [2] [0] [1] >= [0] [0] [0] [1] = [nil()] [quicksort#1(::(@z, @zs))] = [1 0 0 0] [1 0 1 0] [1] [2 0 0 0] @z + [1 0 2 1] @zs + [2] [0 0 0 0] [0 0 1 0] [1] [0 0 0 0] [0 0 0 0] [1] >= [1 0 0 0] [1 0 1 0] [1] [1 0 0 0] @z + [1 0 2 0] @zs + [2] [0 0 0 0] [0 0 1 0] [1] [0 0 0 0] [0 0 0 0] [1] = [quicksort#2(splitqs(@z, @zs), @z)] [append#1(nil(), @ys)] = [1 0 0 0] [0] [0 1 1 0] @ys + [0] [0 0 1 0] [0] [0 0 0 1] [0] >= [1 0 0 0] [0] [0 1 0 0] @ys + [0] [0 0 1 0] [0] [0 0 0 1] [0] = [@ys] [append#1(::(@x, @xs), @ys)] = [1 0 0 0] [1 0 0 0] [1 0 0 0] [0] [1 0 0 0] @x + [0 1 1 0] @ys + [1 0 1 0] @xs + [1] [0 0 0 0] [0 0 1 0] [0 0 1 0] [1] [0 0 0 0] [0 0 0 1] [0 0 0 0] [0] >= [1 0 0 0] [1 0 0 0] [1 0 0 0] [0] [1 0 0 0] @x + [0 0 1 0] @ys + [0 0 1 0] @xs + [0] [0 0 0 0] [0 0 1 0] [0 0 1 0] [1] [0 0 0 0] [0 0 0 1] [0 0 0 0] [0] = [::(@x, append(@xs, @ys))] [splitqs(@pivot, @l)] = [1 0 1 0] [0 0 0 1] [1] [1 0 1 0] @l + [0 0 0 0] @pivot + [1] [1 1 1 1] [0 0 1 1] [1] [0 0 1 0] [0 0 0 0] [0] >= [1 0 1 0] [0 0 0 1] [1] [1 0 1 0] @l + [0 0 0 0] @pivot + [1] [1 1 1 1] [0 0 1 1] [1] [0 0 1 0] [0 0 0 0] [0] = [splitqs#1(@l, @pivot)] [quicksort(@l)] = [1 0 1 0] [0] [1 1 1 1] @l + [1] [0 0 1 0] [0] [0 0 0 0] [1] >= [1 0 1 0] [0] [1 1 1 1] @l + [1] [0 0 1 0] [0] [0 0 0 0] [1] = [quicksort#1(@l)] [splitqs#3(#true(), @ls, @rs, @x)] = [0 0 0 0] [0 0 1 0] [0 0 0 0] [1] [1 0 0 0] @x + [1 0 1 0] @ls + [1 0 1 1] @rs + [1] [0 0 0 0] [0 0 1 0] [0 0 1 0] [2] [0 0 0 0] [0 0 1 0] [0 0 1 0] [1] > [0 0 0 0] [0 0 1 0] [0 0 0 0] [0] [1 0 0 0] @x + [1 0 1 0] @ls + [1 0 1 1] @rs + [1] [0 0 0 0] [0 0 1 0] [0 0 1 0] [1] [0 0 0 0] [0 0 1 0] [0 0 1 0] [1] = [tuple#2(@ls, ::(@x, @rs))] [splitqs#3(#false(), @ls, @rs, @x)] = [0 0 0 0] [0 0 1 0] [0 0 0 0] [1] [1 0 0 0] @x + [1 0 1 0] @ls + [1 0 1 1] @rs + [1] [0 0 0 0] [0 0 1 0] [0 0 1 0] [1] [0 0 0 0] [0 0 1 0] [0 0 1 0] [1] >= [0 0 0 0] [0 0 1 0] [0 0 0 0] [1] [1 0 0 0] @x + [1 0 1 0] @ls + [1 0 1 1] @rs + [1] [0 0 0 0] [0 0 1 0] [0 0 1 0] [1] [0 0 0 0] [0 0 1 0] [0 0 1 0] [1] = [tuple#2(::(@x, @ls), @rs)] [splitqs#2(tuple#2(@ls, @rs), @pivot, @x)] = [0 0 0 0] [1 0 1 0] [0 0 0 1] [1 0 1 1] [1] [1 0 0 0] @x + [1 0 1 0] @ls + [0 0 0 0] @pivot + [1 0 1 1] @rs + [1] [1 0 0 0] [0 0 2 0] [0 0 1 0] [0 0 1 0] [1] [0 0 0 0] [0 0 1 0] [0 0 0 0] [0 0 1 0] [1] >= [0 0 0 0] [0 0 1 0] [0 0 0 0] [0 0 0 0] [1] [1 0 0 0] @x + [1 0 1 0] @ls + [0 0 0 0] @pivot + [1 0 1 1] @rs + [1] [1 0 0 0] [0 0 1 0] [0 0 1 0] [0 0 1 0] [1] [0 0 0 0] [0 0 1 0] [0 0 0 0] [0 0 1 0] [1] = [splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)] [splitqs#1(nil(), @pivot)] = [0 0 0 1] [1] [0 0 0 0] @pivot + [1] [0 0 1 1] [2] [0 0 0 0] [0] > [0] [1] [0] [0] = [tuple#2(nil(), nil())] [splitqs#1(::(@x, @xs), @pivot)] = [1 0 0 0] [1 0 1 0] [0 0 0 1] [2] [1 0 0 0] @x + [1 0 1 0] @xs + [0 0 0 0] @pivot + [2] [2 0 0 0] [1 0 2 1] [0 0 1 1] [2] [0 0 0 0] [0 0 1 0] [0 0 0 0] [1] >= [0 0 0 0] [1 0 1 0] [0 0 0 1] [2] [1 0 0 0] @x + [1 0 1 0] @xs + [0 0 0 0] @pivot + [2] [1 0 0 0] [1 0 2 0] [0 0 1 1] [2] [0 0 0 0] [0 0 1 0] [0 0 0 0] [1] = [splitqs#2(splitqs(@pivot, @xs), @pivot, @x)] [splitAndSort^#(@l)] = [1 0 1 0] [1] [1 1 1 1] @l + [1] [1 1 1 1] [1] [1 1 1 1] [1] >= [1 0 1 0] [1] [0 0 0 0] @l + [0] [0 0 0 0] [0] [0 0 0 0] [1] = [sortAll^#(split(@l))] [sortAll^#(@l)] = [1 0 0 1] [0] [0 0 0 0] @l + [0] [0 0 0 0] [0] [0 0 0 0] [1] >= [1 0 0 1] [0] [0 0 0 0] @l + [0] [0 0 0 0] [0] [0 0 0 0] [1] = [sortAll#1^#(@l)] [sortAll#2^#(tuple#2(@vals, @key), @xs)] = [1 0 0 1] [0 0 1 0] [0] [0 0 0 0] @xs + [0 0 0 0] @vals + [0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] >= [1 0 0 1] [0] [0 0 0 0] @xs + [0] [0 0 0 0] [0] [0 0 0 0] [1] = [sortAll^#(@xs)] [sortAll#2^#(tuple#2(@vals, @key), @xs)] = [1 