*** 1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: #less(@x,@y) -> #cklt(#compare(@x,@y)) findMin(@l) -> findMin#1(@l) findMin#1(::(@x,@xs)) -> findMin#2(findMin(@xs),@x) findMin#1(nil()) -> nil() findMin#2(::(@y,@ys),@x) -> findMin#3(#less(@x,@y),@x,@y,@ys) findMin#2(nil(),@x) -> ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) -> ::(@y,::(@x,@ys)) findMin#3(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) minSort(@l) -> minSort#1(findMin(@l)) minSort#1(::(@x,@xs)) -> ::(@x,minSort(@xs)) minSort#1(nil()) -> nil() Weak DP Rules: Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) Signature: {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0} Obligation: Innermost basic terms: {#cklt,#compare,#less,findMin,findMin#1,findMin#2,findMin#3,minSort,minSort#1}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(#cklt) = {1}, uargs(::) = {2}, uargs(findMin#2) = {1}, uargs(findMin#3) = {1}, uargs(minSort#1) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(#0) = [0] p(#EQ) = [6] p(#GT) = [6] p(#LT) = [6] p(#cklt) = [1] x1 + [1] p(#compare) = [6] p(#false) = [7] p(#less) = [0] p(#neg) = [1] x1 + [0] p(#pos) = [1] x1 + [0] p(#s) = [1] x1 + [0] p(#true) = [7] p(::) = [1] x2 + [6] p(findMin) = [1] x1 + [0] p(findMin#1) = [1] x1 + [0] p(findMin#2) = [1] x1 + [0] p(findMin#3) = [1] x1 + [1] x4 + [0] p(minSort) = [1] x1 + [0] p(minSort#1) = [1] x1 + [1] p(nil) = [0] Following rules are strictly oriented: findMin#1(::(@x,@xs)) = [1] @xs + [6] > [1] @xs + [0] = findMin#2(findMin(@xs),@x) findMin#2(::(@y,@ys),@x) = [1] @ys + [6] > [1] @ys + [0] = findMin#3(#less(@x,@y) ,@x ,@y ,@ys) minSort#1(::(@x,@xs)) = [1] @xs + [7] > [1] @xs + [6] = ::(@x,minSort(@xs)) minSort#1(nil()) = [1] > [0] = nil() Following rules are (at-least) weakly oriented: #cklt(#EQ()) = [7] >= [7] = #false() #cklt(#GT()) = [7] >= [7] = #false() #cklt(#LT()) = [7] >= [7] = #true() #compare(#0(),#0()) = [6] >= [6] = #EQ() #compare(#0(),#neg(@y)) = [6] >= [6] = #GT() #compare(#0(),#pos(@y)) = [6] >= [6] = #LT() #compare(#0(),#s(@y)) = [6] >= [6] = #LT() #compare(#neg(@x),#0()) = [6] >= [6] = #LT() #compare(#neg(@x),#neg(@y)) = [6] >= [6] = #compare(@y,@x) #compare(#neg(@x),#pos(@y)) = [6] >= [6] = #LT() #compare(#pos(@x),#0()) = [6] >= [6] = #GT() #compare(#pos(@x),#neg(@y)) = [6] >= [6] = #GT() #compare(#pos(@x),#pos(@y)) = [6] >= [6] = #compare(@x,@y) #compare(#s(@x),#0()) = [6] >= [6] = #GT() #compare(#s(@x),#s(@y)) = [6] >= [6] = #compare(@x,@y) #less(@x,@y) = [0] >= [7] = #cklt(#compare(@x,@y)) findMin(@l) = [1] @l + [0] >= [1] @l + [0] = findMin#1(@l) findMin#1(nil()) = [0] >= [0] = nil() findMin#2(nil(),@x) = [0] >= [6] = ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) = [1] @ys + [7] >= [1] @ys + [12] = ::(@y,::(@x,@ys)) findMin#3(#true(),@x,@y,@ys) = [1] @ys + [7] >= [1] @ys + [12] = ::(@x,::(@y,@ys)) minSort(@l) = [1] @l + [0] >= [1] @l + [1] = minSort#1(findMin(@l)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: #less(@x,@y) -> #cklt(#compare(@x,@y)) findMin(@l) -> findMin#1(@l) findMin#1(nil()) -> nil() findMin#2(nil(),@x) -> ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) -> ::(@y,::(@x,@ys)) findMin#3(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) minSort(@l) -> minSort#1(findMin(@l)) Weak DP Rules: Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) findMin#1(::(@x,@xs)) -> findMin#2(findMin(@xs),@x) findMin#2(::(@y,@ys),@x) -> findMin#3(#less(@x,@y),@x,@y,@ys) minSort#1(::(@x,@xs)) -> ::(@x,minSort(@xs)) minSort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0} Obligation: Innermost basic terms: {#cklt,#compare,#less,findMin,findMin#1,findMin#2,findMin#3,minSort,minSort#1}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(#cklt) = {1}, uargs(::) = {2}, uargs(findMin#2) = {1}, uargs(findMin#3) = {1}, uargs(minSort#1) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(#0) = [0] p(#EQ) = [0] p(#GT) = [3] p(#LT) = [0] p(#cklt) = [1] x1 + [6] p(#compare) = [3] p(#false) = [0] p(#less) = [0] p(#neg) = [0] p(#pos) = [1] x1 + [0] p(#s) = [1] x1 + [0] p(#true) = [1] p(::) = [1] x2 + [0] p(findMin) = [0] p(findMin#1) = [0] p(findMin#2) = [1] x1 + [0] p(findMin#3) = [1] x1 + [1] x4 + [0] p(minSort) = [1] x1 + [0] p(minSort#1) = [1] x1 + [0] p(nil) = [1] Following rules are strictly oriented: findMin#3(#true(),@x,@y,@ys) = [1] @ys + [1] > [1] @ys + [0] = ::(@x,::(@y,@ys)) Following rules are (at-least) weakly oriented: #cklt(#EQ()) = [6] >= [0] = #false() #cklt(#GT()) = [9] >= [0] = #false() #cklt(#LT()) = [6] >= [1] = #true() #compare(#0(),#0()) = [3] >= [0] = #EQ() #compare(#0(),#neg(@y)) = [3] >= [3] = #GT() #compare(#0(),#pos(@y)) = [3] >= [0] = #LT() #compare(#0(),#s(@y)) = [3] >= [0] = #LT() #compare(#neg(@x),#0()) = [3] >= [0] = #LT() #compare(#neg(@x),#neg(@y)) = [3] >= [3] = #compare(@y,@x) #compare(#neg(@x),#pos(@y)) = [3] >= [0] = #LT() #compare(#pos(@x),#0()) = [3] >= [3] = #GT() #compare(#pos(@x),#neg(@y)) = [3] >= [3] = #GT() #compare(#pos(@x),#pos(@y)) = [3] >= [3] = #compare(@x,@y) #compare(#s(@x),#0()) = [3] >= [3] = #GT() #compare(#s(@x),#s(@y)) = [3] >= [3] = #compare(@x,@y) #less(@x,@y) = [0] >= [9] = #cklt(#compare(@x,@y)) findMin(@l) = [0] >= [0] = findMin#1(@l) findMin#1(::(@x,@xs)) = [0] >= [0] = findMin#2(findMin(@xs),@x) findMin#1(nil()) = [0] >= [1] = nil() findMin#2(::(@y,@ys),@x) = [1] @ys + [0] >= [1] @ys + [0] = findMin#3(#less(@x,@y) ,@x ,@y ,@ys) findMin#2(nil(),@x) = [1] >= [1] = ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) = [1] @ys + [0] >= [1] @ys + [0] = ::(@y,::(@x,@ys)) minSort(@l) = [1] @l + [0] >= [0] = minSort#1(findMin(@l)) minSort#1(::(@x,@xs)) = [1] @xs + [0] >= [1] @xs + [0] = ::(@x,minSort(@xs)) minSort#1(nil()) = [1] >= [1] = nil() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: #less(@x,@y) -> #cklt(#compare(@x,@y)) findMin(@l) -> findMin#1(@l) findMin#1(nil()) -> nil() findMin#2(nil(),@x) -> ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) -> ::(@y,::(@x,@ys)) minSort(@l) -> minSort#1(findMin(@l)) Weak DP