We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { minSort#1(::(@x, @xs)) -> ::(@x, minSort(@xs)) , minSort#1(nil()) -> nil() , findMin#3(#true(), @x, @y, @ys) -> ::(@x, ::(@y, @ys)) , findMin#3(#false(), @x, @y, @ys) -> ::(@y, ::(@x, @ys)) , findMin#1(::(@x, @xs)) -> findMin#2(findMin(@xs), @x) , findMin#1(nil()) -> nil() , findMin(@l) -> findMin#1(@l) , #less(@x, @y) -> #cklt(#compare(@x, @y)) , minSort(@l) -> minSort#1(findMin(@l)) , findMin#2(::(@y, @ys), @x) -> findMin#3(#less(@x, @y), @x, @y, @ys) , findMin#2(nil(), @x) -> ::(@x, nil()) } Weak Trs: { #cklt(#LT()) -> #true() , #cklt(#EQ()) -> #false() , #cklt(#GT()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(minSort#1) = {1}, Uargs(findMin#3) = {1}, Uargs(::) = {2}, Uargs(#cklt) = {1}, Uargs(findMin#2) = {1} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [minSort#1](x1) = [1] x1 + [0] [#true] = [1] [#false] = [0] [findMin#3](x1, x2, x3, x4) = [1] x1 + [1] x4 + [0] [::](x1, x2) = [1] x2 + [0] [#LT] = [1] [findMin#1](x1) = [0] [#cklt](x1) = [1] x1 + [0] [#pos](x1) = [1] x1 + [0] [#0] = [0] [findMin](x1) = [0] [#neg](x1) = [1] x1 + [0] [#EQ] = [0] [#less](x1, x2) = [0] [minSort](x1) = [1] x1 + [0] [#compare](x1, x2) = [4] [#s](x1) = [1] x1 + [0] [#GT] = [0] [nil] = [0] [findMin#2](x1, x2) = [1] x1 + [0] The order satisfies the following ordering constraints: [minSort#1(::(@x, @xs))] = [1] @xs + [0] >= [1] @xs + [0] = [::(@x, minSort(@xs))] [minSort#1(nil())] = [0] >= [0] = [nil()] [findMin#3(#true(), @x, @y, @ys)] = [1] @ys + [1] > [1] @ys + [0] = [::(@x, ::(@y, @ys))] [findMin#3(#false(), @x, @y, @ys)] = [1] @ys + [0] >= [1] @ys + [0] = [::(@y, ::(@x, @ys))] [findMin#1(::(@x, @xs))] = [0] >= [0] = [findMin#2(findMin(@xs), @x)] [findMin#1(nil())] = [0] >= [0] = [nil()] [#cklt(#LT())] = [1] >= [1] = [#true()] [#cklt(#EQ())] = [0] >= [0] = [#false()] [#cklt(#GT())] = [0] >= [0] = [#false()] [findMin(@l)] = [0] >= [0] = [findMin#1(@l)] [#less(@x, @y)] = [0] ? [4] = [#cklt(#compare(@x, @y))] [minSort(@l)] = [1] @l + [0] >= [0] = [minSort#1(findMin(@l))] [#compare(#pos(@x), #pos(@y))] = [4] >= [4] = [#compare(@x, @y)] [#compare(#pos(@x), #0())] = [4] > [0] = [#GT()] [#compare(#pos(@x), #neg(@y))] = [4] > [0] = [#GT()] [#compare(#0(), #pos(@y))] = [4] > [1] = [#LT()] [#compare(#0(), #0())] = [4] > [0] = [#EQ()] [#compare(#0(), #neg(@y))] = [4] > [0] = [#GT()] [#compare(#0(), #s(@y))] = [4] > [1] = [#LT()] [#compare(#neg(@x), #pos(@y))] = [4] > [1] = [#LT()] [#compare(#neg(@x), #0())] = [4] > [1] = [#LT()] [#compare(#neg(@x), #neg(@y))] = [4] >= [4] = [#compare(@y, @x)] [#compare(#s(@x), #0())] = [4] > [0] = [#GT()] [#compare(#s(@x), #s(@y))] = [4] >= [4] = [#compare(@x, @y)] [findMin#2(::(@y, @ys), @x)] = [1] @ys + [0] >= [1] @ys + [0] = [findMin#3(#less(@x, @y), @x, @y, @ys)] [findMin#2(nil(), @x)] = [0] >= [0] = [::(@x, nil())] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { minSort#1(::(@x, @xs)) -> ::(@x, minSort(@xs)) , minSort#1(nil()) -> nil() , findMin#3(#false(), @x, @y, @ys) -> ::(@y, ::(@x, @ys)) , findMin#1(::(@x, @xs)) -> findMin#2(findMin(@xs), @x) , findMin#1(nil()) -> nil() , findMin(@l) -> findMin#1(@l) , #less(@x, @y) -> #cklt(#compare(@x, @y)) , minSort(@l) -> minSort#1(findMin(@l)) , findMin#2(::(@y, @ys), @x) -> findMin#3(#less(@x, @y), @x, @y, @ys) , findMin#2(nil(), @x) -> ::(@x, nil()) } Weak Trs: { findMin#3(#true(), @x, @y, @ys) -> ::(@x, ::(@y, @ys)) , #cklt(#LT()) -> #true() , #cklt(#EQ()) -> #false() , #cklt(#GT()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(minSort#1) = {1}, Uargs(findMin#3) = {1}, Uargs(::) = {2}, Uargs(#cklt) = {1}, Uargs(findMin#2) = {1} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [minSort#1](x1) = [1] x1 + [0] [#true] = [0] [#false] = [1] [findMin#3](x1, x2, x3, x4) = [1] x1 + [1] x4 + [0] [::](x1, x2) = [1] x2 + [0] [#LT] = [0] [findMin#1](x1) = [0] [#cklt](x1) = [1] x1 + [0] [#pos](x1) = [1] x1 + [0] [#0] = [0] [findMin](x1) = [0] [#neg](x1) = [1] x1 + [0] [#EQ] = [1] [#less](x1, x2) = [0] [minSort](x1) = [1] x1 + [0] [#compare](x1, x2) = [4] [#s](x1) = [1] x1 + [0] [#GT] = [1] [nil] = [0] [findMin#2](x1, x2) = [1] x1 + [0] The order satisfies the following ordering constraints: [minSort#1(::(@x, @xs))] = [1] @xs + [0] >= [1] @xs + [0] = [::(@x, minSort(@xs))] [minSort#1(nil())] = [0] >= [0] = [nil()] [findMin#3(#true(), @x, @y, @ys)] = [1] @ys + [0] >= [1] @ys + [0] = [::(@x, ::(@y, @ys))] [findMin#3(#false(), @x, @y, @ys)] = [1] @ys + [1] > [1] @ys + [0] = [::(@y, ::(@x, @ys))] [findMin#1(::(@x, @xs))] = [0] >= [0] = [findMin#2(findMin(@xs), @x)] [findMin#1(nil())] = [0] >= [0] = [nil()] [#cklt(#LT())] = [0] >= [0] = [#true()] [#cklt(#EQ())] = [1] >= [1] = [#false()] [#cklt(#GT())] = [1] >= [1] = [#false()] [findMin(@l)] = [0] >= [0] = [findMin#1(@l)] [#less(@x, @y)] = [0] ? [4] = [#cklt(#compare(@x, @y))] [minSort(@l)] = [1] @l + [0] >= [0] = [minSort#1(findMin(@l))] [#compare(#pos(@x), #pos(@y))] = [4] >= [4] = [#compare(@x, @y)] [#compare(#pos(@x), #0())] = [4] > [1] = [#GT()] [#compare(#pos(@x), #neg(@y))] = [4] > [1] = [#GT()] [#compare(#0(), #pos(@y))] = [4] > [0] = [#LT()] [#compare(#0(), #0())] = [4] > [1] = [#EQ()] [#compare(#0(), #neg(@y))] = [4] > [1] = [#GT()] [#compare(#0(), #s(@y))] = [4] > [0] = [#LT()] [#compare(#neg(@x), #pos(@y))] = [4] > [0] = [#LT()] [#compare(#neg(@x), #0())] = [4] > [0] = [#LT()] [#compare(#neg(@x), #neg(@y))] = [4] >= [4] = [#compare(@y, @x)] [#compare(#s(@x), #0())] = [4] > [1] = [#GT()] [#compare(#s(@x), #s(@y))] = [4] >= [4] = [#compare(@x, @y)] [findMin#2(::(@y, @ys), @x)] = [1] @ys + [0] >= [1] @ys + [0] = [findMin#3(#less(@x, @y), @x, @y, @ys)] [findMin#2(nil(), @x)] = [0] >= [0] = [::(@x, nil())] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { minSort#1(::(@x, @xs)) -> ::(@x, minSort(@xs)) , minSort#1(nil()) -> nil() , findMin#1(::(@x, @xs)) -> findMin#2(findMin(@xs), @x) , findMin#1(nil()) -> nil() , findMin(@l) -> findMin#1(@l) , #less(@x, @y) -> #cklt(#compare(@x, @y)) , minSort(@l) -> minSort#1(findMin(@l)) , findMin#2(::(@y, @ys), @x) -> findMin#3(#less(@x, @y), @x, @y, @ys) , findMin#2(nil(), @x) -> ::(@x, nil()) } Weak Trs: { findMin#3(#true(), @x, @y, @ys) -> ::(@x, ::(@y, @ys)) , findMin#3(#false(), @x, @y, @ys) -> ::(@y, ::(@x, @ys)) , #cklt(#LT()) -> #true() , #cklt(#EQ()) -> #false() , #cklt(#GT()) -> #false() , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(minSort#1) = {1}, Uargs(findMin#3) = {1}, Uargs(::) = {2}, Uargs(#cklt) = {1}, Uargs(findMin#2) = {1} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [minSort#1](x1) = [1] x1 + [0] [#true] = [0] [#false] = [0] [findMin#3](x1, x2, x3, x4) = [1] x1 + [1] x4 + [0] [::](x1, x2) = [1] x2 + [0] [#LT] = [0] [findMin#1](x1) = [1] x1 + [0] [#cklt](x1) = [1] x1 + [0] [#pos](x1) = [1] x1 + [0] [#0] = [0] [findMin](x1) = [1] x1 + [4] [#neg](x1) = [1] x1 + [0] [#EQ] = [0] [#less](x1, x2) = [0] [minSort](x1) = [1] x1 + [0] [#compare](x1, x2) = [4] [#s](x1) = [1] x1 + [0] [#GT] = [0] [nil] = [1] [findMin#2](x1, x2) = [1] x1 + [0] The order satisfies the following ordering constraints: [minSort#1(::(@x, @xs))] = [1] @xs + [0] >= [1] @xs + [0] = [::(@x, minSort(@xs))] [minSort#1(nil())] = [1] >= [1] = [nil()] [findMin#3(#true(), @x, @y, @ys)] = [1] @ys + [0] >= [1] @ys + [0] = [::(@x, ::(@y, @ys))] [findMin#3(#false(), @x, @y, @ys)] = [1] @ys + [0] >= [1] @ys + [0] = [::(@y, ::(@x, @ys))] [findMin#1(::(@x, @xs))] = [1] @xs + [0] ? [1] @xs + [4] = [findMin#2(findMin(@xs), @x)] [findMin#1(nil())] = [1] >= [1] = [nil()] [#cklt(#LT())] = [0] >= [0] = [#true()] [#cklt(#EQ())] = [0] >= [0] = [#false()] [#cklt(#GT())] = [0] >= [0] = [#false()] [findMin(@l)] = [1] @l + [4] > [1] @l + [0] = [findMin#1(@l)] [#less(@x, @y)] = [0] ? [4] = [#cklt(#compare(@x, @y))] [minSort(@l)] = [1] @l + [0] ? [1] @l + [4] = [minSort#1(findMin(@l))] [#compare(#pos(@x), #pos(@y))] = [4] >= [4] = [#compare(@x, @y)] [#compare(#pos(@x), #0())] = [4] > [0] = [#GT()] [#compare(#pos(@x), #neg(@y))] = [4] > [0] = [#GT()] [#compare(#0(), #pos(@y))] = [4] > [0] = [#LT()] [#compare(#0(), #0())] = [4] > [0] = [#EQ()] [#compare(#0(), #neg(@y))] = [4] > [0] = [#GT()] [#compare(#0(), #s(@y))] = [4] > [0] = [#LT()] [#compare(#neg(@x), #pos(@y))] = [4] > [0] = [#LT()] [#compare(#neg(@x), #0())] = [4] > [0] = [#LT()] [#compare(#neg(@x), #neg(@y))] = [4] >= [4] = [#compare(@y, @x)] [#compare(#s(@x), #0())] = [4] > [0] = [#GT()] [#compare(#s(@x), #s(@y))] = [4] >= [4] = [#compare(@x, @y)] [findMin#2(::(@y, @ys), @x)] = [1] @ys + [0] >= [1] @ys + [0] = [findMin#3(#less(@x, @y), @x, @y, @ys)] [findMin#2(nil(), @x)] = [1] >= [1] = [::(@x, nil())] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { minSort#1(::(@x, @xs)) -> ::(@x, minSort(@xs)) , minSort#1(nil()) -> nil() , findMin#1(::(@x, @xs)) -> findMin#2(findMin(@xs), @x) , findMin#1(nil()) -> nil() , #less(@x, @y) -> #cklt(#compare(@x, @y)) , minSort(@l) -> minSort#1(findMin(@l)) , findMin#2(::(@y, @ys), @x) -> findMin#3(#less(@x, @y), @x, @y, @ys) , findMin#2(nil(), @x) -> ::(@x, nil()) } Weak