0 0 1] [0 0 1 0] [0] [0 0 0 0] @xs + [0 0 0 0] @vals + [0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] >= [0 0 1 0] [0] [0 0 0 0] @vals + [0] [0 0 0 0] [0] [0 0 0 0] [1] = [quicksort^#(@vals)] [quicksort^#(@l)] = [0 0 1 0] [0] [0 0 0 0] @l + [0] [0 0 0 0] [0] [0 0 0 0] [1] >= [0 0 1 0] [0] [0 0 0 0] @l + [0] [0 0 0 0] [0] [0 0 0 0] [1] = [quicksort#1^#(@l)] [quicksort#2^#(tuple#2(@xs, @ys), @z)] = [0 0 1 0] [0 0 1 0] [1] [0 0 0 0] @ys + [0 0 0 0] @xs + [0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] > [0 0 1 0] [0] [0 0 0 0] @xs + [0] [0 0 0 0] [0] [0 0 0 0] [1] = [quicksort^#(@xs)] [quicksort#2^#(tuple#2(@xs, @ys), @z)] = [0 0 1 0] [0 0 1 0] [1] [0 0 0 0] @ys + [0 0 0 0] @xs + [0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] > [0 0 1 0] [0] [0 0 0 0] @ys + [0] [0 0 0 0] [0] [0 0 0 0] [1] = [quicksort^#(@ys)] [quicksort#2^#(tuple#2(@xs, @ys), @z)] = [0 0 1 0] [0 0 1 0] [1] [0 0 0 0] @ys + [0 0 0 0] @xs + [0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] >= [0 0 1 0] [1] [0 0 0 0] @xs + [0] [0 0 0 0] [0] [0 0 0 0] [1] = [append^#(quicksort(@xs), ::(@z, quicksort(@ys)))] [append^#(@l, @ys)] = [0 0 1 1] [0] [0 0 0 0] @l + [0] [0 0 0 0] [0] [0 0 0 0] [1] >= [0 0 1 1] [0] [0 0 0 0] @l + [0] [0 0 0 0] [0] [0 0 0 0] [1] = [c_5(append#1^#(@l, @ys))] [append#1^#(::(@x, @xs), @ys)] = [0 0 1 1] [1] [0 0 0 0] @xs + [1] [0 0 0 0] [0] [0 0 0 0] [0] > [0 0 1 1] [0] [0 0 0 0] @xs + [0] [0 0 0 0] [0] [0 0 0 0] [0] = [c_6(append^#(@xs, @ys))] [sortAll#1^#(::(@x, @xs))] = [1 0 0 0] [1 0 0 1] [0] [0 0 0 0] @x + [0 0 0 0] @xs + [0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] >= [1 0 0 0] [1 0 0 1] [0] [0 0 0 0] @x + [0 0 0 0] @xs + [0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [1] = [sortAll#2^#(@x, @xs)] [quicksort#1^#(::(@z, @zs))] = [0 0 1 0] [1] [0 0 0 0] @zs + [0] [0 0 0 0] [0] [0 0 0 0] [1] >= [0 0 1 0] [1] [0 0 0 0] @zs + [0] [0 0 0 0] [0] [0 0 0 0] [1] = [quicksort#2^#(splitqs(@z, @zs), @z)] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^4)). Strict DPs: { append^#(@l, @ys) -> c_5(append#1^#(@l, @ys)) } Weak DPs: { splitAndSort^#(@l) -> sortAll^#(split(@l)) , sortAll^#(@l) -> sortAll#1^#(@l) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals) , quicksort^#(@l) -> quicksort#1^#(@l) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@xs) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@ys) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> append^#(quicksort(@xs), ::(@z, quicksort(@ys))) , append#1^#(::(@x, @xs), @ys) -> c_6(append^#(@xs, @ys)) , sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs) , quicksort#1^#(::(@z, @zs)) -> quicksort#2^#(splitqs(@z, @zs), @z) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^4)) We use the processor 'matrix interpretation of dimension 4' to orient following rules strictly. DPs: { append^#(@l, @ys) -> c_5(append#1^#(@l, @ys)) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^4)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- The following argument positions are usable: Uargs(c_5) = {1}, Uargs(c_6) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [0 0 0 0] [0] [#equal](x1, x2) = [0 0 0 0] x1 + [0] [0 0 1 0] [0] [0 0 0 0] [1] [0 0 0 0] [0] [#eq](x1, x2) = [0 0 0 0] x1 + [0] [0 0 1 0] [0] [0 0 0 0] [1] [0 1 0 0] [0 0 0 1] [1] [quicksort#2](x1, x2) = [0 1 0 0] x1 + [0 0 0 0] x2 + [0] [1 0 1 0] [0 0 0 1] [0] [1 0 0 0] [0 0 0 0] [1] [0 0 1 0] [1] [split](x1) = [0 0 0 0] x1 + [1] [0 1 0 1] [1] [0 0 0 1] [1] [0] [#true] = [0] [1] [1] [0 0 0 0] [1 1 0 0] [0] [append](x1, x2) = [0 0 0 0] x1 + [0 1 0 0] x2 + [0] [0 0 1 0] [0 0 1 0] [0] [0 0 0 1] [0 0 0 1] [0] [0 0 0 0] [0 1 0 0] [0 0 0 