Rules: Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) findMin#1(::(@x,@xs)) -> findMin#2(findMin(@xs),@x) findMin#2(::(@y,@ys),@x) -> findMin#3(#less(@x,@y),@x,@y,@ys) findMin#3(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) minSort#1(::(@x,@xs)) -> ::(@x,minSort(@xs)) minSort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0} Obligation: Innermost basic terms: {#cklt,#compare,#less,findMin,findMin#1,findMin#2,findMin#3,minSort,minSort#1}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(#cklt) = {1}, uargs(::) = {2}, uargs(findMin#2) = {1}, uargs(findMin#3) = {1}, uargs(minSort#1) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(#0) = [0] p(#EQ) = [1] p(#GT) = [1] p(#LT) = [0] p(#cklt) = [1] x1 + [2] p(#compare) = [2] p(#false) = [1] p(#less) = [0] p(#neg) = [0] p(#pos) = [1] x1 + [0] p(#s) = [0] p(#true) = [2] p(::) = [1] x2 + [4] p(findMin) = [1] p(findMin#1) = [4] p(findMin#2) = [1] x1 + [3] p(findMin#3) = [1] x1 + [1] x4 + [7] p(minSort) = [1] x1 + [0] p(minSort#1) = [1] x1 + [0] p(nil) = [0] Following rules are strictly oriented: findMin#1(nil()) = [4] > [0] = nil() Following rules are (at-least) weakly oriented: #cklt(#EQ()) = [3] >= [1] = #false() #cklt(#GT()) = [3] >= [1] = #false() #cklt(#LT()) = [2] >= [2] = #true() #compare(#0(),#0()) = [2] >= [1] = #EQ() #compare(#0(),#neg(@y)) = [2] >= [1] = #GT() #compare(#0(),#pos(@y)) = [2] >= [0] = #LT() #compare(#0(),#s(@y)) = [2] >= [0] = #LT() #compare(#neg(@x),#0()) = [2] >= [0] = #LT() #compare(#neg(@x),#neg(@y)) = [2] >= [2] = #compare(@y,@x) #compare(#neg(@x),#pos(@y)) = [2] >= [0] = #LT() #compare(#pos(@x),#0()) = [2] >= [1] = #GT() #compare(#pos(@x),#neg(@y)) = [2] >= [1] = #GT() #compare(#pos(@x),#pos(@y)) = [2] >= [2] = #compare(@x,@y) #compare(#s(@x),#0()) = [2] >= [1] = #GT() #compare(#s(@x),#s(@y)) = [2] >= [2] = #compare(@x,@y) #less(@x,@y) = [0] >= [4] = #cklt(#compare(@x,@y)) findMin(@l) = [1] >= [4] = findMin#1(@l) findMin#1(::(@x,@xs)) = [4] >= [4] = findMin#2(findMin(@xs),@x) findMin#2(::(@y,@ys),@x) = [1] @ys + [7] >= [1] @ys + [7] = findMin#3(#less(@x,@y) ,@x ,@y ,@ys) findMin#2(nil(),@x) = [3] >= [4] = ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) = [1] @ys + [8] >= [1] @ys + [8] = ::(@y,::(@x,@ys)) findMin#3(#true(),@x,@y,@ys) = [1] @ys + [9] >= [1] @ys + [8] = ::(@x,::(@y,@ys)) minSort(@l) = [1] @l + [0] >= [1] = minSort#1(findMin(@l)) minSort#1(::(@x,@xs)) = [1] @xs + [4] >= [1] @xs + [4] = ::(@x,minSort(@xs)) minSort#1(nil()) = [0] >= [0] = nil() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: #less(@x,@y) -> #cklt(#compare(@x,@y)) findMin(@l) -> findMin#1(@l) findMin#2(nil(),@x) -> ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) -> ::(@y,::(@x,@ys)) minSort(@l) -> minSort#1(findMin(@l)) Weak DP Rules: Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) findMin#1(::(@x,@xs)) -> findMin#2(findMin(@xs),@x) findMin#1(nil()) -> nil() findMin#2(::(@y,@ys),@x) -> findMin#3(#less(@x,@y),@x,@y,@ys) findMin#3(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) minSort#1(::(@x,@xs)) -> ::(@x,minSort(@xs)) minSort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0} Obligation: Innermost basic terms: {#cklt,#compare,#less,findMin,findMin#1,findMin#2,findMin#3,minSort,minSort#1}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(#cklt) = {1}, uargs(::) = {2}, uargs(findMin#2) = {1}, uargs(findMin#3) = {1}, uargs(minSort#1) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(#0) = [0] p(#EQ) = [2] p(#GT) = [1] p(#LT) = [1] p(#cklt) = [1] x1 + [2] p(#compare) = [5] p(#false) = [3] p(#less) = [1] p(#neg) = [0] p(#pos) = [1] x1 + [0] p(#s) = [1] x1 + [0] p(#true) = [0] p(::) = [1] x2 + [0] p(findMin) = [1] p(findMin#1) = [3] p(findMin#2) = [1] x1 + [1] p(findMin#3) = [1] x1 + [1] x4 + [0] p(minSort) = [1] p(minSort#1) = [1] x1 + [1] p(nil) = [0] Following rules are strictly oriented: findMin#2(nil(),@x) = [1] > [0] = ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) = [1] @ys + [3] > [1] @ys + [0] = ::(@y,::(@x,@ys)) Following rules are (at-least) weakly oriented: #cklt(#EQ()) = [4] >= [3] = #false() #cklt(#GT()) = [3] >= [3] = #false() #cklt(#LT()) = [3] >= [0] = #true() #compare(#0(),#0()) = [5] >= [2] = #EQ() #compare(#0(),#neg(@y)) = [5] >= [1] = #GT() #compare(#0(),#pos(@y)) = [5] >= [1] = #LT() #compare(#0(),#s(@y)) = [5] >= [1] = #LT() #compare(#neg(@x),#0()) = [5] >= [1] = #LT() #compare(#neg(@x),#neg(@y)) = [5] >= [5] = #compare(@y,@x) #compare(#neg(@x),#pos(@y)) = [5] >= [1] = #LT() #compare(#pos(@x),#0()) = [5] >= [1] = #GT() #compare(#pos(@x),#neg(@y)) = [5] >= [1] = #GT() #compare(#pos(@x),#pos(@y)) = [5] >= [5] = #compare(@x,@y) #compare(#s(@x),#0()) = [5] >= [1] = #GT() #compare(#s(@x),#s(@y)) = [5] >= [5] = #compare(@x,@y) #less(@x,@y) = [1] >= [7] = #cklt(#compare(@x,@y)) findMin(@l) = [1] >= [3] = findMin#1(@l) findMin#1(::(@x,@xs)) = [3] >= [2] = findMin#2(findMin(@xs),@x) findMin#1(nil()) = [3] >= [0] = nil() findMin#2(::(@y,@ys),@x) = [1] @ys + [1] >= [1] @ys + [1] = findMin#3(#less(@x,@y) ,@x ,@y ,@ys) findMin#3(#true(),@x,@y,@ys) = [1] @ys + [0] >= [1] @ys + [0] = ::(@x,::(@y,@ys)) minSort(@l) = [1] >= [2] = minSort#1(findMin(@l)) minSort#1(::(@x,@xs)) = [1] @xs + [1] >= [1] = ::(@x,minSort(@xs)) minSort#1(nil()) = [1] >= [0] = nil() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: #less(@x,@y) -> #cklt(#compare(@x,@y)) findMin(@l) -> findMin#1(@l) minSort(@l) -> minSort#1(findMin(@l)) Weak DP Rules: Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) findMin#1(::(@x,@xs)) -> findMin#2(findMin(@xs),@x) findMin#1(nil()) -> nil() findMin#2(::(@y,@ys),@x) -> findMin#3(#less(@x,@y),@x,@y,@ys) findMin#2(nil(),@x) -> ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) -> ::(@y,::(@x,@ys)) findMin#3(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) minSort#1(::(@x,@xs)) -> ::(@x,minSort(@xs)) minSort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0} Obligation: Innermost basic terms: {#cklt,#compare,#less,findMin,findMin#1,findMin#2,findMin#3,minSort,minSort#1}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(#cklt) = {1}, uargs(::) = {2}, uargs(findMin#2) = {1}, uargs(findMin#3) = {1}, uargs(minSort#1) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(#0) = [0] p(#EQ) = [0] p(#GT) = [0] p(#LT) = [0] p(#cklt) = [1] x1 + [3] p(#compare) = [0] p(#false) = [0] p(#less) = [4] p(#neg) = [0] p(#pos) = [0] p(#s) = [1] x1 + [0] p(#true) = [0] p(::) = [1] x2 + [0] p(findMin) = [0] p(findMin#1) = [4] p(findMin#2) = [1] x1 + [4] p(findMin#3) = [1] x1 + [1] x4 + [0] p(minSort) = [1] x1 + [0] p(minSort#1) = [1] x1 + [0] p(nil) = [4] Following rules are strictly oriented: #less(@x,@y) = [4] > [3] = #cklt(#compare(@x,@y)) Following rules are (at-least) weakly oriented: #cklt(#EQ()) = [3] >= [0] = #false() #cklt(#GT()) = [3] >= [0] = #false() #cklt(#LT()) = [3] >= [0] = #true() #compare(#0(),#0()) = [0] >= [0] = #EQ() #compare(#0(),#neg(@y)) = [0] >= [0] = #GT() #compare(#0(),#pos(@y)) = [0] >= [0] = #LT() #compare(#0(),#s(@y)) = [0] >= [0] = #LT() #compare(#neg(@x),#0()) = [0] >= [0] = #LT() #compare(#neg(@x),#neg(@y)) = [0] >= [0] = #compare(@y,@x) #compare(#neg(@x),#pos(@y)) = [0] >= [0] = #LT() #compare(#pos(@x),#0()) = [0] >= [0] = #GT() #compare(#pos(@x),#neg(@y)) = [0] >= [0] = #GT() #compare(#pos(@x),#pos(@y)) = [0] >= [0] = #compare(@x,@y) #compare(#s(@x),#0()) = [0] >= [0] = #GT() #compare(#s(@x),#s(@y)) = [0] >= [0] = #compare(@x,@y) findMin(@l) = [0] >= [4] = findMin#1(@l) findMin#1(::(@x,@xs)) = [4] >= [4] = findMin#2(findMin(@xs),@x) findMin#1(nil()) = [4] >= [4] = nil() findMin#2(::(@y,@ys),@x) = [1] @ys + [4] >= [1] @ys + [4] = findMin#3(#less(@x,@y) ,@x ,@y ,@ys) findMin#2(nil(),@x) = [8] >= [4] = ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) = [1] @ys + [0] >= [1] @ys + [0] = ::(@y,::(@x,@ys)) findMin#3(#true(),@x,@y,@ys) = [1] @ys + [0] >= [1] @ys + [0] = ::(@x,::(@y,@ys)) minSort(@l) = [1] @l + [0] >= [0] = minSort#1(findMin(@l)) minSort#1(::(@x,@xs)) = [1] @xs + [0] >= [1] @xs + [0] = ::(@x,minSort(@xs)) minSort#1(nil()) = [4] >= [4] = nil() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: findMin(@l) -> findMin#1(@l) minSort(@l) -> minSort#1(findMin(@l)) Weak DP Rules: Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) findMin#1(::(@x,@xs)) -> findMin#2(findMin(@xs),@x) findMin#1(nil()) -> nil() findMin#2(::(@y,@ys),@x) -> findMin#3(#less(@x,@y),@x,@y,@ys) findMin#2(nil(),@x) -> ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) -> ::(@y,::(@x,@ys)) findMin#3(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) minSort#1(::(@x,@xs)) -> ::(@x,minSort(@xs)) minSort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0} Obligation: Innermost basic terms: {#cklt,#compare,#less,findMin,findMin#1,findMin#2,findMin#3,minSort,minSort#1}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(#cklt) = {1}, uargs(::) = {2}, uargs(findMin#2) = {1}, uargs(findMin#3) = {1}, uargs(minSort#1) = {1} Following symbols are considered usable: {#cklt,#compare,#less,findMin,findMin#1,findMin#2,findMin#3,minSort,minSort#1} TcT has computed the following interpretation: p(#0) = [2] p(#EQ) = [0] p(#GT) = [0] p(#LT) = [0] p(#cklt) = [2] x1 + [0] p(#compare) = [0] p(#false) = [0] p(#less) = [0] p(#neg) = [0] p(#pos) = [0] p(#s) = [0] p(#true) = [0] p(::) = [1] x2 + [2] p(findMin) = [1] x1 + [0] p(findMin#1) = [1] x1 + [0] p(findMin#2) = [1] x1 + [2] p(findMin#3) = [2] x1 + [1] x4 + [4] p(minSort) = [3] x1 + [4] p(minSort#1) = [3] x1 + [0] p(nil) = [0] Following rules are strictly oriented: minSort(@l) = [3] @l + [4] > [3] @l + [0] = minSort#1(findMin(@l)) Following rules are (at-least) weakly oriented: #cklt(#EQ()) = [0] >= [0] = #false() #cklt(#GT()) = [0] >= [0] = #false() #cklt(#LT()) = [0] >= [0] = #true() #compare(#0(),#0()) = [0] >= [0] = #EQ() #compare(#0(),#neg(@y)) = [0] >= [0] = #GT() #compare(#0(),#pos(@y)) = [0] >= [0] = #LT() #compare(#0(),#s(@y)) = [0] >= [0] = #LT() #compare(#neg(@x),#0()) = [0] >= [0] = #LT() #compare(#neg(@x),#neg(@y)) = [0] >= [0] = #compare(@y,@x) #compare(#neg(@x),#pos(@y)) = [0] >= [0] = #LT() #compare(#pos(@x),#0()) = [0] >= [0] = #GT() #compare(#pos(@x),#neg(@y)) = [0] >= [0] = #GT() #compare(#pos(@x),#pos(@y)) = [0] >= [0] = #compare(@x,@y) #compare(#s(@x),#0()) = [0] >= [0] = #GT() #compare(#s(@x),#s(@y)) = [0] >= [0] = #compare(@x,@y) #less(@x,@y) = [0] >= [0] = #cklt(#compare(@x,@y)) findMin(@l) = [1] @l + [0] >= [1] @l + [0] = findMin#1(@l) findMin#1(::(@x,@xs)) = [1] @xs + [2] >= [1] @xs + [2] = findMin#2(findMin(@xs),@x) findMin#1(nil()) = [0] >= [0] = nil() findMin#2(::(@y,@ys),@x) = [1] @ys + [4] >= [1] @ys + [4] = findMin#3(#less(@x,@y) ,@x ,@y ,@ys) findMin#2(nil(),@x) = [2] >= [2] = ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) = [1] @ys + [4] >= [1] @ys + [4] = ::(@y,::(@x,@ys)) findMin#3(#true(),@x,@y,@ys) = [1] @ys + [4] >= [1] @ys + [4] = ::(@x,::(@y,@ys)) minSort#1(::(@x,@xs)) = [3] @xs + [6] >= [3] @xs + [6] = ::(@x,minSort(@xs)) minSort#1(nil()) = [0] >= [0] = nil() *** 1.1.1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: findMin(@l) -> findMin#1(@l) Weak DP Rules: Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) findMin#1(::(@x,@xs)) -> findMin#2(findMin(@xs),@x) findMin#1(nil()) -> nil() findMin#2(::(@y,@ys),@x) -> findMin#3(#less(@x,@y),@x,@y,@ys) findMin#2(nil(),@x) -> ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) -> ::(@y,::(@x,@ys)) findMin#3(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) minSort(@l) -> minSort#1(findMin(@l)) minSort#1(::(@x,@xs)) -> ::(@x,minSort(@xs)) minSort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0} Obligation: Innermost basic terms: {#cklt,#compare,#less,findMin,findMin#1,findMin#2,findMin#3,minSort,minSort#1}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil} Applied Processor: NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(#cklt) = {1}, uargs(::) = {2}, uargs(findMin#2) = {1}, uargs(findMin#3) = {1}, uargs(minSort#1) = {1} Following symbols are considered usable: {#cklt,#compare,#less,findMin,findMin#1,findMin#2,findMin#3,minSort,minSort#1} TcT has computed the following interpretation: p(#0) = [0] [0] p(#EQ) = [0] [0] p(#GT) = [0] [0] p(#LT) = [0] [0] p(#cklt) = [1 