Trs: { findMin#3(#true(), @x, @y, @ys) -> ::(@x, ::(@y, @ys)) , findMin#3(#false(), @x, @y, @ys) -> ::(@y, ::(@x, @ys)) , #cklt(#LT()) -> #true() , #cklt(#EQ()) -> #false() , #cklt(#GT()) -> #false() , findMin(@l) -> findMin#1(@l) , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(minSort#1) = {1}, Uargs(findMin#3) = {1}, Uargs(::) = {2}, Uargs(#cklt) = {1}, Uargs(findMin#2) = {1} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [minSort#1](x1) = [1] x1 + [0] [#true] = [0] [#false] = [0] [findMin#3](x1, x2, x3, x4) = [1] x1 + [1] x4 + [0] [::](x1, x2) = [1] x2 + [0] [#LT] = [0] [findMin#1](x1) = [1] x1 + [0] [#cklt](x1) = [1] x1 + [0] [#pos](x1) = [1] x1 + [0] [#0] = [0] [findMin](x1) = [1] x1 + [0] [#neg](x1) = [1] x1 + [0] [#EQ] = [0] [#less](x1, x2) = [0] [minSort](x1) = [1] x1 + [1] [#compare](x1, x2) = [4] [#s](x1) = [1] x1 + [0] [#GT] = [0] [nil] = [1] [findMin#2](x1, x2) = [1] x1 + [0] The order satisfies the following ordering constraints: [minSort#1(::(@x, @xs))] = [1] @xs + [0] ? [1] @xs + [1] = [::(@x, minSort(@xs))] [minSort#1(nil())] = [1] >= [1] = [nil()] [findMin#3(#true(), @x, @y, @ys)] = [1] @ys + [0] >= [1] @ys + [0] = [::(@x, ::(@y, @ys))] [findMin#3(#false(), @x, @y, @ys)] = [1] @ys + [0] >= [1] @ys + [0] = [::(@y, ::(@x, @ys))] [findMin#1(::(@x, @xs))] = [1] @xs + [0] >= [1] @xs + [0] = [findMin#2(findMin(@xs), @x)] [findMin#1(nil())] = [1] >= [1] = [nil()] [#cklt(#LT())] = [0] >= [0] = [#true()] [#cklt(#EQ())] = [0] >= [0] = [#false()] [#cklt(#GT())] = [0] >= [0] = [#false()] [findMin(@l)] = [1] @l + [0] >= [1] @l + [0] = [findMin#1(@l)] [#less(@x, @y)] = [0] ? [4] = [#cklt(#compare(@x, @y))] [minSort(@l)] = [1] @l + [1] > [1] @l + [0] = [minSort#1(findMin(@l))] [#compare(#pos(@x), #pos(@y))] = [4] >= [4] = [#compare(@x, @y)] [#compare(#pos(@x), #0())] = [4] > [0] = [#GT()] [#compare(#pos(@x), #neg(@y))] = [4] > [0] = [#GT()] [#compare(#0(), #pos(@y))] = [4] > [0] = [#LT()] [#compare(#0(), #0())] = [4] > [0] = [#EQ()] [#compare(#0(), #neg(@y))] = [4] > [0] = [#GT()] [#compare(#0(), #s(@y))] = [4] > [0] = [#LT()] [#compare(#neg(@x), #pos(@y))] = [4] > [0] = [#LT()] [#compare(#neg(@x), #0())] = [4] > [0] = [#LT()] [#compare(#neg(@x), #neg(@y))] = [4] >= [4] = [#compare(@y, @x)] [#compare(#s(@x), #0())] = [4] > [0] = [#GT()] [#compare(#s(@x), #s(@y))] = [4] >= [4] = [#compare(@x, @y)] [findMin#2(::(@y, @ys), @x)] = [1] @ys + [0] >= [1] @ys + [0] = [findMin#3(#less(@x, @y), @x, @y, @ys)] [findMin#2(nil(), @x)] = [1] >= [1] = [::(@x, nil())] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { minSort#1(::(@x, @xs)) -> ::(@x, minSort(@xs)) , minSort#1(nil()) -> nil() , findMin#1(::(@x, @xs)) -> findMin#2(findMin(@xs), @x) , findMin#1(nil()) -> nil() , #less(@x, @y) -> #cklt(#compare(@x, @y)) , findMin#2(::(@y, @ys), @x) -> findMin#3(#less(@x, @y), @x, @y, @ys) , findMin#2(nil(), @x) -> ::(@x, nil()) } Weak Trs: { findMin#3(#true(), @x, @y, @ys) -> ::(@x, ::(@y, @ys)) , findMin#3(#false(), @x, @y, @ys) -> ::(@y, ::(@x, @ys)) , #cklt(#LT()) -> #true() , #cklt(#EQ()) -> #false() , #cklt(#GT()) -> #false() , findMin(@l) -> findMin#1(@l) , minSort(@l) -> minSort#1(findMin(@l)) , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(minSort#1) = {1}, Uargs(findMin#3) = {1}, Uargs(::) = {2}, Uargs(#cklt) = {1}, Uargs(findMin#2) = {1} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [minSort#1](x1) = [1] x1 + [0] [#true] = [0] [#false] = [0] [findMin#3](x1, x2, x3, x4) = [1] x1 + [1] x4 + [0] [::](x1, x2) = [1] x2 + [0] [#LT] = [0] [findMin#1](x1) = [1] x1 + [0] [#cklt](x1) = [1] x1 + [0] [#pos](x1) = [1] x1 + [0] [#0] = [0] [findMin](x1) = [1] x1 + [0] [#neg](x1) = [1] x1 + [0] [#EQ] = [0] [#less](x1, x2) = [5] [minSort](x1) = [1] x1 + [4] [#compare](x1, x2) = [4] [#s](x1) = [1] x1 + [0] [#GT] = [0] [nil] = [1] [findMin#2](x1, x2) = [1] x1 + [0] The order satisfies the following ordering constraints: [minSort#1(::(@x, @xs))] = [1] @xs + [0] ? [1] @xs + [4] = [::(@x, minSort(@xs))] [minSort#1(nil())] = [1] >= [1] = [nil()] [findMin#3(#true(), @x, @y, @ys)] = [1] @ys + [0] >= [1] @ys + [0] = [::(@x, ::(@y, @ys))] [findMin#3(#false(), @x, @y, @ys)] = [1] @ys + [0] >= [1] @ys + [0] = [::(@y, ::(@x, @ys))] [findMin#1(::(@x, @xs))] = [1] @xs + [0] >= [1] @xs + [0] = [findMin#2(findMin(@xs), @x)] [findMin#1(nil())] = [1] >= [1] = [nil()] [#cklt(#LT())] = [0] >= [0] = [#true()] [#cklt(#EQ())] = [0] >= [0] = [#false()] [#cklt(#GT())] = [0] >= [0] = [#false()] [findMin(@l)] = [1] @l + [0] >= [1] @l + [0] = [findMin#1(@l)] [#less(@x, @y)] = [5] > [4] = [#cklt(#compare(@x, @y))] [minSort(@l)] = [1] @l + [4] > [1] @l + [0] = [minSort#1(findMin(@l))] [#compare(#pos(@x), #pos(@y))] = [4] >= [4] = [#compare(@x, @y)] [#compare(#pos(@x), #0())] = [4] > [0] = [#GT()] [#compare(#pos(@x), #neg(@y))] = [4] > [0] = [#GT()] [#compare(#0(), #pos(@y))] = [4] > [0] = [#LT()] [#compare(#0(), #0())] = [4] > [0] = [#EQ()] [#compare(#0(), #neg(@y))] = [4] > [0] = [#GT()] [#compare(#0(), #s(@y))] = [4] > [0] = [#LT()] [#compare(#neg(@x), #pos(@y))] = [4] > [0] = [#LT()] [#compare(#neg(@x), #0())] = [4] > [0] = [#LT()] [#compare(#neg(@x), #neg(@y))] = [4] >= [4] = [#compare(@y, @x)] [#compare(#s(@x), #0())] = [4] > [0] = [#GT()] [#compare(#s(@x), #s(@y))] = [4] >= [4] = [#compare(@x, @y)] [findMin#2(::(@y, @ys), @x)] = [1] @ys + [0] ? [1] @ys + [5] = [findMin#3(#less(@x, @y), @x, @y, @ys)] [findMin#2(nil(), @x)] = [1] >= [1] = [::(@x, nil())] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { minSort#1(::(@x, @xs)) -> ::(@x, minSort(@xs)) , minSort#1(nil()) -> nil() , findMin#1(::(@x, @xs)) -> findMin#2(findMin(@xs), @x) , findMin#1(nil()) -> nil() , findMin#2(::(@y, @ys), @x) -> findMin#3(#less(@x, @y), @x, @y, @ys) , findMin#2(nil(), @x) -> ::(@x, nil()) } Weak Trs: { findMin#3(#true(), @x, @y, @ys) -> ::(@x, ::(@y, @ys)) , findMin#3(#false(), @x, @y, @ys) -> ::(@y, ::(@x, @ys)) , #cklt(#LT()) -> #true() , #cklt(#EQ()) -> #false() , #cklt(#GT()) -> #false() , findMin(@l) -> findMin#1(@l) , #less(@x, @y) -> #cklt(#compare(@x, @y)) , minSort(@l) -> minSort#1(findMin(@l)) , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(minSort#1) = {1}, Uargs(findMin#3) = {1}, Uargs(::) = {2}, Uargs(#cklt) = {1}, Uargs(findMin#2) = {1} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [minSort#1](x1) = [1] x1 + [0] [#true] = [0] [#false] = [0] [findMin#3](x1, x2, x3, x4) = [1] x1 + [1] x4 + [0] [::](x1, x2) = [1] x2 + [0] [#LT] = [0] [findMin#1](x1) = [1] [#cklt](x1) = [1] x1 + [0] [#pos](x1) = [1] x1 + [0] [#0] = [0] [findMin](x1) = [1] [#neg](x1) = [1] x1 + [0] [#EQ] = [0] [#less](x1, x2) = [4] [minSort](x1) = [1] x1 + [1] [#compare](x1, x2) = [4] [#s](x1) = [1] x1 + [0] [#GT] = [0] [nil] = [0] [findMin#2](x1, x2) = [1] x1 + [0] The order satisfies the following ordering constraints: [minSort#1(::(@x, @xs))] = [1] @xs + [0] ? [1] @xs + [1] = [::(@x, minSort(@xs))] [minSort#1(nil())] = [0] >= [0] = [nil()] [findMin#3(#true(), @x, @y, @ys)] = [1] @ys + [0] >= [1] @ys + [0] = [::(@x, ::(@y, @ys))] [findMin#3(#false(), @x, @y, @ys)] = [1] @ys + [0] >= [1] @ys + [0] = [::(@y, ::(@x, @ys))] [findMin#1(::(@x, @xs))] = [1] >= [1] = [findMin#2(findMin(@xs), @x)] [findMin#1(nil())] = [1] > [0] = [nil()] [#cklt(#LT())] = [0] >= [0] = [#true()] [#cklt(#EQ())] = [0] >= [0] = [#false()] [#cklt(#GT())] = [0] >= [0] = [#false()] [findMin(@l)] = [1] >= [1] = [findMin#1(@l)] [#less(@x, @y)] = [4] >= [4] = [#cklt(#compare(@x, @y))] [minSort(@l)] = [1] @l + [1] >= [1] = [minSort#1(findMin(@l))] [#compare(#pos(@x), #pos(@y))] = [4] >= [4] = [#compare(@x, @y)] [#compare(#pos(@x), #0())] = [4] > [0] = [#GT()] [#compare(#pos(@x), #neg(@y))] = [4] > [0] = [#GT()] [#compare(#0(), #pos(@y))] = [4] > [0] = [#LT()] [#compare(#0(), #0())] = [4] > [0] = [#EQ()] [#compare(#0(), #neg(@y))] = [4] > [0] = [#GT()] [#compare(#0(), #s(@y))] = [4] > [0] = [#LT()] [#compare(#neg(@x), #pos(@y))] = [4] > [0] = [#LT()] [#compare(#neg(@x), #0())] = [4] > [0] = [#LT()] [#compare(#neg(@x), #neg(@y))] = [4] >= [4] = [#compare(@y, @x)] [#compare(#s(@x), #0())] = [4] > [0] = [#GT()] [#compare(#s(@x), #s(@y))] = [4] >= [4] = [#compare(@x, @y)] [findMin#2(::(@y, @ys), @x)] = [1] @ys + [0] ? [1] @ys + [4] = [findMin#3(#less(@x, @y), @x, @y, @ys)] [findMin#2(nil(), @x)] = [0] >= [0] = [::(@x, nil())] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { minSort#1(::(@x, @xs)) -> ::(@x, minSort(@xs)) , minSort#1(nil()) -> nil() , findMin#1(::(@x, @xs)) -> findMin#2(findMin(@xs), @x) , findMin#2(::(@y, @ys), @x) -> findMin#3(#less(@x, @y), @x, @y, @ys) , findMin#2(nil(), @x) -> ::(@x, nil()) } Weak Trs: { findMin#3(#true(), @x, @y, @ys) -> ::(@x, ::(@y, @ys)) , findMin#3(#false(), @x, @y, @ys) -> ::(@y, ::(@x, @ys)) , findMin#1(nil()) -> nil() , #cklt(#LT()) -> #true() , #cklt(#EQ()) -> #false() , #cklt(#GT()) -> #false() , findMin(@l) -> findMin#1(@l) , #less(@x, @y) -> #cklt(#compare(@x, @y)) , minSort(@l) -> minSort#1(findMin(@l)) , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(minSort#1) = {1}, Uargs(findMin#3) = {1}, Uargs(::) = {2}, Uargs(#cklt) = {1}, Uargs(findMin#2) = {1} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [minSort#1](x1) = [1] x1 + [1] [#true] = [0] [#false] = [0] [findMin#3](x1, x2, x3, x4) = [1] x1 + [1] x4 + [0] [::](x1, x2) = [1] x2 + [0] [#LT] = [0] [findMin#1](x1) = [1] [#cklt](x1) = [1] x1 + [0] [#pos](x1) = [1] x1 + [0] [#0] = [0] [findMin](x1) = [1] [#neg](x1) = [1] x1 + [0] [#EQ] = [0] [#less](x1, x2) = [4] [minSort](x1) = [1] x1 + [4] [#compare](x1, x2) = [4] [#s](x1) = [1] x1 + [0] [#GT] = [0] [nil] = [0] [findMin#2](x1, x2) = [1] x1 + [0] The order satisfies the following ordering constraints: [minSort#1(::(@x, @xs))] = [1] @xs + [1] ? [1] @xs + [4] = [::(@x, minSort(@xs))] [minSort#1(nil())] = [1] > [0] = [nil()] [findMin#3(#true(), @x, @y, @ys)] = [1] @ys + [0] >= [1] @ys + [0] = [::(@x, ::(@y, @ys))] [findMin#3(#false(), @x, @y, @ys)] = [1] @ys + [0] >= [1] @ys + [0] = [::(@y, ::(@x, @ys))] [findMin#1(::(@x, @xs))] = [1] >= [1] = [findMin#2(findMin(@xs), @x)] [findMin#1(nil())] = [1] > [0] = [nil()] [#cklt(#LT())] = [0] >= [0] = [#true()] [#cklt(#EQ())] = [0] >= [0] = [#false()] [#cklt(#GT())] = [0] >= [0] = [#false()] [findMin(@l)] = [1] >= [1] = [findMin#1(@l)] [#less(@x, @y)] = [4] >= [4] = [#cklt(#compare(@x, @y))] [minSort(@l)] = [1] @l + [4] > [2] = [minSort#1(findMin(@l))] [#compare(#pos(@x), #pos(@y))] = [4] >= [4] = [#compare(@x, @y)] [#compare(#pos(@x), #0())] = [4] > [0] = [#GT()] [#compare(#pos(@x), #neg(@y))] = [4] > [0] = [#GT()] [#compare(#0(), #pos(@y))] = [4] > [0] = [#LT()] [#compare(#0(), #0())] = [4] > [0] = [#EQ()] [#compare(#0(), #neg(@y))] = [4] > [0] = [#GT()] [#compare(#0(), #s(@y))] = [4] > [0] = [#LT()] [#compare(#neg(@x), #pos(@y))] = [4] > [0] = [#LT()] [#compare(#neg(@x), #0())] = [4] > [0] = [#LT()] [#compare(#neg(@x), #neg(@y))] = [4] >= [4] = [#compare(@y, @x)] [#compare(#s(@x), #0())] = [4] > [0] = [#GT()] [#compare(#s(@x), #s(@y))] = [4] >= [4] = [#compare(@x, @y)] [findMin#2(::(@y, @ys), @x)] = [1] @ys + [0] ? [1] @ys + [4] = [findMin#3(#less(@x, @y), @x, @y, @ys)] [findMin#2(nil(), @x)] = [0] >= [0] = [::(@x, nil())] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { minSort#1(::(@x, @xs)) -> ::(@x, minSort(@xs)) , findMin#1(::(@x, @xs)) -> findMin#2(findMin(@xs), @x) , findMin#2(::(@y, @ys), @x) -> findMin#3(#less(@x, @y), @x, @y, @ys) , findMin#2(nil(), @x) -> ::(@x, nil()) } Weak Trs: { minSort#1(nil()) -> nil() , findMin#3(#true(), @x, @y, @ys) -> ::(@x, ::(@y, @ys)) , findMin#3(#false(), @x, @y, @ys) -> ::(@y, ::(@x, @ys)) , findMin#1(nil()) -> nil() , #cklt(#LT()) -> #true() , #cklt(#EQ()) -> #false() , #cklt(#GT()) -> #false() , findMin(@l) -> findMin#1(@l) , #less(@x, @y) -> #cklt(#compare(@x, @y)) , minSort(@l) -> minSort#1(findMin(@l)) , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(minSort#1) = {1}, Uargs(findMin#3) = {1}, Uargs(::) = {2}, Uargs(#cklt) = {1}, Uargs(findMin#2) = {1} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [minSort#1](x1) = [1] x1 + [0] [#true] = [2] [#false] = [2] [findMin#3](x1, x2, x3, x4) = [1] x1 + [1] x4 + [4] [::](x1, x2) = [1] x2 + [1] [#LT] = [1] [findMin#1](x1) = [1] x1 + [0] [#cklt](x1) = [1] x1 + [2] [#pos](x1) = [1] x1 + [0] [#0] = [0] [findMin](x1) = [1] x1 + [0] [#neg](x1) = [1] x1 + [0] [#EQ] = [0] [#less](x1, x2) = [4] [minSort](x1) = [1] x1 + [7] [#compare](x1, x2) = [1] [#s](x1) = [1] x1 + [0] [#GT] = [0] [nil] = [1] [findMin#2](x1, x2) = [1] x1 + [0] The order satisfies the following ordering constraints: [minSort#1(::(@x, @xs))] = [1] @xs + [1] ? [1] @xs + [8] = [::(@x, minSort(@xs))] [minSort#1(nil())] = [1] >= [1] = [nil()] [findMin#3(#true(), @x, @y, @ys)] = [1] @ys + [6] > [1] @ys + [2] = [::(@x, ::(@y, @ys))] [findMin#3(#false(), @x, @y, @ys)] = [1] @ys + [6] > [1] @ys + [2] = [::(@y, ::(@x, @ys))] [findMin#1(::(@x, @xs))] = [1] @xs + [1] > [1] @xs + [0] = [findMin#2(findMin(@xs), @x)] [findMin#1(nil())] = [1] >= [1] = [nil()] [#cklt(#LT())] = [3] > [2] = [#true()] [#cklt(#EQ())] = [2] >= [2] = [#false()] [#cklt(#GT())] = [2] >= [2] = [#false()] [findMin(@l)] = [1] @l + [0] >= [1] @l + [0] = [findMin#1(@l)] [#less(@x, @y)] = [4] > [3] = [#cklt(#compare(@x, @y))] [minSort(@l)] = [1] @l + [7] > [1] @l + [0] = [minSort#1(findMin(@l))] [#compare(#pos(@x), #pos(@y))] = [1] >= [1] = [#compare(@x, @y)] [#compare(#pos(@x), #0())] = [1] > [0] = [#GT()] [#compare(#pos(@x), #neg(@y))] = [1] > [0] = [#GT()] [#compare(#0(), #pos(@y))] = [1] >= [1] = [#LT()] [#compare(#0(), #0())] = [1] > [0] = [#EQ()] [#compare(#0(), #neg(@y))] = [1] > [0] = [#GT()] [#compare(#0(), #s(@y))] = [1] >= [1] = [#LT()] [#compare(#neg(@x), #pos(@y))] = [1] >= [1] = [#LT()] [#compare(#neg(@x), #0())] = [1] >= [1] = [#LT()] [#compare(#neg(@x), #neg(@y))] = [1] >= [1] = [#compare(@y, @x)] [#compare(#s(@x), #0())] = [1] > [0] = [#GT()] [#compare(#s(@x), #s(@y))] = [1] >= [1] = [#compare(@x, @y)] [findMin#2(::(@y, @ys), @x)] = [1] @ys + [1] ? [1] @ys + [8] = [findMin#3(#less(@x, @y), @x, @y, @ys)] [findMin#2(nil(), @x)] = [1] ? [2] = [::(@x, nil())] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { minSort#1(::(@x, @xs)) -> ::(@x, minSort(@xs)) , findMin#2(::(@y, @ys), @x) -> findMin#3(#less(@x, @y), @x, @y, @ys) , findMin#2(nil(), @x) -> ::(@x, nil()) } Weak Trs: { minSort#1(nil()) -> nil() , findMin#3(#true(), @x, @y, @ys) -> ::(@x, ::(@y, @ys)) , findMin#3(#false(), @x, @y, @ys) -> ::(@y, ::(@x, @ys)) , findMin#1(::(@x, @xs)) -> findMin#2(findMin(@xs), @x) , findMin#1(nil()) -> nil() , #cklt(#LT()) -> #true() , #cklt(#EQ()) -> #false() , #cklt(#GT()) -> #false() , findMin(@l) -> findMin#1(@l) , #less(@x, @y) -> #cklt(#compare(@x, @y)) , minSort(@l) -> minSort#1(findMin(@l)) , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. Trs: { minSort#1(::(@x, @xs)) -> ::(@x, minSort(@xs)) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^1)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- The following argument positions are usable: Uargs(minSort#1) = {1}, Uargs(findMin#3) = {1}, Uargs(::) = {2}, Uargs(#cklt) = {1}, Uargs(findMin#2) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [minSort#1](x1) = [2] x1 + [0] [#true] = [7] [#false] = [7] [findMin#3](x1, x2, x3, x4) = [1] x1 + [1] x4 + [7] [::](x1, x2) = [1] x2 + [7] [#LT] = [1] [findMin#1](x1) = [1] x1 + [0] [#cklt](x1) = [7] x1 + [0] [#pos](x1) = [1] x1 + [0] [#0] = [0] [findMin](x1) = [1] x1 + [0] [#neg](x1) = [1] x1 + [0] [#EQ] = [1] [#less](x1, x2) = [7] [minSort](x1) = [2] x1 + [4] [#compare](x1, x2) = [1] [#s](x1) = [1] x1 + [0] [#GT] = [1] [nil] = [0] [findMin#2](x1, x2) = [1] x1 + [7] The order satisfies the following ordering constraints: [minSort#1(::(@x, @xs))] = [2] @xs + [14] > [2] @xs + [11] = [::(@x, minSort(@xs))] [minSort#1(nil())] = [0] >= [0] = [nil()] [findMin#3(#true(), @x, @y, @ys)] = [1] @ys + [14] >= [1] @ys + [14] = [::(@x, ::(@y, @ys))] [findMin#3(#false(), @x, @y, @ys)] = [1] @ys + [14] >= [1] @ys + [14] = [::(@y, ::(@x, @ys))] [findMin#1(::(@x, @xs))] = [1] @xs + [7] >= [1] @xs + [7] = [findMin#2(findMin(@xs), @x)] [findMin#1(nil())] = [0] >= [0] = [nil()] [#cklt(#LT())] = [7] >= [7] = [#true()] [#cklt(#EQ())] = [7] >= [7] = [#false()] [#cklt(#GT())] = [7] >= [7] = [#false()] [findMin(@l)] = [1] @l + [0] >= [1] @l + [0] = [findMin#1(@l)] [#less(@x, @y)] = [7] >= [7] = [#cklt(#compare(@x, @y))] [minSort(@l)] = [2] @l + [4] > [2] @l + [0] = [minSort#1(findMin(@l))] [#compare(#pos(@x), #pos(@y))] = [1] >= [1] = [#compare(@x, @y)] [#compare(#pos(@x), #0())] = [1] >= [1] = [#GT()] [#compare(#pos(@x), #neg(@y))] = [1] >= [1] = [#GT()] [#compare(#0(), #pos(@y))] = [1] >= [1] = [#LT()] [#compare(#0(), #0())] = [1] >= [1] = [#EQ()] [#compare(#0(), #neg(@y))] = [1] >= [1] = [#GT()] [#compare(#0(), #s(@y))] = [1] >= [1] = [#LT()] [#compare(#neg(@x), #pos(@y))] = [1] >= [1] = [#LT()] [#compare(#neg(@x), #0())] = [1] >= [1] = [#LT()] [#compare(#neg(@x), #neg(@y))] = [1] >= [1] = [#compare(@y, @x)] [#compare(#s(@x), #0())] = [1] >= [1] = [#GT()] [#compare(#s(@x), #s(@y))] = [1] >= [1] = [#compare(@x, @y)] [findMin#2(::(@y, @ys), @x)] = [1] @ys + [14] >= [1] @ys + [14] = [findMin#3(#less(@x, @y), @x, @y, @ys)] [findMin#2(nil(), @x)] = [7] >= [7] = [::(@x, nil())] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { findMin#2(::(@y, @ys), @x) -> findMin#3(#less(@x, @y), @x, @y, @ys) , findMin#2(nil(), @x) -> ::(@x, nil()) } Weak Trs: { minSort#1(::(@x, @xs)) -> ::(@x, minSort(@xs)) , minSort#1(nil()) -> nil() , findMin#3(#true(), @x, @y, @ys) -> ::(@x, ::(@y, @ys)) , findMin#3(#false(), @x, @y, @ys) -> ::(@y, ::(@x, @ys)) , findMin#1(::(@x, @xs)) -> findMin#2(findMin(@xs), @x) , findMin#1(nil()) -> nil() , #cklt(#LT()) -> #true() , #cklt(#EQ()) -> #false() , #cklt(#GT()) -> #false() , findMin(@l) -> findMin#1(@l) , #less(@x, @y) -> #cklt(#compare(@x, @y)) , minSort(@l) -> minSort#1(findMin(@l)) , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. Trs: { findMin#2(nil(), @x) -> ::(@x, nil()) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^1)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- The