1] [0] [insert#3](x1, x2, x3, x4, x5) = [0 0 0 0] x1 + [0 1 0 0] x3 + [0 0 0 0] x4 + [0] [0 0 0 1] [0 0 1 0] [0 0 0 0] [1] [0 0 0 0] [0 1 0 1] [0 0 0 0] [1] [0 0 0 0] [0] [#ckgt](x1) = [0 0 0 0] x1 + [0] [1 1 0 1] [0] [0 0 1 0] [0] [0 0 0 1] [1 0 0 0] [0] [insert](x1, x2) = [0 0 0 0] x1 + [0 1 0 0] x2 + [0] [0 0 0 0] [0 0 1 0] [1] [0 0 0 0] [0 1 0 1] [0] [1 0 0 0] [1] [#pos](x1) = [0 1 0 0] x1 + [1] [0 0 1 0] [1] [1 0 0 0] [1] [0] [#EQ] = [0] [1] [0] [1 0 0 0] [0 0 0 1] [0] [insert#2](x1, x2, x3, x4) = [0 1 0 0] x1 + [0 0 0 0] x3 + [0] [0 0 1 0] [0 0 0 0] [1] [0 1 0 1] [0 0 0 0] [0] [0 0 0 0] [0] [#and](x1, x2) = [0 0 0 0] x2 + [0] [0 0 1 0] [0] [0 0 0 0] [1] [0 0 0 0] [0 0 0 0] [0] [#compare](x1, x2) = [0 0 0 0] x1 + [0 0 0 0] x2 + [0] [0 0 1 0] [0 0 1 0] [0] [1 0 0 0] [1 0 0 0] [0] [0 0 0 1] [0 0 0 1] [0] [tuple#2](x1, x2) = [0 0 0 0] x1 + [0 0 0 0] x2 + [1] [0 0 1 0] [0 0 1 0] [0] [0 0 0 1] [0 0 0 0] [0] [1] [nil] = [1] [1] [0] [0 0 1 0] [1] [split#1](x1) = [0 0 0 0] x1 + [1] [0 1 0 1] [1] [0 0 0 1] [1] [0 0 0 0] [0 0 0 0] [1] [#greater](x1, x2) = [0 0 0 0] x1 + [0 0 0 0] x2 + [0] [1 0 0 0] [1 1 0 0] [0] [0 0 1 0] [0 0 1 0] [0] [0 0 0 0] [0 1 0 0] [0 0 0 1] [0 0 0 0] [0] [insert#4](x1, x2, x3, x4, x5, x6) = [0 0 0 0] x1 + [0 1 0 0] x3 + [0 0 0 0] x4 + [0 0 0 0] x5 + [0] [1 0 0 1] [0 0 1 0] [0 0 0 0] [0 0 0 1] [0] [0 0 0 0] [0 1 0 1] [0 0 0 0] [0 0 0 0] [1] [0 0 0 1] [1 0 0 0] [0] [insert#1](x1, x2, x3) = [0 0 0 0] x1 + [0 1 0 0] x2 + [0] [0 0 0 0] [0 0 1 0] [1] [0 0 0 0] [0 1 0 1] [0] [0 0 1 1] [1] [quicksort#1](x1) = [0 0 0 0] x1 + [1] [0 0 1 1] [0] [0 0 0 1] [0] [0 0 0 0] [1 1 0 0] [0] [append#1](x1, x2) = [0 0 0 0] x1 + [0 1 0 0] x2 + [0] [0 0 1 0] [0 0 1 0] [0] [0 0 0 1] [0 0 0 1] [0] [0 0 0 1] [0] [splitqs](x1, x2) = [0 0 0 0] x2 + [1] [0 0 1 0] [1] [1 0 0 1] [0] [0] [#false] = [0] [0] [1] [0 0 1 1] [1] [quicksort](x1) = [0 0 0 0] x1 + [1] [0 0 1 1] [0] [0 0 0 1] [0] [0 0 0 0] [0 1 0 0] [0] [::](x1, x2) = [0 0 0 0] x1 + [0 1 0 0] x2 + [0] [0 0 0 1] [0 0 1 0] [0] [0 0 0 0] [0 0 0 1] [1] [0] [#LT] = [0] [1] [0] [0 0 0 0] [0 0 0 1] [0 0 0 1] [0 0 0 0] [1] [splitqs#3](x1, x2, x3, x4) = [0 0 0 0] x1 + [0 0 0 0] x2 + [0 0 0 0] x3 + [0 0 0 0] x4 + [1] [0 0 0 0] [0 0 1 0] [0 0 1 0] [0 0 0 1] [0] [0 1 0 0] [0 0 0 1] [0 0 0 0] [0 0 0 0] [1] [1 1 0 0] [0 0 0 0] [0] [splitqs#2](x1, x2, x3) = [0 1 0 0] x1 + [0 0 0 0] x3 + [0] [0 0 1 0] [0 0 0 1] [0] [1 0 0 0] [0 0 0 0] [1] [1] [#0] = [1] [1] [1] [1 0 0 0] [0] [#neg](x1) = [0 1 0 0] x1 + [0] [0 1 1 0] [0] [0 0 0 0] [1] [1 0 0 0] [0] [#s](x1) = [0 1 0 0] x1 + [1] [0 0 1 0] [0] [0 0 0 1] [0] [0] [#GT] = [0] [1] [1] [0 0 0 1] [0] [splitqs#1](x1, x2) = [0 0 0 0] x1 + [1] [0 0 1 0] [1] [1 0 0 1] [0] [1 1 0 1] [1] [splitAndSort^#](x1) = [1 1 1 1] x1 + [1] [1 1 1 1] [1] [1 1 1 1] [1] [0 0 1 0] [0] [sortAll^#](x1) = [0 0 0 0] x1 + [0] [0 0 0 0] [0] [0 0 0 0] [0] [0 0 0 1] [0 0 1 0] [0] [sortAll#2^#](x1, x2) = [0 0 0 0] x1 + [0 0 0 0] x2 + [0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 1] [0] [quicksort^#](x1) = [0 0 0 0] x1 + [0] [0 0 0 0] [0] [0 0 0 0] [0] [1 0 0 0] [1] [quicksort#2^#](x1, x2) = [0 0 0 0] x1 + [0] [0 0 0 0] [0] [0 0 0 0] [0] [0 0 0 1] [1] [append^#](x1, x2) = [0 0 0 0] x1 + [0] [0 0 0 0] [0] [0 0 0 0] [0] [0 0 0 1] [0] [append#1^#](x1, x2) = [0 0 0 0] x1 + [0] [0 0 0 0] [1] [1 0 0 0] [1] [0 0 1 0] [0] [sortAll#1^#](x1) = [0 0 0 0] x1 + [0] [0 0 0 0] [0] [0 0 0 0] [0] [0 0 0 1] [0] [quicksort#1^#](x1) = [0 0 0 0] x1 + [0] [0 0 0 0] [0] [0 0 0 0] [0] [1 0 0 0] [0] [c_5](x1) = [0 0 0 0] x1 + [0] [0 0 0 0] [0] [0 0 0 0] [0] [1 0 0 0] [0] [c_6](x1) = [0 0 0 0] x1 + [0] [0 0 0 0] [0] [0 0 0 0] [0] The order satisfies the following ordering constraints: [#equal(@x, @y)] = [0 