0] x1 + [1] [0 0] [1] p(#compare) = [1] [0] p(#false) = [1] [1] p(#less) = [2] [1] p(#neg) = [0] [0] p(#pos) = [0 1] x1 + [0] [0 1] [1] p(#s) = [0 4] x1 + [0] [0 1] [0] p(#true) = [1] [1] p(::) = [1 3] x2 + [0] [0 1] [3] p(findMin) = [1 2] x1 + [1] [0 1] [0] p(findMin#1) = [1 2] x1 + [0] [0 1] [0] p(findMin#2) = [1 3] x1 + [4] [0 1] [3] p(findMin#3) = [4 4] x1 + [1 6] x4 + [1] [0 6] [0 1] [0] p(minSort) = [3 7] x1 + [3] [0 1] [0] p(minSort#1) = [3 1] x1 + [0] [0 1] [0] p(nil) = [2] [0] Following rules are strictly oriented: findMin(@l) = [1 2] @l + [1] [0 1] [0] > [1 2] @l + [0] [0 1] [0] = findMin#1(@l) Following rules are (at-least) weakly oriented: #cklt(#EQ()) = [1] [1] >= [1] [1] = #false() #cklt(#GT()) = [1] [1] >= [1] [1] = #false() #cklt(#LT()) = [1] [1] >= [1] [1] = #true() #compare(#0(),#0()) = [1] [0] >= [0] [0] = #EQ() #compare(#0(),#neg(@y)) = [1] [0] >= [0] [0] = #GT() #compare(#0(),#pos(@y)) = [1] [0] >= [0] [0] = #LT() #compare(#0(),#s(@y)) = [1] [0] >= [0] [0] = #LT() #compare(#neg(@x),#0()) = [1] [0] >= [0] [0] = #LT() #compare(#neg(@x),#neg(@y)) = [1] [0] >= [1] [0] = #compare(@y,@x) #compare(#neg(@x),#pos(@y)) = [1] [0] >= [0] [0] = #LT() #compare(#pos(@x),#0()) = [1] [0] >= [0] [0] = #GT() #compare(#pos(@x),#neg(@y)) = [1] [0] >= [0] [0] = #GT() #compare(#pos(@x),#pos(@y)) = [1] [0] >= [1] [0] = #compare(@x,@y) #compare(#s(@x),#0()) = [1] [0] >= [0] [0] = #GT() #compare(#s(@x),#s(@y)) = [1] [0] >= [1] [0] = #compare(@x,@y) #less(@x,@y) = [2] [1] >= [2] [1] = #cklt(#compare(@x,@y)) findMin#1(::(@x,@xs)) = [1 5] @xs + [6] [0 1] [3] >= [1 5] @xs + [5] [0 1] [3] = findMin#2(findMin(@xs),@x) findMin#1(nil()) = [2] [0] >= [2] [0] = nil() findMin#2(::(@y,@ys),@x) = [1 6] @ys + [13] [0 1] [6] >= [1 6] @ys + [13] [0 1] [6] = findMin#3(#less(@x,@y) ,@x ,@y ,@ys) findMin#2(nil(),@x) = [6] [3] >= [2] [3] = ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) = [1 6] @ys + [9] [0 1] [6] >= [1 6] @ys + [9] [0 1] [6] = ::(@y,::(@x,@ys)) findMin#3(#true(),@x,@y,@ys) = [1 6] @ys + [9] [0 1] [6] >= [1 6] @ys + [9] [0 1] [6] = ::(@x,::(@y,@ys)) minSort(@l) = [3 7] @l + [3] [0 1] [0] >= [3 7] @l + [3] [0 1] [0] = minSort#1(findMin(@l)) minSort#1(::(@x,@xs)) = [3 10] @xs + [3] [0 1] [3] >= [3 10] @xs + [3] [0 1] [3] = ::(@x,minSort(@xs)) minSort#1(nil()) = [6] [0] >= [2] [0] = nil() *** 1.1.1.1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) findMin(@l) -> findMin#1(@l) findMin#1(::(@x,@xs)) -> findMin#2(findMin(@xs),@x) findMin#1(nil()) -> nil() findMin#2(::(@y,@ys),@x) -> findMin#3(#less(@x,@y),@x,@y,@ys) findMin#2(nil(),@x) -> ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) -> ::(@y,::(@x,@ys)) findMin#3(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) minSort(@l) -> minSort#1(findMin(@l)) minSort#1(::(@x,@xs)) -> ::(@x,minSort(@xs)) minSort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0} Obligation: Innermost basic terms: {#cklt,#compare,#less,findMin,findMin#1,findMin#2,findMin#3,minSort,minSort#1}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).