following argument positions are usable: Uargs(minSort#1) = {1}, Uargs(findMin#3) = {1}, Uargs(::) = {2}, Uargs(#cklt) = {1}, Uargs(findMin#2) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA) and not(IDA(1)). [minSort#1](x1) = [3 1] x1 + [3] [0 1] [0] [#true] = [2] [0] [#false] = [2] [2] [findMin#3](x1, x2, x3, x4) = [4 0] x1 + [0 2] x2 + [0 2] x3 + [1 4] x4 + [6] [0 0] [0 0] [0 0] [0 0] [3] [::](x1, x2) = [0 2] x1 + [1 4] x2 + [1] [0 0] [0 0] [3] [#LT] = [0] [0] [findMin#1](x1) = [1 2] x1 + [1] [0 1] [0] [#cklt](x1) = [2 0] x1 + [2] [0 1] [0] [#pos](x1) = [1 0] x1 + [0] [0 1] [0] [#0] = [0] [5] [findMin](x1) = [1 2] x1 + [1] [0 1] [0] [#neg](x1) = [1 1] x1 + [0] [0 0] [4] [#EQ] = [0] [4] [#less](x1, x2) = [0 0] x1 + [0 0] x2 + [2] [4 0] [4 1] [0] [minSort](x1) = [3 7] x1 + [7] [0 1] [0] [#compare](x1, x2) = [0 0] x1 + [0 0] x2 + [0] [4 0] [4 1] [0] [#s](x1) = [1 0] x1 + [0] [0 1] [0] [#GT] = [0] [4] [nil] = [0] [0] [findMin#2](x1, x2) = [1 2] x1 + [0 2] x2 + [7] [0 0] [0 0] [3] The order satisfies the following ordering constraints: [minSort#1(::(@x, @xs))] = [0 6] @x + [3 12] @xs + [9] [0 0] [0 0] [3] > [0 2] @x + [3 11] @xs + [8] [0 0] [0 0] [3] = [::(@x, minSort(@xs))] [minSort#1(nil())] = [3] [0] > [0] [0] = [nil()] [findMin#3(#true(), @x, @y, @ys)] = [0 2] @x + [0 2] @y + [1 4] @ys + [14] [0 0] [0 0] [0 0] [3] >= [0 2] @x + [0 2] @y + [1 4] @ys + [14] [0 0] [0 0] [0 0] [3] = [::(@x, ::(@y, @ys))] [findMin#3(#false(), @x, @y, @ys)] = [0 2] @x + [0 2] @y + [1 4] @ys + [14] [0 0] [0 0] [0 0] [3] >= [0 2] @x + [0 2] @y + [1 4] @ys + [14] [0 0] [0 0] [0 0] [3] = [::(@y, ::(@x, @ys))] [findMin#1(::(@x, @xs))] = [0 2] @x + [1 4] @xs + [8] [0 0] [0 0] [3] >= [0 2] @x + [1 4] @xs + [8] [0 0] [0 0] [3] = [findMin#2(findMin(@xs), @x)] [findMin#1(nil())] = [1] [0] > [0] [0] = [nil()] [#cklt(#LT())] = [2] [0] >= [2] [0] = [#true()] [#cklt(#EQ())] = [2] [4] >= [2] [2] = [#false()] [#cklt(#GT())] = [2] [4] >= [2] [2] = [#false()] [findMin(@l)] = [1 2] @l + [1] [0 1] [0] >= [1 2] @l + [1] [0 1] [0] = [findMin#1(@l)] [#less(@x, @y)] = [0 0] @x + [0 0] @y + [2] [4 0] [4 1] [0] >= [0 0] @x + [0 0] @y + [2] [4 0] [4 1] [0] = [#cklt(#compare(@x, @y))] [minSort(@l)] = [3 7] @l + [7] [0 1] [0] > [3 7] @l + [6] [0 1] [0] = [minSort#1(findMin(@l))] [#compare(#pos(@x), #pos(@y))] = [0 0] @x + [0 0] @y + [0] [4 0] [4 1] [0] >= [0 0] @x + [0 0] @y + [0] [4 0] [4 1] [0] = [#compare(@x, @y)] [#compare(#pos(@x), #0())] = [0 0] @x + [0] [4 0] [5] >= [0] [4] = [#GT()] [#compare(#pos(@x), #neg(@y))] = [0 0] @x + [0 0] @y + [0] [4 0] [4 4] [4] >= [0] [4] = [#GT()] [#compare(#0(), #pos(@y))] = [0 0] @y + [0] [4 1] [0] >= [0] [0] = [#LT()] [#compare(#0(), #0())] = [0] [5] >= [0] [4] = [#EQ()] [#compare(#0(), #neg(@y))] = [0 0] @y + [0] [4 4] [4] >= [0] [4] = [#GT()] [#compare(#0(), #s(@y))] = [0 0] @y + [0] [4 1] [0] >= [0] [0] = [#LT()] [#compare(#neg(@x), #pos(@y))] = [0 0] @x + [0 0] @y + [0] [4 4] [4 1] [0] >= [0] [0] = [#LT()] [#compare(#neg(@x), #0())] = [0 0] @x + [0] [4 4] [5] >= [0] [0] = [#LT()] [#compare(#neg(@x), #neg(@y))] = [0 0] @x + [0 0] @y + [0] [4 4] [4 4] [4] >= [0 0] @x + [0 0] @y + [0] [4 1] [4 0] [0] = [#compare(@y, @x)] [#compare(#s(@x), #0())] = [0 0] @x + [0] [4 0] [5] >= [0] [4] = [#GT()] [#compare(#s(@x), #s(@y))] = [0 0] @x + [0 0] @y + [0] [4 0] [4 1] [0] >= [0 0] @x + [0 0] @y + [0] [4 0] [4 1] [0] = [#compare(@x, @y)] [findMin#2(::(@y, @ys), @x)] = [0 2] @x + [0 2] @y + [1 4] @ys + [14] [0 0] [0 0] [0 0] [3] >= [0 2] @x + [0 2] @y + [1 4] @ys + [14] [0 0] [0 0] [0 0] [3] = [findMin#3(#less(@x, @y), @x, @y, @ys)] [findMin#2(nil(), @x)] = [0 2] @x + [7] [0 0] [3] > [0 2] @x + [1] [0 0] [3] = [::(@x, nil())] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { findMin#2(::(@y, @ys), @x) -> findMin#3(#less(@x, @y), @x, @y, @ys) } Weak Trs: { minSort#1(::(@x, @xs)) -> ::(@x, minSort(@xs)) , minSort#1(nil()) -> nil() , findMin#3(#true(), @x, @y, @ys) -> ::(@x, ::(@y, @ys)) , findMin#3(#false(), @x, @y, @ys) -> ::(@y, ::(@x, @ys)) , findMin#1(::(@x, @xs)) -> findMin#2(findMin(@xs), @x) , findMin#1(nil()) -> nil() , #cklt(#LT()) -> #true() , #cklt(#EQ()) -> #false() , #cklt(#GT()) -> #false() , findMin(@l) -> findMin#1(@l) , #less(@x, @y) -> #cklt(#compare(@x, @y)) , minSort(@l) -> minSort#1(findMin(@l)) , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , findMin#2(nil(), @x) -> ::(@x, nil()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. Trs: { findMin#2(::(@y, @ys), @x) -> findMin#3(#less(@x, @y), @x, @y, @ys) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^2)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- The following argument positions are usable: Uargs(minSort#1) = {1}, Uargs(findMin#3) = {1}, Uargs(::) = {2}, Uargs(#cklt) = {1}, Uargs(findMin#2) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [minSort#1](x1) = [4 0] x1 + [1] [0 2] [0] [#true] = [3] [0] [#false] = [3] [0] [findMin#3](x1, x2, x3, x4) = [1 1] x1 + [0 2] x2 + [0 2] x3 + [1 4] x4 + [7] [0 0] [0 0] [0 0] [0 1] [4] [::](x1, x2) = [0 2] x1 + [1 2] x2 + [3] [0 0] [0 1] [2] [#LT] = [1] [1] [findMin#1](x1) = [1 1] x1 + [1] [0 1] [0] [#cklt](x1) = [1 1] x1 + [1] [0 0] [0] [#pos](x1) = [1 0] x1 + [0] [0 1] [0] [#0] = [0] [0] [findMin](x1) = [1 1] x1 + [1] [0 1] [0] [#neg](x1) = [1 0] x1 + [0] [0 1] [0] [#EQ] = [1] [1] [#less](x1, x2) = [3] [0] [minSort](x1) = [4 4] x1 + [6] [0 2] [0] [#compare](x1, x2) = [1] [1] [#s](x1) = [1 0] x1 + [2] [0 1] [0] [#GT] = [1] [1] [nil] = [1] [0] [findMin#2](x1, x2) = [1 2] x1 + [0 2] x2 + [5] [0 1] [0 0] [2] The order satisfies the following ordering constraints: [minSort#1(::(@x, @xs))] = [0 8] @x + [4 8] @xs + [13] [0 0] [0 2] [4] > [0 2] @x + [4 8] @xs + [9] [0 0] [0 2] [2] = [::(@x, minSort(@xs))] [minSort#1(nil())] = [5] [0] > [1] [0] = [nil()] [findMin#3(#true(), @x, @y, @ys)] = [0 2] @x + [0 2] @y + [1 4] @ys + [10] [0 0] [0 0] [0 1] [4] >= [0 2] @x + [0 2] @y + [1 4] @ys + [10] [0 0] [0 0] [0 1] [4] = [::(@x, ::(@y, @ys))] [findMin#3(#false(), @x, @y, @ys)] = [0 2] @x + [0 2] @y + [1 4] @ys + [10] [0 0] [0 0] [0 1] [4] >= [0 2] @x + [0 2] @y + [1 4] @ys + [10] [0 0] [0 0] [0 1] [4] = [::(@y, ::(@x, @ys))] [findMin#1(::(@x, @xs))] = [0 2] @x + [1 3] @xs + [6] [0 0] [0 1] [2] >= [0 2] @x + [1 3] @xs + [6] [0 0] [0 1] [2] = [findMin#2(findMin(@xs), @x)] [findMin#1(nil())] = [2] [0] > [1] [0] = [nil()] [#cklt(#LT())] = [3] [0] >= [3] [0] = [#true()] [#cklt(#EQ())] = [3] [0] >= [3] [0] = [#false()] [#cklt(#GT())] = [3] [0] >= [3] [0] = [#false()] [findMin(@l)] = [1 1] @l + [1] [0 1] [0] >= [1 1] @l + [1] [0 1] [0] = [findMin#1(@l)] [#less(@x, @y)] = [3] [0] >= [3] [0] = [#cklt(#compare(@x, @y))] [minSort(@l)] = [4 4] @l + [6] [0 2] [0] > [4 4] @l + [5] [0 2] [0] = [minSort#1(findMin(@l))] [#compare(#pos(@x), #pos(@y))] = [1] [1] >= [1] [1] = [#compare(@x, @y)] [#compare(#pos(@x), #0())] = [1] [1] >= [1] [1] = [#GT()] [#compare(#pos(@x), #neg(@y))] = [1] [1] >= [1] [1] = [#GT()] [#compare(#0(), #pos(@y))] = [1] [1] >= [1] [1] = [#LT()] [#compare(#0(), #0())] = [1] [1] >= [1] [1] = [#EQ()] [#compare(#0(), #neg(@y))] = [1] [1] >= [1] [1] = [#GT()] [#compare(#0(), #s(@y))] = [1] [1] >= [1] [1] = [#LT()] [#compare(#neg(@x), #pos(@y))] = [1] [1] >= [1] [1] = [#LT()] [#compare(#neg(@x), #0())] = [1] [1] >= [1] [1] = [#LT()] [#compare(#neg(@x), #neg(@y))] = [1] [1] >= [1] [1] = [#compare(@y, @x)] [#compare(#s(@x), #0())] = [1] [1] >= [1] [1] = [#GT()] [#compare(#s(@x), #s(@y))] = [1] [1] >= [1] [1] = [#compare(@x, @y)] [findMin#2(::(@y, @ys), @x)] = [0 2] @x + [0 2] @y + [1 4] @ys + [12] [0 0] [0 0] [0 1] [4] > [0 2] @x + [0 2] @y + [1 4] @ys + [10] [0 0] [0 0] [0 1] [4] = [findMin#3(#less(@x, @y), @x, @y, @ys)] [findMin#2(nil(), @x)] = [0 2] @x + [6] [0 0] [2] > [0 2] @x + [4] [0 0] [2] = [::(@x, nil())] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { minSort#1(::(@x, @xs)) -> ::(@x, minSort(@xs)) , minSort#1(nil()) -> nil() , findMin#3(#true(), @x, @y, @ys) -> ::(@x, ::(@y, @ys)) , findMin#3(#false(), @x, @y, @ys) -> ::(@y, ::(@x, @ys)) , findMin#1(::(@x, @xs)) -> findMin#2(findMin(@xs), @x) , findMin#1(nil()) -> nil() , #cklt(#LT()) -> #true() , #cklt(#EQ()) -> #false() , #cklt(#GT()) -> #false() , findMin(@l) -> findMin#1(@l) , #less(@x, @y) -> #cklt(#compare(@x, @y)) , minSort(@l) -> minSort#1(findMin(@l)) , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y) , #compare(#pos(@x), #0()) -> #GT() , #compare(#pos(@x), #neg(@y)) -> #GT() , #compare(#0(), #pos(@y)) -> #LT() , #compare(#0(), #0()) -> #EQ() , #compare(#0(), #neg(@y)) -> #GT() , #compare(#0(), #s(@y)) -> #LT() , #compare(#neg(@x), #pos(@y)) -> #LT() , #compare(#neg(@x), #0()) -> #LT() , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x) , #compare(#s(@x), #0()) -> #GT() , #compare(#s(@x), #s(@y)) -> #compare(@x, @y) , findMin#2(::(@y, @ys), @x) -> findMin#3(#less(@x, @y), @x, @y, @ys) , findMin#2(nil(), @x) -> ::(@x, nil()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(n^2))