0 0 0] [0] [0 0 0 0] @x + [0] [0 0 1 0] [0] [0 0 0 0] [1] >= [0 0 0 0] [0] [0 0 0 0] @x + [0] [0 0 1 0] [0] [0 0 0 0] [1] = [#eq(@x, @y)] [#eq(#pos(@x), #pos(@y))] = [0 0 0 0] [0] [0 0 0 0] @x + [0] [0 0 1 0] [1] [0 0 0 0] [1] >= [0 0 0 0] [0] [0 0 0 0] @x + [0] [0 0 1 0] [0] [0 0 0 0] [1] = [#eq(@x, @y)] [#eq(#pos(@x), #0())] = [0 0 0 0] [0] [0 0 0 0] @x + [0] [0 0 1 0] [1] [0 0 0 0] [1] >= [0] [0] [0] [1] = [#false()] [#eq(#pos(@x), #neg(@y))] = [0 0 0 0] [0] [0 0 0 0] @x + [0] [0 0 1 0] [1] [0 0 0 0] [1] >= [0] [0] [0] [1] = [#false()] [#eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] @x_1 + [0 0 0 0] @x_2 + [0] [0 0 1 0] [0 0 1 0] [0] [0 0 0 0] [0 0 0 0] [1] >= [0 0 0 0] [0] [0 0 0 0] @x_2 + [0] [0 0 1 0] [0] [0 0 0 0] [1] = [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))] [#eq(tuple#2(@x_1, @x_2), nil())] = [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] @x_1 + [0 0 0 0] @x_2 + [0] [0 0 1 0] [0 0 1 0] [0] [0 0 0 0] [0 0 0 0] [1] >= [0] [0] [0] [1] = [#false()] [#eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2))] = [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] @x_1 + [0 0 0 0] @x_2 + [0] [0 0 1 0] [0 0 1 0] [0] [0 0 0 0] [0 0 0 0] [1] >= [0] [0] [0] [1] = [#false()] [#eq(nil(), tuple#2(@y_1, @y_2))] = [0] [0] [1] [1] >= [0] [0] [0] [1] = [#false()] [#eq(nil(), nil())] = [0] [0] [1] [1] >= [0] [0] [1] [1] = [#true()] [#eq(nil(), ::(@y_1, @y_2))] = [0] [0] [1] [1] >= [0] [0] [0] [1] = [#false()] [#eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2))] = [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] @x_1 + [0 0 0 0] @x_2 + [0] [0 0 0 1] [0 0 1 0] [0] [0 0 0 0] [0 0 0 0] [1] >= [0] [0] [0] [1] = [#false()] [#eq(::(@x_1, @x_2), nil())] = [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] @x_1 + [0 0 0 0] @x_2 + [0] [0 0 0 1] [0 0 1 0] [0] [0 0 0 0] [0 0 0 0] [1] >= [0] [0] [0] [1] = [#false()] [#eq(::(@x_1, @x_2), ::(@y_1, @y_2))] = [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] @x_1 + [0 0 0 0] @x_2 + [0] [0 0 0 1] [0 0 1 0] [0] [0 0 0 0] [0 0 0 0] [1] >= [0 0 0 0] [0] [0 0 0 0] @x_2 + [0] [0 0 1 0] [0] [0 0 0 0] [1] = [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))] [#eq(#0(), #pos(@y))] = [0] [0] [1] [1] >= [0] [0] [0] [1] = [#false()] [#eq(#0(), #0())] = [0] [0] [1] [1] >= [0] [0] [1] [1] = [#true()] [#eq(#0(), #neg(@y))] = [0] [0] [1] [1] >= [0] [0] [0] [1] = [#false()] [#eq(#0(), #s(@y))] = [0] [0] [1] [1] >= [0] [0] [0] [1] = [#false()] [#eq(#neg(@x), #pos(@y))] = [0 0 0 0] [0] [0 0 0 0] @x + [0] [0 1 1 0] [0] [0 0 0 0] [1] >= [0] [0] [0] [1] = [#false()] [#eq(#neg(@x), #0())] = [0 0 0 0] [0] [0 0 0 0] @x + [0] [0 1 1 0] [0] [0 0 0 0] [1] >= [0] [0] [0] [1] = [#false()] [#eq(#neg(@x), #neg(@y))] = [0 0 0 0] [0] [0 0 0 0] @x + [0] [0 1 1 0] [0] [0 0 0 0] [1] >= [0 0 0 0] [0] [0 0 0 0] @x + [0] [0 0 1 0] [0] [0 0 0 0] [1] = [#eq(@x, @y)] [#eq(#s(@x), #0())] = [0 0 0 0] [0] [0 0 0 0] @x + [0] [0 0 1 0] [0] [0 0 0 0] [1] >= [0] [0] [0] [1] = [#false()] [#eq(#s(@x), #s(@y))] = [0 0 0 0] [0] [0 0 0 0] @x + [0] [0 0 1 0] [0] [0 0 0 0] [1] >= [0 0 0 0] [0] [0 0 0 0] @x + [0] [0 0 1 0] [0] [0 0 0 0] [1] = [#eq(@x, @y)] [quicksort#2(tuple#2(@xs, @ys), @z)] = [0 0 0 0] [0 0 0 0] [0 0 0 1] [2] [0 0 0 0] @ys + [0 0 0 0] @xs + [0 0 0 0] @z + [1] [0 0 1 1] [0 0 1 1] [0 0 0 1] [0] [0 0 0 1] [0 0 0 1] [0 0 0 0] [1] >= [0 0 0 0] [0 0 0 0] [0 0 0 0] [2] [0 0 0 0] @ys + [0 0 0 0] @xs + [0 0 0 0] @z + [1] [0 0 1 1] [0 0 1 1] [0 0 0 1] [0] [0 0 0 1] [0 0 0 1] [0 0 0 0] [1] = [append(quicksort(@xs), ::(@z, quicksort(@ys)))] [split(@l)] = [0 0 1 0] [1] [0 0 0 0] @l + [1] [0 1 0 1] [1] [0 0 0 1] [1] >= [0 0 1 0] [1] [0 0 0 0] @l + [1] [0 1 0 1] [1] [0 0 0 1] [1] = [split#1(@l)] [append(@l, @ys)] = [0 0 0 0] [1 1 0 0] [0] [0 0 0 0] @l + [0 1 0 0] @ys + [0] [0 0 1 0] [0 0 1 0] [0] [0 0 0 1] [0 0 0 1] [0] >= [0 0 0 0] [1 1 0 0] [0] [0 0 0 0] @l + [0 1 0 0] @ys + [0] [0 0 1 0] [0 0 1 0] [0] [0 0 0 1] [0 0 0 1] [0] = [append#1(@l, @ys)] [insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x)] = [0 0 0 1] [0 1 0 0] [0 0 0 0] [0] [0 0 0 0] @valX + [0 1 0 0] @ls + [0 0 0 0] @vals1 + [0] [0 0 0 0] [0 0 1 0] [0 0 0 1] [1] [0 0 0 0] [0 1 0 1] [0 0 0 0] [1] >= [0 0 0 1] [0 1 0 0] [0 0 0 0] [0] [0 0 0 0] @valX + [0 1 0 0] @ls + [0 0 0 0] @vals1 + [0] [0 0 0 0] [0 0 1 0] [0 0 0 1] [1] [0 0 0 0] [0 1 0 1] [0 0 0 0] [1] = [insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x)] [#ckgt(#EQ())] = [0] [0] [0] [1] >= [0] [0] [0] [1] = [#false()] [#ckgt(#LT())] = [0] [0] [0] [1] >= [0] [0] [0] [1] = [#false()] [#ckgt(#GT())] = [0] [0] [1] [1] >= [0] [0] [1] [1] = [#true()] [insert(@x, @l)] = [0 0 0 1] [1 0 0 0] [0] [0 0 0 0] @x + [0 1 0 0] @l + [0] [0 0 0 0] [0 0 1 0] [1] [0 0 0 0] [0 1 0 1] [0] >= [0 0 0 1] [1 0 0 0] [0] [0 0 0 0] @x + [0 1 0 0] @l + [0] [0 0 0 0] [0 0 1 0] [1] [0 0 0 0] [0 1 0 1] [0] = [insert#1(@x, @l, @x)] [insert#2(nil(), @keyX, @valX, @x)] = [0 0 0 1] [1] [0 0 0 0] @valX + [1] [0 0 0 0] [2] [0 0 0 0] [1] >= [1] [1] [2] [1] = [::(tuple#2(::(@valX, nil()), @keyX), nil())] [insert#2(::(@l1, @ls), @keyX, @valX, @x)] = [0 0 0 1] [0 0 0 0] [0 1 0 0] [0] [0 0 0 0] @valX + [0 0 0 0] @l1 + [0 1 0 0] @ls + [0] [0 0 0 0] [0 0 0 1] [0 0 1 0] [1] [0 0 0 0] [0 0 0 0] [0 1 0 1] [1] >= [0 0 0 1] [0 0 0 0] [0 1 0 0] [0] [0 0 0 0] @valX + [0 0 0 0] @l1 + [0 1 0 0] @ls + [0] [0 0 0 0] [0 0 0 1] [0 0 1 0] [1] [0 0 0 0] [0 0 0 0] [0 1 0 1] [1] = [insert#3(@l1, @keyX, @ls, @valX, @x)] [#and(#true(), #true())] = [0] [0] [1] [1] >= [0] [0] [1] [1] = [#true()] [#and(#true(), #false())] = [0] [0] [0] [1] >= [0] [0] [0] [1] = [#false()] [#and(#false(), #true())] = [0] [0] [1] [1] >= [0] [0] [0] [1] = [#false()] [#and(#false(), #false())] = [0] [0] [0] [1] >= [0] [0] [0] [1] = [#false()] [#compare(#pos(@x), #pos(@y))] = [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] @x + [0 0 0 0] @y + [0] [0 0 1 0] [0 0 1 0] [2] [1 0 0 0] [1 0 0 0] [2] >= [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] @x + [0 0 0 0] @y + [0] [0 0 1 0] [0 0 1 0] [0] [1 0 0 0] [1 0 0 0] [0] = [#compare(@x, @y)] [#compare(#pos(@x), #0())] = [0 0 0 0] [0] [0 0 0 0] @x + [0] [0 0 1 0] [2] [1 0 0 0] [2] >= [0] [0] [1] [1] = [#GT()] [#compare(#pos(@x), #neg(@y))] = [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] @x + [0 0 0 0] @y + [0] [0 0 1 0] [0 1 1 0] [1] [1 0 0 0] [1 0 0 0] [1] >= [0] [0] [1] [1] = [#GT()] [#compare(#0(), #pos(@y))] = [0 0 0 0] [0] [0 0 0 0] @y + [0] [0 0 1 0] [2] [1 0 0 0] [2] >= [0] [0] [1] [0] = [#LT()] [#compare(#0(), #0())] = [0] [0] [2] [2] >= [0] [0] [1] [0] = [#EQ()] [#compare(#0(), #neg(@y))] = [0 0 0 0] [0] [0 0 0 0] @y + [0] [0 1 1 0] [1] [1 0 0 0] [1] >= [0] [0] [1] [1] = [#GT()] [#compare(#0(), #s(@y))] = [0 0 0 0] [0] [0 0 0 0] @y + [0] [0 0 1 0] [1] [1 0 0 0] [1] >= [0] [0] [1] [0] = [#LT()] [#compare(#neg(@x), #pos(@y))] = [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] @x + [0 0 0 0] @y + [0] [0 1 1 0] [0 0 1 0] [1] [1 0 0 0] [1 0 0 0] [1] >= [0] [0] [1] [0] = [#LT()] [#compare(#neg(@x), #0())] = [0 0 0 0] [0] [0 0 0 0] @x + [0] [0 1 1 0] [1] [1 0 0 0] [1] >= [0] [0] [1] [0] = [#LT()] [#compare(#neg(@x), #neg(@y))] = [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] @x + [0 0 0 0] @y + [0] [0 1 1 0] [0 1 1 0] [0] [1 0 0 0] [1 0 0 0] [0] >= [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] @x + [0 0 0 0] @y + [0] [0 0 1 0] [0 0 1 0] [0] [1 0 0 0] [1 0 0 0] [0] = [#compare(@y, @x)] [#compare(#s(@x), #0())] = [0 0 0 0] [0] [0 0 0 0] @x + [0] [0 0 1 0] [1] [1 0 0 0] [1] >= [0] [0] [1] [1] = [#GT()] [#compare(#s(@x), #s(@y))] = [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] @x + [0 0 0 0] @y + [0] [0 0 1 0] [0 0 1 0] [0] [1 0 0 0] [1 0 0 0] [0] >= [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] @x + [0 0 0 0] @y + [0] [0 0 1 0] [0 0 1 0] [0] [1 0 0 0] [1 0 0 0] [0] = [#compare(@x, @y)] [split#1(nil())] = [2] [1] [2] [1] > [1] [1] [1] [0] = [nil()] [split#1(::(@x, @xs))] = [0 0 0 1] [0 0 1 0] [1] [0 0 0 0] @x + [0 0 0 0] @xs + [1] [0 0 0 0] [0 1 0 1] [2] [0 0 0 0] [0 0 0 1] [2] >= [0 0 0 1] [0 0 1 0] [1] [0 0 0 0] @x + [0 0 0 0] @xs + [1] [0 0 0 0] [0 1 0 1] [2] [0 0 0 0] [0 0 0 1] [2] = [insert(@x, split(@xs))] [#greater(@x, @y)] = [0 0 0 0] [0 0 0 0] [1] [0 0 0 0] @x + [0 0 0 0] @y + [0] [1 0 0 0] [1 1 0 0] [0] [0 0 1 0] [0 0 1 0] [0] > [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] @x + [0 0 0 0] @y + [0] [1 0 0 0] [1 0 0 0] [0] [0 0 1 0] [0 0 1 0] [0] = [#ckgt(#compare(@x, @y))] [insert#4(#true(), @key1, @ls, @valX, @vals1, @x)] = [0 0 0 1] [0 1 0 0] [0 0 0 0] [0] [0 0 0 0] @valX + [0 1 0 0] @ls + [0 0 0 0] @vals1 + [0] [0 0 0 0] [0 0 1 0] [0 0 0 1] [1] [0 0 0 0] [0 1 0 1] [0 0 0 0] [1] >= [0 1 0 0] [0 0 0 0] [0] [0 1 0 0] @ls + [0 0 0 0] @vals1 + [0] [0 0 1 0] [0 0 0 1] [1] [0 0 0 1] [0 0 0 0] [1] = [::(tuple#2(::(@valX, @vals1), @key1), @ls)] [insert#4(#false(), @key1, @ls, @valX, @vals1, @x)] = [0 0 0 1] [0 1 0 0] [0 0 0 0] [0] [0 0 0 0] @valX + [0 1 0 0] @ls + [0 0 0 0] @vals1 + [0] [0 0 0 0] [0 0 1 0] [0 0 0 1] [1] [0 0 0 0] [0 1 0 1] [0 0 0 0] [1] >= [0 1 0 0] [0 0 0 0] [0] [0 1 0 0] @ls + [0 0 0 0] @vals1 + [0] [0 0 1 0] [0 0 0 1] [1] [0 1 0 1] [0 0 0 0] [1] = [::(tuple#2(@vals1, @key1), insert(@x, @ls))] [insert#1(tuple#2(@valX, @keyX), @l, @x)] = [1 0 0 0] [0 0 0 1] [0] [0 1 0 0] @l + [0 0 0 0] @valX + [0] [0 0 1 0] [0 0 0 0] [1] [0 1 0 1] [0 0 0 0] [0] >= [1 0 0 0] [0 0 0 1] [0] [0 1 0 0] @l + [0 0 0 0] @valX + [0] [0 0 1 0] [0 0 0 0] [1] [0 1 0 1] [0 0 0 0] [0] = [insert#2(@l, @keyX, @valX, @x)] [quicksort#1(nil())] = [2] [1] [1] [0] > [1] [1] [1] [0] = [nil()] [quicksort#1(::(@z, @zs))] = [0 0 0 1] [0 0 1 1] [2] [0 0 0 0] @z + [0 0 0 0] @zs + [1] [0 0 0 1] [0 0 1 1] [1] [0 0 0 0] [0 0 0 1] [1] >= [0 0 0 1] [0 0 0 0] [2] [0 0 0 0] @z + [0 0 0 0] @zs + [1] [0 0 0 1] [0 0 1 1] [1] [0 0 0 0] [0 0 0 1] [1] = [quicksort#2(splitqs(@z, @zs), @z)] [append#1(nil(), @ys)] = [1 1 0 0] [0] [0 1 0 0] @ys + [0] [0 0 1 0] [1] [0 0 0 1] [0] >= [1 0 0 0] [0] [0 1 0 0] @ys + [0] [0 0 1 0] [0] [0 0 0 1] [0] = [@ys] [append#1(::(@x, @xs), @ys)] = [0 0 0 0] [1 1 0 0] [0 0 0 0] [0] [0 0 0 0] @x + [0 1 0 0] @ys + [0 0 0 0] @xs + [0] [0 0 0 1] [0 0 1 0] [0 0 1 0] [0] [0 0 0 0] [0 0 0 1] [0 0 0 1] [1] >= [0 0 0 0] [0 1 0 0] [0 0 0 0] [0] [0 0 0 0] @x + [0 1 0 0] @ys + [0 0 0 0] @xs + [0] [0 0 0 1] [0 0 1 0] [0 0 1 0] [0] [0 0 0 0] [0 0 0 1] [0 0 0 1] [1] = [::(@x, append(@xs, @ys))] [splitqs(@pivot, @l)] = [0 0 0 1] [0] [0 0 0 0] @l + [1] [0 0 1 0] [1] [1 0 0 1] [0] >= [0 0 0 1] [0] [0 0 0 0] @l + [1] [0 0 1 0] [1] [1 0 0 1] [0] = [splitqs#1(@l, @pivot)] [quicksort(@l)] = [0 0 1 1] [1] [0 0 0 0] @l + [1] [0 0 1 1] [0] [0 0 0 1] [0] >= [0 0 1 1] [1] [0 0 0 0] @l + [1] [0 0 1 1] [0] [0 0 0 1] [0] = [quicksort#1(@l)] [splitqs#3(#true(), @ls, @rs, @x)] = [0 0 0 0] [0 0 0 1] [0 0 0 1] [1] [0 0 0 0] @x + [0 0 0 0] @ls + [0 0 0 0] @rs + [1] [0 0 0 1] [0 0 1 0] [0 0 1 0] [0] [0 0 0 0] [0 0 0 1] [0 0 0 0] [1] >= [0 0 0 0] [0 0 0 1] [0 0 0 1] [1] [0 0 0 0] @x + [0 0 0 0] @ls + [0 0 0 0] @rs + [1] [0 0 0 1] [0 0 1 0] [0 0 1 0] [0] [0 0 0 0] [0 0 0 1] [0 0 0 0] [0] = [tuple#2(@ls, ::(@x, @rs))] [splitqs#3(#false(), @ls, @rs, @x)] = [0 0 0 0] [0 0 0 1] [0 0 0 1] [1] [0 0 0 0] @x + [0 0 0 0] @ls + [0 0 0 0] @rs + [1] [0 0 0 1] [0 0 1 0] [0 0 1 0] [0] [0 0 0 0] [0 0 0 1] [0 0 0 0] [1] >= [0 0 0 0] [0 0 0 1] [0 0 0 1] [1] [0 0 0 0] @x + [0 0 0 0] @ls + [0 0 0 0] @rs + [1] [0 0 0 1] [0 0 1 0] [0 0 1 0] [0] [0 0 0 0] [0 0 0 1] [0 0 0 0] [1] = [tuple#2(::(@x, @ls), @rs)] [splitqs#2(tuple#2(@ls, @rs), @pivot, @x)] = [0 0 0 0] [0 0 0 1] [0 0 0 1] [1] [0 0 0 0] @x + [0 0 0 0] @ls + [0 0 0 0] @rs + [1] [0 0 0 1] [0 0 1 0] [0 0 1 0] [0] [0 0 0 0] [0 0 0 1] [0 0 0 1] [1] >= [0 0 0 0] [0 0 0 1] [0 0 0 1] [1] [0 0 0 0] @x + [0 0 0 0] @ls + [0 0 0 0] @rs + [1] [0 0 0 1] [0 0 1 0] [0 0 1 0] [0] [0 0 0 0] [0 0 0 1] [0 0 0 0] [1] = [splitqs#3(#greater(@x, @pivot), @ls, @rs, @x)] [splitqs#1(nil(), @pivot)] = [0] [1] [2] [1] >= [0] [1] [2] [0] = [tuple#2(nil(), nil())] [splitqs#1(::(@x, @xs), @pivot)] = [0 0 0 0] [0 0 0 1] [1] [0 0 0 0] @x + [0 0 0 0] @xs + [1] [0 0 0 1] [0 0 1 0] [1] [0 0 0 0] [0 1 0 1] [1] >= [0 0 0 0] [0 0 0 1] [1] [0 0 0 0] @x + [0 0 0 0] @xs + [1] [0 0 0 1] [0 0 1 0] [1] [0 0 0 0] [0 0 0 1] [1] = [splitqs#2(splitqs(@pivot, @xs), @pivot, @x)] [splitAndSort^#(@l)] = [1 1 0 1] [1] [1 1 1 1] @l + [1] [1 1 1 1] [1] [1 1 1 1] [1] >= [0 1 0 1] [1] [0 0 0 0] @l + [0] [0 0 0 0] [0] [0 0 0 0] [0] = [sortAll^#(split(@l))] [sortAll^#(@l)] = [0 0 1 0] [0] [0 0 0 0] @l + [0] [0 0 0 0] [0] [0 0 0 0] [0] >= [0 0 1 0] [0] [0 0 0 0] @l + [0] [0 0 0 0] [0] [0 0 0 0] [0] = [sortAll#1^#(@l)] [sortAll#2^#(tuple#2(@vals, @key), @xs)] = [0 0 1 0] [0 0 0 1] [0] [0 0 0 0] @xs + [0 0 0 0] @vals + [0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [0] >= [0 0 1 0] [0] [0 0 0 0] @xs + [0] [0 0 0 0] [0] [0 0 0 0] [0] = [sortAll^#(@xs)] [sortAll#2^#(tuple#2(@vals, @key), @xs)] = [0 0 1 0] [0 0 0 1] [0] [0 0 0 0] @xs + [0 0 0 0] @vals + [0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [0] >= [0 0 0 1] [0] [0 0 0 0] @vals + [0] [0 0 0 0] [0] [0 0 0 0] [0] = [quicksort^#(@vals)] [quicksort^#(@l)] = [0 0 0 1] [0] [0 0 0 0] @l + [0] [0 0 0 0] [0] [0 0 0 0] [0] >= [0 0 0 1] [0] [0 0 0 0] @l + [0] [0 0 0 0] [0] [0 0 0 0] [0] = [quicksort#1^#(@l)] [quicksort#2^#(tuple#2(@xs, @ys), @z)] = [0 0 0 1] [0 0 0 1] [1] [0 0 0 0] @ys + [0 0 0 0] @xs + [0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [0] > [0 0 0 1] [0] [0 0 0 0] @xs + [0] [0 0 0 0] [0] [0 0 0 0] [0] = [quicksort^#(@xs)] [quicksort#2^#(tuple#2(@xs, @ys), @z)] = [0 0 0 1] [0 0 0 1] [1] [0 0 0 0] @ys + [0 0 0 0] @xs + [0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [0] > [0 0 0 1] [0] [0 0 0 0] @ys + [0] [0 0 0 0] [0] [0 0 0 0] [0] = [quicksort^#(@ys)] [quicksort#2^#(tuple#2(@xs, @ys), @z)] = [0 0 0 1] [0 0 0 1] [1] [0 0 0 0] @ys + [0 0 0 0] @xs + [0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [0] >= [0 0 0 1] [1] [0 0 0 0] @xs + [0] [0 0 0 0] [0] [0 0 0 0] [0] = [append^#(quicksort(@xs), ::(@z, quicksort(@ys)))] [append^#(@l, @ys)] = [0 0 0 1] [1] [0 0 0 0] @l + [0] [0 0 0 0] [0] [0 0 0 0] [0] > [0 0 0 1] [0] [0 0 0 0] @l + [0] [0 0 0 0] [0] [0 0 0 0] [0] = [c_5(append#1^#(@l, @ys))] [append#1^#(::(@x, @xs), @ys)] = [0 0 0 1] [1] [0 0 0 0] @xs + [0] [0 0 0 0] [1] [0 1 0 0] [1] >= [0 0 0 1] [1] [0 0 0 0] @xs + [0] [0 0 0 0] [0] [0 0 0 0] [0] = [c_6(append^#(@xs, @ys))] [sortAll#1^#(::(@x, @xs))] = [0 0 0 1] [0 0 1 0] [0] [0 0 0 0] @x + [0 0 0 0] @xs + [0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [0] >= [0 0 0 1] [0 0 1 0] [0] [0 0 0 0] @x + [0 0 0 0] @xs + [0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [0] = [sortAll#2^#(@x, @xs)] [quicksort#1^#(::(@z, @zs))] = [0 0 0 1] [1] [0 0 0 0] @zs + [0] [0 0 0 0] [0] [0 0 0 0] [0] >= [0 0 0 1] [1] [0 0 0 0] @zs + [0] [0 0 0 0] [0] [0 0 0 0] [0] = [quicksort#2^#(splitqs(@z, @zs), @z)] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { splitAndSort^#(@l) -> sortAll^#(split(@l)) , sortAll^#(@l) -> sortAll#1^#(@l) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> sortAll^#(@xs) , sortAll#2^#(tuple#2(@vals, @key), @xs) -> quicksort^#(@vals) , quicksort^#(@l) -> quicksort#1^#(@l) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@xs) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> quicksort^#(@ys) , quicksort#2^#(tuple#2(@xs, @ys), @z) -> append^#(quicksort(@xs), ::(@z, quicksort(@ys))) , append^#(@l, @ys) -> c_5(append#1^#(@l, @ys)) , append#1^#(::(@x, @xs), @ys) -> c_6(append^#(@xs, @ys)) , sortAll#1^#(::(@x, @xs)) -> sortAll#2^#(@x, @xs) , quicksort#1^#(::(@z, @zs)) -> quicksort#2^#(splitqs(@z, @zs), @z) } Weak Trs: { #equal(@x, @y) -> #eq(@x, @y) , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y) , #eq(#pos(@x), #0()) -> #false() , #eq(#pos(@x), #neg(@y)) -> #false() , #eq(tuple#2(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(tuple#2(@x_1, @x_2), nil()) -> #false() , #eq(tuple#2(@x_1, @x_2), ::(@y_1, @y_2)) -> #false() , #eq(nil(), tuple#2(@y_1, @y_2)) -> #false() , #eq(nil(), nil()) -> #true() , #eq(nil(), ::(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), tuple#2(@y_1, @y_2)) -> #false() , #eq(::(@x_1, @x_2), nil()) -> #false() , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) -> #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2)) , #eq(#0(), #pos(@y)) -> #false() , #eq(#0(), #0()) -> #true() , #eq(#0(), #neg(@y)) -> #false() , #eq(#0(), #s(@y)) -> #false() , #eq(#neg(@x), #pos(@y)) -> #false() , #eq(#neg(@x), #0()) -> #false() , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y) , #eq(#s(@x), #0()) -> #false() , #eq(#s(@x), #s(@y)) -> #eq(@x, @y) , quicksort#2(tuple#2(@xs, @ys), @z) -> append(quicksort(@xs), ::(@z, quicksort(@ys))) , split(@l) -> split#1(@l) , append(@l, @ys) -> append#1(@l, @ys) , insert#3(tuple#2(@vals1, @key1), @keyX, @ls, @valX, @x) -> insert#4(#equal(@key1, @keyX), @key1, @ls, @valX, @vals1, @x) , #ckgt(#EQ()) -> #false() , #ckgt(#LT()) -> #false() , #ckgt(#GT()) -> #true() , insert(@x, @l) -> insert#1(@x, @l, @x) , insert#2(nil(), @keyX, @valX, @x) -> ::(tuple#2(::(@valX, nil()), @keyX), nil()) , insert#2(::(@l1, @ls), @keyX, @valX, @x) -> insert#3(@l1, @keyX, @ls, @valX, @x) , #and(#true(), #true()) -> #true() , #and(#true(), #false()) -> #false() , #and(#false(), #true()) -> #false() , #and(#false(), #false()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , split#1(nil()) -> nil() , split#1(::(@x, @xs)) -> insert(@x, split(@xs)) , #greater(@x, @y) -> #ckgt(#compare(@x, @y)) , insert#4(#true(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(::(@valX, @vals1), @key1), @ls) , insert#4(#false(), @key1, @ls, @valX, @vals1, @x) -> ::(tuple#2(@vals1, @key1), insert(@x, @ls)) , insert#1(tuple#2(@valX, @keyX), @l, @x) -> insert#2(@l, @keyX, @valX, @x) , quicksort#1(nil()) -> nil() , quicksort#1(::(@z, @zs)) -> quicksort#2(splitqs(@z, @zs), @z) , append#1(nil(), @ys) -> @ys , append#1(::(@x, @xs), @ys) -> ::(@x, append(@xs, @ys)) , splitqs(@pivot, @l) -> splitqs#1(@l, @pivot) , quicksort(@l) -> quicksort#1(@l) , splitqs#3(#true(), @ls, @rs, @x) -> tuple#2(@ls, ::(@x, @rs)) , splitqs#3(#false(), @ls, @rs, @x) -> tuple#2(::(@x, @ls), @rs) , splitqs#2(tuple#2(@ls, @rs), @pivot, @x) -> splitqs#3(#greater(@x, @pivot), @ls, @rs, @x) , splitqs#1(nil(), @pivot) -> tuple#2(nil(), nil()) , splitqs#1(::(@x, @xs), @pivot) -> splitqs#2(splitqs(@pivot, @xs), @pivot, @x) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(n^6))